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Abstract. This paper presents higher-order numerical methods for solving nonlinear Fisher equations.
These types of equations arise in various fields of sciences and engineering, the main application
of this equation has been found in the biomedical sciences. The solution of this equation helps to
determine the size of the brain tumor. In this paper explores the utilization of advanced numerical
techniques, such as the method of lines and higher-order strong stability preserving schemes of order
four and stage seven, to approximate solutions to the Fisher equation with higher-order accuracy.
These schemes are explicitly designed and easy to implement, especially for addressing nonlinear
problems. Their stability-preserving nature ensures only mild restrictions on time steps. This scheme
is then tested on two examples and the results show that it is more efficient methods and requires less
computing time. Various test problems are examined to verify the scheme’s performance, including a
comparison of l2 and l∞ errors with the exact solution, leading to high accuracy.
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1. Introduction
We consider the well-known one-dimensional nonlinear Fisher equation:

∂u
∂t

= ∂2u
∂x2 +αu(1−u), 0≤ x ≤ 1, t > 0, (1.1)

where u(x, t) represents the population density.
The Fisher equation was initially formulated in 1937, and equation (1.1) is referenced from

(Fisher [9]). The details of the analysis and explanation of equation (1.1) can be found in [15].
Due to this it is called the Fisher-Kolmogorov-Petrovsky-Piscounov (Fisher-KPP) equation.
However, it is widely known as Fisher equation. Over time, the Fisher equation has become
really important for studying how things spread out, like helpful genes, populations, and how
stuff moves in nature and biology. Many scientists are studying different things using the Fisher
equation, e.g., Alshammari and Mashat [2], Ammerman and Cavalli-Sforza [3], Bramson [6],
Canosa [7], Frank-Kamenetskii [10], Shah [24], Tang and Weber [29], and Tyson and Brazhnik
[30]. The Fisher equation’s math properties and discussions, along with numerous of numerical
methods, are explained in the literature with references for more information, see, Bastani and
Salkuyeh [4], Chandrakera et al. [8], Jiwari and Mittal [14], Macías-Díaz et al. [16], Mickens
[17], Mittal and Jiwari [18], Mittal and Kumar [19], Qiu and Sloan [22], Verma et al. [31],
Wang [35]. Research works of Parambu et al. [21], Shampine [25], and Shu [26] provide useful
information about the background and uses of this equation in different scientific areas.

In mathematical science, we develop a method for obtaining numerical solutions of a one-
dimensional nonlinear reaction-diffusion equation using the SSPRK-74 technique (Gottlieb
et al. [11], Spiteri and Ruuth [27]). We achieve this by transforming the partial differential
equation into an ordinary differential equation in time through the application of the method of
lines (Oymak and Selçuk [20]). The method of lines, which is a technique for finding numerical
solutions of partial differential equations, plays an essential role in preserving the accuracy
and stability of the developing solution. The ordinary differential equations resulting from
the discretization of the Navier-Stokes equations are integrated using an implicit method,
Adams-Moulton, which is integrated with the widely recognized ODE solver Hindmarsh [13].

In this paper, we introduce a numerical approach for solving Fisher’s equation. We combine
the Method of Lines (MOL) in spatial dimensions with the strong stability preserving Runge-
Kutta method (SSP-RK74) in time dimensions. SSPRK-74 method is a advanced techniques for
solving high-order time discretization methods. In Section 2, we introduce Fisher equation in
one dimension with initial and boundary conditions. In Section 3, involves semi-discretizing the
derived equation in the spatial dimension using MOL and fully discretizing it by implementing
the SSP-RK74 method on the resulting ODE system. In Section 4, we describe numerical
experiments of test examples and compare the numerical solutions with a few existing methods.
Our method demonstrates higher accuracy compared to the existing methods. In Section 5,
conclusion. This paper presents an efficient method for addressing Fisher’s equation, providing
valuable perspectives for various scientific and engineering applications.
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2. Problem Statement
We consider the well-known one-dimensional nonlinear Fisher equation

∂u
∂t

= ∂2u
∂x2 +αu(1−u), 0≤ x ≤ 1, t > 0, (2.1)

with initial condition

u(x,0)= u0(x), 0≤ x ≤ 1,

and the boundary conditions

u(0, t)= f1(t), 0≤ t ≤ T,

u(1, t)= f2(t), 0≤ t ≤ T.

In this context, α represents the reactive factor, T signifies the final time, and u0(x), f1, and f2
denote given functions that are sufficiently smooth, collectively defining initial and boundary
conditions for the mathematical model.

