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Abstract. Many complex systems exhibit a natural hierarchy in which elements can be ordered
according to a notion of influence with closeness centrality being one of the three well-known centrality
measures used in social network analysis, determining the importance of vertices in a network, a core
task in each network application. It describes the relative importance of a single vertex within a
network or graph by finding the average proximity of that vertex to all others in that graph. In this
paper, we derive formulae for the closeness centrality weight of the graph resulting from the operations
between some graph families namely, join graph, Cartesian product of graph, shadow graph, corona
graph, lexicographic product, disjunction graph and total graph.
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1. Introduction
Nowadays, social networks have taken a very important place in our personal and professional
lives. The growing significance of social networks has prompted researchers to delve deeper
into their dynamics, exploring how communication and sharing function within these networks
(Landherr et al. [10], and Parisutham [13]). In 1977, Freeman [6] introduced three centrality
measures to assess the importance of nodes based on both their local and global connectivity.
These definitions were primarily designed for undirected and unweighted networks. Centrality
studies help determine an individual’s role in a social network, including their impact on
the flow and dissemination of information (Rosselló and Valiente [14]). Centrality measures
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are used to rank entities in a social network based on their position, allowing for a better
understanding of each individual’s role within the network (Fouad and Rego [5]). Many
centrality indices rely on the shortest paths between pairs of entities, counting the number of
paths that pass through a specific vertex, including Degree, Closeness, Betweenness, and
Eigenvector Centrality (Nirmala et al. [12]). Closeness centrality is used to measure the
importance of a vertex within a network. It quantifies how close a vertex is to all other vertices
in the graph, providing insights into the vertex’s influence and connectivity. A vertex with high
closeness centrality can quickly interact with other vertices in the network. Vertices with high
closeness centrality are strategically positioned within the network, making them key players
in processes like communication, dissemination of information, and network resilience. Totally,
the closeness centrality is a crucial measure in graph theory that provides valuable insights
into the connectivity and influence of vertices within a network. Its applications span across
various domains, making it a versatile and widely used tool in network analysis. Namely, Social
Networks: Identifying influential individuals who can efficiently spread information or social
influence. Transportation Networks: Finding crucial hubs that facilitate efficient transportation
and connectivity. Biological Networks: Locating important proteins that are central to cellular
processes. Communication Networks: Enhancing network design by optimizing the placement
of servers or routers for efficient communication.

2. Preliminaries
Let G be a simple, connected, finite and undirected graph with vertex set V (G) and edge set
E(G). We denote the number of vertices and edges of G by n = |V | and m = |E|, respectively.
If u,v ∈ V (G) are adjacent then we denote it by u ∼ v (Balakrishnan and Ranganathan [2]),
the degree of v is denoted by d(v) or dG(v) and is defined as the number of edges incident with
v, the distance between u and v is denoted by d(u,v) or dG(u,v) and is defined as the length
of the shortest path connecting u and v in G. If e(= uv) ∈ E(G), then d(e) or dG(e) denotes the
degree of e and d(e)= d(u)+d(v)−2 (Harary [7]). The distance d(e, f ) or dG(e, f ) between two
edges e and f is defined as the distance between the corresponding vertices in line graph of
G (Varma et al. [15]). The vertices of the line graph L(G) are the edges of G with two vertices
of the line graph adjacent whenever the corresponding edges of G are adjacent (Harary [7]).
The vertices and edges of a graph are called elements. The elements of a graph are neighbors if
they are either incident or adjacent. The total graph T(G) has a vertex set V (G)∪E(G), and two
vertices of T(G) are adjacent whenever they are neighbors in G (Harary [7]). The neighborhood
of u ∈ V (G) is the set N(u) consisting of all vertices v which are adjacent with u. The closed
neighborhood is N[u]= N(u)∪{u} (Harary [7]). The open edge neighborhood set N(e) of e ∈ E(G)
is the set of all edges adjacent to e. The edge neighborhood graph Ne(G) of G is the graph with
the vertex set E∪S where S is the set of all open edge neighborhood sets of edges of G, with two
vertices u,v in Ne(G) adjacent if u ∈ E(G) and v is an open edge neighborhood set containing
u (Kulli [9]). A fan graph Fn, n ≥ 2 is obtained by joining all the vertices of Pn to a further
vertex, called center (Meena and Vaithilingam [11]). Let G1 and G2 be disjoint graphs. The join
of G1 and G2 is the graph G =G1+G2 having the vertex set V (G)=V (G1)∪V (G2) and edge set
E(G)= E(G1)∪E(G2)∪ {uv | u ∈V (G1),v ∈V (G2)} (Eballe et al. [4]). The cartesian product of G1
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and G2 is G =G1 ×G2, with the vertex set V (G)=V (G1)×V (G2), where two distinct vertices
(u,v) and (x, y) of G1 ×G2 are adjacent if either u = x and vy ∈ E(G2) or v = y and ux ∈ E(G1)
(Eballe et al. [4]). The shadow graph S(G) of G is the graph obtained by taking two copies of
G, say G1 and G2, and then joining each v ∈V (G1) to the neighbors of v′ ∈V (G2), where v′ is
the vertex in V (G2) corresponding to v (Alfeche et al. [1]). The corona of two graphs G1 and G2,
denoted by G1 ◦G2, is defined to be the the graph obtained by taking one copy of G1 which has
presumably n vertices and n copies of G2, and then joining the ith vertex of G1 to every vertex
in the ith copy of G2. For convenience, we denote the ith copy of G2 in the corona G1 ◦G2 by G i

