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Abstract. This paper presents higher-order numerical methods for solving nonlinear Fisher equations.
These types of equations arise in various fields of sciences and engineering, the main application
of this equation has been found in the biomedical sciences. The solution of this equation helps to
determine the size of the brain tumor. In this paper explores the utilization of advanced numerical
techniques, such as the method of lines and higher-order strong stability preserving schemes of order
four and stage seven, to approximate solutions to the Fisher equation with higher-order accuracy.
These schemes are explicitly designed and easy to implement, especially for addressing nonlinear
problems. Their stability-preserving nature ensures only mild restrictions on time steps. This scheme
is then tested on two examples and the results show that it is more efficient methods and requires less
computing time. Various test problems are examined to verify the scheme’s performance, including a
comparison of /9 and [/, errors with the exact solution, leading to high accuracy.
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1. Introduction

We consider the well-known one-dimensional nonlinear Fisher equation:
2
2—?:37;‘+au(1—u), O0<x<1, t>0, (1.1)
where u(x,t) represents the population density.

The Fisher equation was initially formulated in 1937, and equation (1.1) is referenced from
(Fisher [9]]). The details of the analysis and explanation of equation (1.1) can be found in [[15].
Due to this it is called the Fisher-Kolmogorov-Petrovsky-Piscounov (Fisher-KPP) equation.
However, it is widely known as Fisher equation. Over time, the Fisher equation has become
really important for studying how things spread out, like helpful genes, populations, and how
stuff moves in nature and biology. Many scientists are studying different things using the Fisher
equation, e.g., Alshammari and Mashat [2]], Ammerman and Cavalli-Sforza [3], Bramson [6],
Canosa [[7]], Frank-Kamenetskii [10]], Shah [24], Tang and Weber [29], and Tyson and Brazhnik
[30]. The Fisher equation’s math properties and discussions, along with numerous of numerical
methods, are explained in the literature with references for more information, see, Bastani and
Salkuyeh [4], Chandrakera et al. [8]], Jiwari and Mittal [14], Macias-Diaz et al. [[16]], Mickens
[17], Mittal and Jiwari [18], Mittal and Kumar [19], Qiu and Sloan [22]], Verma et al. [31],
Wang [35]]. Research works of Parambu et al. [21], Shampine [25]], and Shu [26] provide useful
information about the background and uses of this equation in different scientific areas.

In mathematical science, we develop a method for obtaining numerical solutions of a one-
dimensional nonlinear reaction-diffusion equation using the SSPRK-74 technique (Gottlieb
et al. [11]], Spiteri and Ruuth [27]). We achieve this by transforming the partial differential
equation into an ordinary differential equation in time through the application of the method of
lines (Oymak and Selguk [20]). The method of lines, which is a technique for finding numerical
solutions of partial differential equations, plays an essential role in preserving the accuracy
and stability of the developing solution. The ordinary differential equations resulting from
the discretization of the Navier-Stokes equations are integrated using an implicit method,
Adams-Moulton, which is integrated with the widely recognized ODE solver Hindmarsh [13]].

In this paper, we introduce a numerical approach for solving Fisher’s equation. We combine
the Method of Lines (MOL) in spatial dimensions with the strong stability preserving Runge-
Kutta method (SSP-RK74) in time dimensions. SSPRK-74 method is a advanced techniques for
solving high-order time discretization methods. In Section |2, we introduce Fisher equation in
one dimension with initial and boundary conditions. In Section |3, involves semi-discretizing the
derived equation in the spatial dimension using MOL and fully discretizing it by implementing
the SSP-RK74 method on the resulting ODE system. In Section 4, we describe numerical
experiments of test examples and compare the numerical solutions with a few existing methods.
Our method demonstrates higher accuracy compared to the existing methods. In Section
conclusion. This paper presents an efficient method for addressing Fisher’s equation, providing
valuable perspectives for various scientific and engineering applications.
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2. Problem Statement

We consider the well-known one-dimensional nonlinear Fisher equation

Z—?:%+au(l—u), O<x<1, t>0, (2.1)
with initial condition

u(x,0)=uplx), 0<x=<1,
and the boundary conditions

u(0,t)=f1(t), 0<t<T,

u(1,t)=fot), 0<t<T.