3. Numerical Scheme
The Method of Lines (MOL) is a widely recognized technique used for solving time-dependent
partial differential equations. Initially, the partial differential equations are converted into
ordinary differential equations using the MOL. Then the set of ordinary differential equations
is solved by applying the SSP-RK74 scheme for integration. To discretize the solution domain
for equation (2.1), we apply a uniform mesh approach. The spatial interval [0,1] is divided into
M equal sub-intervals, each with a width of ∆x, where ∆x is calculated as ∆x = 1

M . We then
define spatial points xm as xm = m∆x for m is ranging from 0 to M.

3.1 Semi-discretization: Method of Lines (MOL)
Rothe [23] introduced the Method of Lines (MOL), and in a subsequent works by Bonkile [5],
Parambu et al. [21] utilized MOL to transform the PDEs into a set of ODEs, effectively
addressing the Burger’s equation and Stefan problem. Unsteady nonlinear partial differential
equation undergoes spatial discretization to create a semi-discrete MOL scheme. This includes
discretizing the reaction term ∂u

∂t with a second-order central method and using central difference
to discretize the diffusion term ∂2u

∂x2 ,

∂u
∂x

≈ um+1(t)−um−1(t)
2h

, (3.1)

∂2u
∂x2 ≈ um+1(t)−2um(t)+um−1(t)

h2 , h =∆x, (3.2)

dum

dt
=

(
um+1(t)−2um(t)+um−1(t)

h2

)
+ (αum(1−um)) , (3.3)

where m = 1,2,3, . . . , M−1.
This can be expressed in the form of a discrete operator, the right-hand side of equation

(3.3),
dum

dt
= L(um), (3.4)

where m is ranging from 1 to M−1, and L is basically a nonlinear difference operator.

Communications in Mathematics and Applications, Vol. 16, No. 2, pp. 679–691, 2025



682 Higher-Order Numerical Techniques for Solving the Nonlinear Fisher Equation. . . : R. Kumari et al.

3.1.1 SSP-RK74

Table 1. Butcher tableau of SSP-RK74 scheme (Spiteri and Ruuth [27])

ai,k 1.00000000000000

0.20161507213829 0.79838492786171

0.19469598207921 0.00000000000000 0.80530401792079

0.58143386885601 0.00000000000000 0.00000000000000 0.41856613114399

0.01934367892154 0.00000000000000 0.00000000000000 0.00000000000000 0.98065632107846

0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 1.00000000000000

0.06006304558847 0.00000000000000 0.30152730794242 0.10518998496676 0.01483791154585 0.00000000000000 0.51838174995650

bi,k 0.3011872706068

0.00000000000000 0.24040865318216

0.00000000000000 0.00000000000000 0.24249212077315

0.00000000000000 0.00000000000000 0.00000000000000 0.12603810060080

0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.29529398308716

0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.30111872706068

0.00000000000000 0.00000000000000 0.09079551914158 0.02888359354880 0.00000000000000 0.00000000000000 0.15609445267839

The purpose of SSP-RK74 is to achieve high-order accuracy in time integration while
maintaining strong stability properties. The SSP-RK74 scheme utilizes seven stages (s = 7) and
achieves a fourth-order accuracy (k = 4). The primary characteristic of SSP methods is that
the number of stages (s = 7) exceeds the order (k = 4) of accuracy in terms of the time variable
for the method (Gottlieb et al. [11]). Let’s express an s-stage explicit Runge-Kutta method in
the following manner,

U (0) =Un , (3.5)

U (i) =
i−1∑
k=0

(ai,kU (k) +∆tbi,kL(U (k))), i = 1,2,3, . . . , s , (3.6)

Un+1 =U (m) . (3.7)

The SSP-RK74 scheme is characterized by coefficients ai,k that satisfy the conditions ai,k ≥ 0
and ai,k = 0 only if bi,k = 0 (Shu [26]). This scheme also possesses a Courant-Friedrichs-Lewy
(CFL) coefficient of 3.32094921415661. Additionally, it’s required that the sum of coefficients∑i−1

k=0 ai,k = 1 holds for i = 1,2,3, . . . , s. To descretize the temporal domain [0,T] into N equivalent
sub-intervals with a uniform mesh size, we assume ∆t = T/N = k and utilize tn = n∆t.
We perform the integration of equation (3.4) from tn to tn +∆t using the following steps for
n = 0,1,2 . . . , N , resulting in the complete determination of the solution u(x, t) at a specific time
level. Table (1) gives the values of aik and bik coefficients,

u(0)
m = un

m , (3.8)

where un
m is a initial condition

u(1)
m = a10u(0)

m +∆tb10L(u(0)
m )