2
for i ∈V (G1) (Eballe et al. [4]). The lexicographic product G of two graphs G1 and G2, denoted
by G1[G2] has vertex set V (G)=V (G1)×V (G2), where any two distinct vertices (u,v) and (x, y)
of G1[G2] are adjacent if either u is adjacent with x in G1 or u = x and v is adjacent with y in
G2 (Eballe et al. [4]). The disjunction of graphs G1 and G2, denoted by G1∨G2, is the graph with
V (G1 ∨G2)=V (G1)×V (G2) and (a, x)(b, y) ∈ E(G1 ∨G2) if and only if ab ∈ E(G1) or xy ∈ E(G2)
(Alfeche et al. [1]). The closeness centrality measure is one of the three classic centrality indices
at the node or vertex level. If order of G is n and if u ∈V (G), then the closeness centrality of u
is given by CG(u)= n−1

τG (u) , where τG(u)= ∑
x∈V (G)

dG(u, x) (Eballe and Cabahung, Jr. [3]).

Theorem 2.1 ([3]). (i) If G = Pn of order n ≥ 2, then

CG(ui)=


n−1
(n

2)
, if ui is a pendant vertex,

n−1
( i

2)+(n+1−i
2 )

, if ui is a nonpendant vertex.

(ii) If G = Cn of order n, then

CG(u)=
{ 4

n+1 , if n is odd,
4(n−1)

n2 , if n is even.

Theorem 2.2 ([4]). (i) Let G and H be graphs of orders m and n respectively, with G is
connected. Then, the closeness centralities of the vertices u and (u,h) ∈V (G ◦H) are given
by the following expressions

CG◦H(u)= mn+m−1
(n+1)τG(u)+mn

and CG◦H(u,h)= mn+m−1
(n+1)τG(u)−dH(h)+2mn+m−2

.

(ii) Let G and H be nontrivial connected graphs of orders m and n, respectively. Then,
the closeness centrality of any vertex (u,v) ∈V (G[H]) is given by

CG[H](u,v)= mn−1
nτG(u)−dH(v)+2n−2

.

Theorem 2.3 ([8]). Let G and H be the connected nontrivial graphs of order m and n respectively,
and let (x, p) ∈V (G∨H). Then

CG∨H(x, p)= mn−1
2mn+dG(x)dH(p)−ndG(x)−mdH(p)−2

.

Motivated by the above definition, in this paper we study the closeness centrality weight of
graphs under some operations.
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3. Main Results
Definition 3.1. The closeness centrality weight CW(G) of G, is defined as

∑
u∈V (G)

f (u), where

f : V (G)→ (0,1] is a function and f (u)=CG(u).

Theorem 3.2. Let G be a graph of order n and v ∈V (G). Then,

τG(v)≤ n(n−1)
2

.

Proof. For any v,u ∈ V (G), d(v,u) ≤ n − 1. If there exists a vertex u ∈ V (G) such that
d(v,u) = n−1, then there exist n−2 number of vertices in V (G) say v1,v2, . . . ,vn−2 such that
d(v,vi)= i, with 1≤ i ≤ n−2. So,

τG(v)= ∑
u∈V (G)

d(v,u)

= (n−2)+ (n−1)+ . . .+2+1

= n(n−1)
2

.