In this context, a represents the reactive factor, T' signifies the final time, and u¢(x), f1, and f2
denote given functions that are sufficiently smooth, collectively defining initial and boundary
conditions for the mathematical model.

3. Numerical Scheme

The Method of Lines (MOL) is a widely recognized technique used for solving time-dependent
partial differential equations. Initially, the partial differential equations are converted into
ordinary differential equations using the MOL. Then the set of ordinary differential equations
is solved by applying the SSP-RK74 scheme for integration. To discretize the solution domain
for equation (2.1), we apply a uniform mesh approach. The spatial interval [0, 1] is divided into
M equal sub-intervals, each with a width of Ax, where Ax is calculated as Ax = % We then
define spatial points x,, as x,, = mAx for m is ranging from 0 to M.

3.1 Semi-discretization: Method of Lines (MOL)

Rothe [23] introduced the Method of Lines (MOL), and in a subsequent works by Bonkile [5]],
Parambu et al. [21] utilized MOL to transform the PDEs into a set of ODEs, effectively
addressing the Burger’s equation and Stefan problem. Unsteady nonlinear partial differential
equation undergoes spatial discretization to create a semi-discrete MOL scheme. This includes

discretizing the reaction term 66—‘; with a second-order central method and using central difference
to discretize the diffusion term ‘;27’2‘,
ou  uUm1(t)—um-1(t)
— = 3.1
0x 2h ’ 8.1
0%u Um1(8) = 2up (t) + up—1(2)
T2 ~ 2 , h=Ax, (3.2)
du Um+1(8) = 201y (8) + U1y —1(2)
—" = mtl " D+ (@um (L - um)), (3.3)

where m =1,2,3,...,M —1.
This can be expressed in the form of a discrete operator, the right-hand side of equation

(3.3),
= = L(uy), (3.4)

where m is ranging from 1 to M —1, and L is basically a nonlinear difference operator.
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3.1.1 SSP-RK74

Table 1. Butcher tableau of SSP-RK74 scheme (Spiteri and Ruuth [27])

ik

1.00000000000000
0.20161507213829
0.19469598207921
0.58143386885601
0.01934367892154
0.00000000000000
0.06006304558847

0.79838492786171
0.00000000000000
0.00000000000000
0.00000000000000
0.00000000000000
0.00000000000000

0.80530401792079
0.00000000000000
0.00000000000000
0.00000000000000
0.30152730794242

0.41856613114399
0.00000000000000
0.00000000000000
0.10518998496676

0.98065632107846
0.00000000000000
0.01483791154585

1.00000000000000
0.00000000000000

0.51838174995650

0.3011872706068

0.00000000000000
0.00000000000000
0.00000000000000
0.00000000000000
0.00000000000000
0.00000000000000

0.24040865318216
0.00000000000000
0.00000000000000
0.00000000000000
0.00000000000000
0.00000000000000

0.24249212077315
0.00000000000000
0.00000000000000
0.00000000000000
0.09079551914158

0.12603810060080
0.00000000000000
0.00000000000000
0.02888359354880

0.29529398308716
0.00000000000000
0.00000000000000

0.30111872706068
0.00000000000000

0.15609445267839

The purpose of SSP-RK74 is to achieve high-order accuracy in time integration while
maintaining strong stability properties. The SSP-RK74 scheme utilizes seven stages (s =7) and
achieves a fourth-order accuracy (k£ = 4). The primary characteristic of SSP methods is that
the number of stages (s = 7) exceeds the order (¢ = 4) of accuracy in terms of the time variable
for the method (Gottlieb et al. [11]). Let’s express an s-stage explicit Runge-Kutta method in
the following manner,