= u(0)
m +∆t(0.3011872706068)L(u(0)

m )

= u(0)
m +k(0.3011872706068)

[
u(0)

m+1 −2u(0)
m +u(0)

m−1

h2 +αu(0)
m (1−u(0)

m )

]
, (3.9)

u(2)
m =

1∑
k=0

(a2ku(0)
m +∆tb2kL(u(k)

m ))
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= (0.20161507213829)u(0)
m + (0.79838492786171)u(1)

m +∆t(0.24040865318216)L(u(1)
m )

= (0.20161507213829)u(0)
m + (0.79838492786171)u(1)

m

+k(0.24040865318216)

[
u(1)

m+1 −2u(1)
m +u(1)

m−1

h2 +αu(1)
m (1−u(1)

m )

]
, (3.10)

u(3)
m =

2∑
k=0

(a3ku(k)
m +∆tb3kL(u(k)

m ))

= 0.19469598207921u(0)
m +0.80530401792079u(2)

m +∆t ·0.24249212077315L(u(2)
m )

= (0.19469598207921u(0)
m +0.80530401792079u(2)

m )

+k(0.24249212077315)

[
u(2)

m+1 −2u(2)
m +u(2)

m−1

h2 +αu(2)
m (1−u(2)

m )

]
, (3.11)

u(4)
m =

3∑
k=0

(a4ku(k)
m +∆tb4kL(um

(k)))

= (0.58143386885601)u(0)
m + (0.41856613114399)u(3)

m +∆t(0.12603810060080)L(u(3)
m )

= (0.58143386885601)u(0)
m + (0.41856613114399)u(3)

m

+k(0.12603810060080)

[
u(3)

m+1 −2u(3)
m +u(3)

m−1

h2 +αu(3)
m (1−u(3)

m )

]
, (3.12)

u(5)
m =

4∑
k=0

(a5ku(k)
m +∆tb5kL(um

(k)))

= (0.01934367892154)u(0)
m + (0.98065632107846)u(4)

m + (0.2952939830871)kL(u(4)
m )

= (0.01934367892154)u(0)
m ++(0.98065632107846)u(4)

m

+k(0.2952939830871)

[
u(4)

m+1 −2u(4)
m +u(4)

m−1

h2 +αu(4)
m (1−u(4)

m )

]
, (3.13)

u(6)
m =

5∑
k=0

(a6ku(k)
m +∆tb6kL(um

(k)))

= u(5)
m + (0.30111872706068)kL(u(5)

m )

= u(5)
m +k(0.30111872706068)

[
u(5)

m+1 −2u(5)
m +u(5)

m−1

h2 +αu(5)
m (1−u(5)

m )

]
, (3.14)

u(n+1)
m =

6∑
k=0

(a7ku(k)
m +∆tb7kL(um

(k)))

= (0.06006304558847)u(0)
m + (0.30152730794242)u(2)

m + (0.10518998496676)u(3)
m

+ (0.01483791154585)u(4)
m + (0.51838174995650)u(6)

m

+ (0.09079551914158)kL(u(2)
m )+ (0.02888359354880)kL(u(3)

m )

+ (0.15609445267839)kL(u(6)
m )

= (0.06006304558847)u(0)
m + (0.30152730794242)u(2)

m + (0.10518998496676)u(3)
m
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+ (0.01483791154585)u(4)
m + (0.51838174995650)u(6)

m

+k(0.09079551914158)

[
u(2)

m+1 −2u(2)
m +u(2)

m−1

h2 +αu(2)
m (1−u(2)

m )

]

+k(0.02888359354880)

[
u(3)

m+1 −2u(3)
m +u(3)

m−1

h2 +αu(3)
m (1−u(3)

m )

]

+k(0.15609445267839)

[
u(6)

m+1 −2u(6)
m +u(6)

m−1

h2 +αu(6)
m (1−u(6)

m )

]
, (3.15)

for m = 1,2,3, . . . , M−1. In the succeeding iteration, we have utilized u(0)
m = un+1

m , with n ranging
from 0 to N −1.