Theorem 3.3. Let G1 and G2 be connected graphs of order p and n respectively. Then,
the closeness centrality weight of G1 +G2 is given by

CW(G1 +G2)= (p+n−1)[pτG1+G2(xi)+nτG1+G2(yj)]
τG1+G2(yj)τG1+G2(xi)

,

where xi ∈V (G1 +G2), 1≤ i ≤ p and yj ∈V (G1 +G2), 1≤ j ≤ n.

Proof. Let G1 and G2 be the graphs with V (G1) = {x1, x2, . . . , xp} and V (G2) = {y1, y2, . . . , yn}.
If xi ∈V (G1 +G2), 1≤ i ≤ p, then τG1+G2(xi) can be computed as

τG1+G2(xi)=
∑

v∈V (G1+G2)
d(xi,v)

= ∑
v∈N(G1+G2)[xi]

d(xi,v)+ ∑
v∈V (G1+G2)\N(G1+G2)[xi]

d(xi,v)

= (n+dG1(xi))+2(p−1−dG1(xi))

= 2p+n−2−dG1(xi).

Hence,

CG1+G2(xi)= p+n−1
2p+n−2−dG1(xi)

.

Similarly, for yj ∈V (G1 +G2), 1≤ j ≤ n, then τG1+G2(yj) can be computed as

τG1+G2(yj)=
∑

u∈V (G1+G2)
d(yj,u)

= ∑
u∈N(G1+G2)[yj]

d(yj,u)+ ∑
u∈V (G1+G2)\N(G1+G2)[yj]

d(yj,u)

= (p+dG2(yj))+2(n−1−dG2(yj))

= 2n+ p−2−dG2(yj).
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Hence,

CG1+G2(yj)= p+n−1
2n+ p−2−dG2(yj)

.

Therefore,

CW(G1 +G2)=
p∑

i=1

p+n−1
2p+n−2−dG1(xi)

+
n∑

j=1

p+n−1
2n+ p−2−dG2(yj)

.

Theorem 3.4. Let G1 and G2 be connected nontrivial graphs of order p and n respectively. Then,
the closeness centrality weight of G1 ×G2 is given by

CW(G1 ×G2)= ∑
(x,y)∈V (G1×G2)

[
pn−1

nτG1(x)+ pτG2(y)

]
.

Proof. Let (x, y) ∈V (G1 ×G2), then τG1×G2(x, y) can be computed as

τG1×G2(x, y)= ∑
(a,b)∈V (G1×G2)

d((x, y), (a,b))

= ∑
(a,b)∈V (G1×G2)

[dG1(x,a)+dG2(y,b)]

= n
∑

a∈V (G1)
dG1(x,a)+ p

∑
b∈V (G2)

dG2(y,b)

= nτG1(x)+ pτG2(y).

Therefore,

CW(G1 ×G2)= ∑
(x,y)∈V (G1×G2)

[
pn−1

nτG1(x)+ pτG2(y)

]
.

Theorem 3.4 can be applied to the grid graph Pn × Pk and the toroidal graph Cn ×Ck,
producing the following two corollaries.

Corollary 3.5. (i) Let Pn = (x1, x2, . . . , xn) and Pk = (y1, y2, . . . , yk) be two nontrivial paths of
order n and k, respectively. Then, the closeness centrality weight of the (grid) graph Pn×Pk

is given by

CW(Pn ×Pk)= ∑
(xi ,yj)∈V (Pn×Pk)

nk−1
kτPn(xi)+nτPk (yj)

.

(ii) Let Cn = (x1, x2, . . . , xn, x1) and Ck = (y1, y2, . . . , yk, y1) be two cycles of order n and k,
respectively. Then, the closeness centrality weight of the (toroidal) graph Cn×Ck is given by

CW(Cn ×Ck)= ∑
(xi ,yj)∈V (Cn×Ck)

nk−1
kτCn(xi)+nτCk (yj)

.

Theorem 3.6. The closeness centrality weight of the shadow graph, n ≥ 3 is given by

CW(S(G))= 2

[
n∑

i=1

2n−1
2τG1(vi)+2

]
.

Proof. Let v ∈V (S(G)), then τS(G)(v) can be computed as follows

τS(G)(v)= ∑
w∈V (S(G))

dS(G)(v,w)
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= ∑
w∈V (G1)

dS(G)(v,w)+ ∑
w1∈V (G2)

dS(G)(v,w1)

= ∑
w∈V (G1)

dG1(v,w)+ ∑
w1∈V (G2)−{v1}

dS(G)(v,w1)+dS(G)(v,v1)

= τG1(v)+ ∑
u∈V (G1)−{v}

dG1(v,u)+2

= 2τG1(v)+2.