U=y, (3.5)
) i-1

U(l) = Z(ai,kU(k)+Atbi,kL(U(k))), 1=1,2,3,...,s, (3.6)
k=0

yntl— gm 3.7

The SSP-RK74 scheme is characterized by coefficients a; , that satisfy the conditions a; ; =0
and a; =0 only if b; , = 0 (Shu [26]). This scheme also possesses a Courant-Friedrichs-Lewy
(CFL) coefficient of 3.32094921415661. Additionally, it’s required that the sum of coefficients
ZZ;%ai,k =1holds fori =1,2,3,...,s. To descretize the temporal domain [0, 7] into N equivalent
sub-intervals with a uniform mesh size, we assume At = T/N = k and utilize ¢, = nAt.
We perform the integration of equation from ¢, to ¢, + At using the following steps for
n=0,1,2...,N, resulting in the complete determination of the solution u(x,?) at a specific time
level. Table (1) gives the values of a;;, and b;; coefficients,

u®=yn (3.8)
where u}, is a initial condition
u(,,ll) = alou(,g) + Atb 10L(u§2))
=19 + A#(0.3011872706068)L('?)
(0) 0) (0)
—2u, +u
=19 + £(0.3011872706068) | —2+L h;" ml L auQa-u®)|, (3.9)

1
u® =Y (agu'? + At L))
k=0
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=(0.20161507213829)u'? + (0.79838492786171)u'Y + A#(0.24040865318216)L (1Y)

=(0.20161507213829)u.'? +(0.79838492786171)u'l

1) 9 1) (1)
—2uy +u
1 m -1
il 2 L 4 auD(a-uld)

+£(0.24040865318216) , (3.10)

2
u® =Y (azu'® + Atbg Lw®))
k=0

=0.194695982079211'? + 0.805304017920791'? + At -0.24249212077315L(u'?)
m m m

=(0.194695982079211? + 0.805304017920791?)

(2) 2,2 (2)
—zlU +u

+£(0.24249212077315) 3

, (3.11)

3
u® =3 (agu'® + Ath 4 L(w,®))
k=0

=(0.58143386885601)'? + (0.41856613114399)u'> + A#(0.12603810060080)L(.'>)

=(0.58143386885601)u.'? +(0.41856613114399)u3)

3) 3)

—2u® 4y
m+1 m m—1 +au(n3l)(1_u(n%))

h2

+£(0.12603810060080) , (3.12)

4
ul® =Y (aspul + Atbsp L(un ™))
k=0

=(0.01934367892154)1.'? + (0.98065632107846)u'Y + (0.2952939830871)k L(1'?)
=(0.01934367892154)u.'Y + +(0.98065632107846)u.?

@ —2ul+u®
+£(0.2952939830871) | 1 3 ol au®a-u?)|, (3.13)
6 2 k k
u® =Y (aeru® + Atbe L(un, ™)

k=0

=% +(0.30111872706068)k (1)
5) (5) (5)
—2uy, +u

= u'® + £(0.30111872706068) | =+ h;" ml b au®a-u$)|, (3.14)

6
upt™ = 3 (@rpul + Atbgp Lupn ™)
£=0

= (0.06006304558847)u'? +(0.30152730794242)u'? + (0.10518998496676)u.>
+(0.01483791154585)u'? +(0.51838174995650)u.'®
+(0.09079551914158)LL(1.?) + (0.02888359354880)k L (1Y)
+(0.15609445267839)k L(1.'®)

=(0.06006304558847)u'? + (0.30152730794242)u'? + (0.10518998496676)u.>
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+(0.0 1483791154585)u(4) +(0.51838174995650).®
(2) (2)

—2u® 4y '
1 £(0.09079551914158) | —mt1” T TRmo1 | @q @

h2

: 3) 3) 3) ]
u —2u,y+u
+£(0.02888359354880) | <L m1 4 5,313, ®))

hz
(6) (6) (6) ]
—2u, +u
1 2(0.15609445267839) | —m*L h;" -l au®1-u®), (3.15)

for m =1,2,3,...,M —1. In the succeeding iteration, we have utilized u(O) ult

from 0 to N — 1.

1 with n ranging

4. Numerical Experiment

Presented are the numerical results of the SSP-RK74 method applied to various instances of
the Fisher equation (2.1) using MATLAB. With the help of the exact solution, we measured the
accuracy of the numerical method. Assess the accuracy and efficiency of the proposed method

by evaluating the l9 and [, error norms,
1/2

1 M
Iy= MmZ:O(Um—umF s loo= max [Up—upl,

where u,, is numerical solution and U,, as the exact solution corresponding to the node at
position x,,.
Example 4.1. Consider the Fisher’s equation

Up = Uy + au(l—u),

subject to the initial condition
1

1+ e\/%x)z,

where the exact solution is presented in [18] given by

u(x,0) =

u(x,t) = :
(1+eVEx5aty2

Example 4.2. Consider the following generalized Fisher’s equation in domain [0, 1]:
Ut =Uyy +u(l—u%),

with initial condition

1 1)
,0) =< —tanh
0= {Ganh - 5}

The exact solution is presented in [18] by

u(x,0) = { L tanh(

a+4 t)) N 1 }E
2\/204 4\ Va+4 2]
Tables 2| and |3| provide numerical and exact solutions at different times for various values of
a’ for examples one and two. We compare the numerical and exact solutions for « =6 and 1
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using at two distinct time steps, namely Az =0.0001 and At =0.000005, with a specific focus on
Examples and (4.2). Figures and [4] represent numerical solutions compared to the
exact solution, while Figures 5] [6] [7] and [§ display the absolute error graphs in relation to the
exact solution for different values of a, with At values of 0.0001 and 0.000005. Tables 4| and
provide the /2 and [/, errors for examples one and two. From these tables and graphs, we

observed that the proposed method yields more accurate values for all time steps.

Table 2. Numerical and exact solution of Example at a =6 and M =20

At =0.0001 At =0.000005
x T  Numerical solution Exact solution Numerical solution Exact solution
025 04 0.725864 0.725824 0.725827 0.725824
0.6 0.883457 0.883437 0.883439 0.883437
0.8 0.954581 0.954573 0.954573 0.954573
1.0 0.982921 0.982919 0.982919 0.982919
05 04 0.668474 0.668428 0.668433 0.668428
0.6 0.854063 0.854038 0.854041 0.854038
0.8 0.942245 0.942235 0.942235 0.942235
1.0 0.978150 0.978147 0.978147 0.978147
0.75 04 0.604245 0.604195 0.604200 0.604195
0.6 0.818422 0.818393 0.818395 0.818393
0.8 0.926752 0.926740 0.926740 0.926740
1.0 0.972075 0.972071 0.972071 0.972071

Table 3. Numerical and exact solution of Example ata=1and M =20

At =0.0001 At =0.000005
X T  Numerical solution Exact solution Numerical solution Exact solution
025 04 0.310883 0.310875 0.310875 0.310875
0.6 0.357842 0.357834 0.357834 0.357834
0.8 0.406437 0.406428 0.406429 0.406428
1.0 0.455748 0.455739 0.455739 0.455739
05 04 0.283306 0.283298 0.283298 0.283298
0.6 0.328835 0.328827 0.328827 0.328827
0.8 0.376535 0.376526 0.376526 0.376526
1.0 0.425517 0.425509 0.425509 0.425509
0.75 04 0.256840 0.256832 0.256833 0.256832
0.6 0.300644 0.300635 0.300636 0.300635
0.8 0.347114 0.347106 0.347106 0.347106
1.0 0.395420 0.395411 0.395412 0.395411
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Figure 1. Comparison of numerical solutions Figure 2. Comparison of numerical solutions
of Example at time levels 7' = 0.4,0.6,0.8 of Example at time levels 7' = 0.4,0.6,0.8
and 1 for a =6, At =0.0001, and M =20 and 1 for a =6, At =0.000005, and M =20

Figure 3. Comparison of numerical solutions Figure 4. Comparison of numerical solutions
of Example at time levels 7' = 0.4,0.6,0.8 of Example at time levels 7' = 0.4,0.6,0.8
and 1 for a =1, At =0.0001, and M =20 and 1 for a =1, At =0.000005, and M =20
%10 <10
)= T e e

T=08 _ere-e -9 |

Figure 5. Absolute error comparison of Figure 6. Absolute error comparison of

Example at different time levels T = Example at different time levels T =
0.4,0.6,0.8 and 1 for a« =6, At = 0.0001, and 0.4,0.6,0.8 and 1 for a =6, At =0.000005, and
M =20 M =20
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Figure 7.
Example at different time levels T =
0.4,0.6,0.8 and 1 for a =1, At =0.0001, and
M =20

Absolute error comparison of

Figure 8.