Therefore,

CW(S(G))= 2

[
n∑

i=1

2n−1
2τG1(vi)+2

]
.

Proposition 3.7. (i) Let G1 and G2 be connected graphs of orders m and n, respectively.
Then, the closeness centrality weight of G1 ◦G2 is given by

CW(G1 ◦G2)= ∑
(u,h)∈V (G1◦G2)

mn+m−1
(n+1)τG1(u)+2mn+m−2−dG2(h)

+ ∑
u∈V (G1)

mn+m−1
(n+1)τG1(u)+mn

.

(ii) Let G1 and G2 be the nontrivial connected graphs of orders p and n, respectively. Then,
the closeness centrality weight of G1[G2] is given by

CW(G1[G2])= ∑
(u,v)∈V (G1[G2])

pn−1
nτG1(u)−dG2(v)+2n−2

.

Proof. We attain the above results from Theorem 2.2 and by the definition of closeness
centrality weight of the graphs.

(iii) Let G1 and G2 be the nontrivial connected graphs of orders p and n respectively. Then
closeness centrality weight of G1 ∨G2 is given by

CW(G1 ∨G2)= ∑
(s,t)∈V (G1∨G2)

pn−1
2pn−2+dG1(s)dG2(t)−n(dG1(s))− p(dG2(t))

.

Proof. We attain the above result from Theorem 2.3 and by the definition of closeness
centrality weight of the graphs.

Observation 3.8. (i) Since L(K1,n)= Kn, n ≥ 2, the closeness centrality weight of line graph
of star graph K1,n is given by CW(L(K1,n))= n.

(ii) Since L(Cn)∼= Cn, the closeness centrality weight of cycle graph and closeness centrality
weight of line graph of cycle graph are equal.

(iii) Since L(C3) ∼= L(K1,3), the closeness centrality weight of line graph of cycle graph with
3 vertices and the closeness centrality weight of line graph of star graph K1,3 are equal.

Theorem 3.9. Let G = Kn be a complete graph. Then, the closeness centrality weight of the total
graph of complete graph is given by

CW(T(G))= (n+1)(n+2)
2

.
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Proof. The total graph of complete graph has n(n+1)
2 vertices, n(n2−1)

2 edges and it is 2(n−1)-
regular graph.

Let v ∈V (G), then

τT(G)(v)= (2n−2)1+
(

n(n+1)
2

−2(n−1)−1
)
2= n2 −n.

Let u ∈ E(G), then

τT(G)(u)= (2)1+ (2n−4)1+
(

n(n+1)
2

−2− (2n−4)−1
)
2= n2 −n.

Then,

CW(T(G))= ∑
u∈V (T(G))

(n+1)(n+2)
2

τG(u)

= (n+1)(n+2)
2

n
n2 −n

+ (n+1)(n+2)
2

n(n−1)
2(n2 −n)

.

Therefore,

CW(T(G))= (n+1)(n+2)
2

.

Theorem 3.10. Let G = K1,n be a star graph. Then, the closeness centrality weight of the total
graph of star graph is given by

CW(T(G))= 7n3 +3n2 −5n+1
6n2 −5n+1

.

Proof. Let u ∈V (T(G)). If u corresponds to the edge of G, then

τT(G)(u)= (n−1)1+ (2)1+ (n−1)2= 3n−1.

If u corresponds to the central vertex of G then τT(G)(u)= 2n. If u corresponds to the pendent
vertex of G, then

τT(G)(u)= (1)1+ (1)1+ (n−1)2+ (n−1)2= 4n−2.

Then,

CT(G)(u)=


2n

3n−1 , if u is an edges of G,
2n

4n−2 , if u is pendant vertex of G,

1, if u is a central vertex of G.

Therefore,

CW(T(G))= 7n3 +3n2 −5n+1
6n2 −5n+1

.

Theorem 3.11. Let G = Cn be a cycle graph of order n. Then, the closeness centrality weight of
the total graph of cycle graph is given by

CW(T(G))=


8n2−4n
4τG (v)+n+1 , if n is odd,
8n2−4n

4τG (v)+n , if n is even.
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Proof. We consider the following cases:

Case 1. Let n be odd and u ∈V (T(G)) with corresponds to a vertex of G. Then, the number of
vertices n is given distance dT(G)(u,v)≤ diam(T(G)) is given in Table 1.