M =20

Absolute error comparison of
Example at different time levels T =
0.4,0.6,0.8 and 1 for a =1, At =0.000005, and

Table 4. Errors of Example ata=6

At=0.0001 At =0.000005
T lz loo lz loo
0.4 4.42530E-05 5.21652E-05 4.04398E-06 4.89540E-06
0.6 2.48444E-05 3.29639E-05 2.28567E-06 2.88950E-06
0.8 1.02717E-05 1.49734E-05 4.06231E-07 7.17900E-07
1.0 3.87287E-06 5.95150E-06 9.76728E-08 9.76728E-08
Table 5. Errors of Example ata=1
At=0.0001 At =0.000005
T Iy loo o loo
0.4 7.58056E-06 8.4923E-06 2.73113E-07 3.981E-07
0.6 8.17259E-06 8.8286E-06 3.27646E-07 4.237E-07
0.8 8.76592E-06 8.9761E-06 3.82155E-07 4.418E-07
1.0 8.72275E-06 9.0070E-06 4.31856E-07 4.554E-07

Table 6. Comparison of numerical solution for Example at At =0.000005, T=0.1and ¢ =6

x BDF1[32] BDF2[32] BDF3I[32] SSP43[34] Present solution Exact solution
0.1 0.35841806 0.35842071 0.35842016 0.35842328 0.35842348 0.35842691
0.2 0.32997086 0.32997260 0.32997468 0.32997524 0.32997541 0.32998421
0.3 0.30230060 0.30230157 0.30230568 0.30230424 0.30230437 0.30231742
0.4 0.27558402 0.27558442 0.27558983 0.27558708 0.27558720 0.27560315
0.5 0.24997987 0.24997993 0.24998585 0.24998256 0.24998266 0.25000000
0.6 0.22562504 0.22562500 0.22563062 0.22562757 0.22562766 0.22564477
0.7 0.20263156 0.20263170 0.20263624 0.20263415 0.20263425 0.20264943
0.8 0.18108475 0.18108534 0.18108812 0.18108759 0.18108770 0.18109917
0.9 0.16104234 0.16104363 0.16104409 0.16104557 0.16104569 0.16105159
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Table 8. Comparison of numerical solution for Example at At =0.000005, T=0.1and a=1

x BDF1[33] BDF2[33] Present solution Exact solution
0.1 0.26073733 0.26073824 0.26073858 0.26073843
0.2 0.25042002 0.25042078 0.25042105 0.25042110
0.3 0.24031064 0.24031127 0.24031151 0.24031169
0.4 0.23041738 0.23041791 0.23041811 0.23041838
0.5 0.22074766 0.22074815 0.22074834 0.22074865
0.6 0.21130823 0.21130872 0.21130891 0.21130920
0.7 0.20210505 0.20210558 0.20210578 0.20210601
0.8 0.19314332 0.19314394 0.19314417 0.19314428
0.9 0.18442751 0.18442824 0.18442850 0.18442843

Table 9. Numerical and exact results for Example are compared at At =0.00005, M =20 for a =6

T x DQM [4], [18] | Present method | Exact solution

0.5 | 0.25 0.81847 0.818409 0.818393
0.75 0.72592 0.725845 0.725824

1.0 | 0.25 0.98293 0.982920 0.982919
0.75 0.97208 0.972073 0.972071

5. Conclusions

This paper presents a new approach to solving nonlinear partial differential equations.
The method of lines is used to discretize the equation, and the resulting system of ordinary
differential equations is solved using the strong stability preserving time-steping Runge-Kutta
(SSP-RK74) method. To evaluate the accuracy and efficiency of the technique, two test examples
involving the Fisher equation were examined. The numerical solutions were compared with
exact solution at various values of the parameter ‘a’ within the system of ODEs. The norms /9
and /., were also used to measure the absolute errors of the numerical solutions. This technique
can be applied to numerically solve higher-dimensional nonlinear partial differential equations.
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