Table 1. Number of vertices of T(G) corresponds to V (G) and E(G)

With dT(G)(u,v)
Number of vertices of T(G)

corresponds to
vertex of G edge of G

1 2 2
2 2 2
3 2 2
4 2 2
...

...
...

n−1
2 2 2

n+1
2 0 1

We get

τT(G)(u)= 2τG(u)+ n+1
2

.

Similarly for u ∈V (T(G)) corresponding to an edge of G.

Case 2. Let n be even and u ∈V (T(G)) with corresponds to a vertex of G. Then, the number of
vertices n is given distance dT(G)(u,v)≤ diam(T(G)) is given in Table 2.

Table 2. Number of vertices of T(G) corresponds to V (G) and E(G)

With dT(G)(u,v)
Number of vertices of T(G)

corresponds to
vertex of G edge of G

1 2 2
2 2 2
3 2 2
4 2 2
...

...
...

n
2 1 2

We get

τT(G)(u)= 2τG(u)+ n
2

.

Similarly for u ∈V (T(G)) corresponding to an edge of G.
Then,

CT(G)(u)=


2n−1
2τG (u)+ n+1

2
, if n is odd,

2n−1
2τG (u)+ n

2
, if n is even.
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Therefore,

CW(T(G))=


8n2−4n
4τG (v)+n+1 , if n is odd,
8n2−4n

4τG (v)+n , if n is even.

Theorem 3.12. Let G be a graph of order n and size m. If vi ∈V (G) and ui ∈ E(G), then closeness
centrality weight of total graph is given by

CW(T(G))≥ n
(

n+m−1
τ(G)(u)+m(1+diam(G))

)
+ n(n−1)

2

(
n+m−1

(m+n)(1+diam(G))

)
.

Proof. Let V (G)= {v1,v2,v3, . . . ,vn} and E(G)= {u1,u2,u3, . . . ,um}, then V (T(G))=V (G)∪E(G).

Case 1. If vi ∈V (G), we have

τT(G)(vi)=
∑

x∈V (T(G))
dT(G)(vi, x)

= ∑
v j∈V (G)

dT(G)(vi,v j)+
∑

u j∈E(G)
dT(G)(vi,u j)

= A+B.

Now,

A = ∑
v j∈V (G)

dT(G)(vi,v j)= τG(vi).

To calculate B, consider u j = a jb j ∈ E(G), then

B = ∑
a jb j∈E(G)

[1+min{dG(vi,a j),dG(vi,b j)}].

Since d(vi,v j)≤ diam(G), for all 1≤ i, j ≤ n. We have

τT(G)(vi)= τG(vi)+
∑

(1+diam(G))
= τG(vi)+m+m(diam(G))
= τG(vi)+m(1+diam(G)).

Case 2. If ui = xi yi ∈ E(G), we have

τT(G)(ui)=
∑

x∈V (T(G))
dT(G)(ui, x)

= ∑
v j∈V (G)

dT(G)(ui,v j)+
∑

u j∈E(G)
dT(G)(ui,u j)

= M+N.

Now,

M = ∑
v j∈V (G)

dT(G)(ui,v j)

= ∑
v j∈V (G)

[1+min{dG(xi,v j),dG(yi,v j)}]

≤ ∑
v j∈V (G)

(1+diam(G))

= n+n(diam(G)).
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To calculate N , consider u j = a jb j ∈ E(G), then

N = ∑
u j∈E(G)

dT(G)(ui,u j)

= ∑
a jb j∈E(G)

[1+min{(dG(xi,a j),dG(xi,b j),dG(yi,a j),dG(yi,b j))}]

≤ ∑
a jb j∈E(G)

1+diam(G)

= m(1+diam(G)).

Hence,

τT(G)(ui)≤ n+n(diam(G))+m+m(diam(G))
= (m+n)(1+diam(G)).

From the above cases, we get

τT(G)(u)≤
{

(m+n)(1+diam(G)), if u ∈ E(G),
τG(u)+m(1+diam(G)), if u ∈V (G).

Therefore,

CW(T(G))≥ n
(

n+m−1
τ(G)(u)+m(1+diam(G))

)
+ n(n−1)

2

(
n+m−1

(m+n)(1+diam(G))

)
.

4. Conclusion
The study re-examined the concept of closeness centrality weight of a graph and to determine
the formulas for the closeness centrality weight of join graph, cartesian product of graph,
shadow graph, corona graph, lexicographic product of graph, disjunction of graph, and for the
total graph. The parameter can be studied further for other graphs under some other graph
operations.
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