4. Numerical Experiment
Presented are the numerical results of the SSP-RK74 method applied to various instances of
the Fisher equation (2.1) using MATLAB. With the help of the exact solution, we measured the
accuracy of the numerical method. Assess the accuracy and efficiency of the proposed method
by evaluating the l2 and l∞ error norms,

l2 =
[

1
M

M∑
m=0

(Um −um)2

]1/2

, l∞ = max
0≤m≤M

|Um −um|,

where um is numerical solution and Um as the exact solution corresponding to the node at
position xm.

Example 4.1. Consider the Fisher’s equation

ut = uxx +αu(1−u),

subject to the initial condition

u(x,0)= 1

(1+ e
p

α
6 x)2

,

where the exact solution is presented in [18] given by

u(x, t)= 1

(1+ e
p

α
6 x− 5

6αt)2
.

Example 4.2. Consider the following generalized Fisher’s equation in domain [0,1]:

ut = uxx +u(1−uα),

with initial condition

u(x,0)=
{

1
2

tanh
(
− α

2
p

2α+4
x
)
+ 1

2

} 2
α

.

The exact solution is presented in [18] by

u(x,0)=
{

1
2

tanh
(
− α

2
p

2α+4

(
x− α+4p

2α+4
t
))

+ 1
2

} 2
α

.

Tables 2 and 3 provide numerical and exact solutions at different times for various values of
‘α’ for examples one and two. We compare the numerical and exact solutions for α= 6 and 1
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using at two distinct time steps, namely ∆t = 0.0001 and ∆t = 0.000005, with a specific focus on
Examples (4.1) and (4.2). Figures 1, 2, 3 and 4 represent numerical solutions compared to the
exact solution, while Figures 5, 6, 7 and 8 display the absolute error graphs in relation to the
exact solution for different values of α, with ∆t values of 0.0001 and 0.000005. Tables 4 and
5 provide the l2 and l∞ errors for examples one and two. From these tables and graphs, we
observed that the proposed method yields more accurate values for all time steps.

Table 2. Numerical and exact solution of Example 4.1 at α= 6 and M = 20

∆t = 0.0001 ∆t = 0.000005

x T Numerical solution Exact solution Numerical solution Exact solution

0.25 0.4 0.725864 0.725824 0.725827 0.725824

0.6 0.883457 0.883437 0.883439 0.883437

0.8 0.954581 0.954573 0.954573 0.954573

1.0 0.982921 0.982919 0.982919 0.982919

0.5 0.4 0.668474 0.668428 0.668433 0.668428

0.6 0.854063 0.854038 0.854041 0.854038

0.8 0.942245 0.942235 0.942235 0.942235

1.0 0.978150 0.978147 0.978147 0.978147

0.75 0.4 0.604245 0.604195 0.604200 0.604195

0.6 0.818422 0.818393 0.818395 0.818393

0.8 0.926752 0.926740 0.926740 0.926740

1.0 0.972075 0.972071 0.972071 0.972071

Table 3. Numerical and exact solution of Example 4.2 at α= 1 and M = 20

∆t = 0.0001 ∆t = 0.000005

x T Numerical solution Exact solution Numerical solution Exact solution

0.25 0.4 0.310883 0.310875 0.310875 0.310875

0.6 0.357842 0.357834 0.357834 0.357834

0.8 0.406437 0.406428 0.406429 0.406428

1.0 0.455748 0.455739 0.455739 0.455739

0.5 0.4 0.283306 0.283298 0.283298 0.283298

0.6 0.328835 0.328827 0.328827 0.328827

0.8 0.376535 0.376526 0.376526 0.376526

1.0 0.425517 0.425509 0.425509 0.425509

0.75 0.4 0.256840 0.256832 0.256833 0.256832

0.6 0.300644 0.300635 0.300636 0.300635

0.8 0.347114 0.347106 0.347106 0.347106

1.0 0.395420 0.395411 0.395412 0.395411
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Figure 1. Comparison of numerical solutions
of Example 4.1 at time levels T = 0.4,0.6,0.8
and 1 for α= 6, ∆t = 0.0001, and M = 20

Figure 2. Comparison of numerical solutions
of Example 4.1 at time levels T = 0.4,0.6,0.8
and 1 for α= 6, ∆t = 0.000005, and M = 20

Figure 3. Comparison of numerical solutions
of Example 4.2 at time levels T = 0.4,0.6,0.8
and 1 for α= 1, ∆t = 0.0001, and M = 20

Figure 4. Comparison of numerical solutions
of Example 4.2 at time levels T = 0.4,0.6,0.8
and 1 for α= 1, ∆t = 0.000005, and M = 20

Figure 5. Absolute error comparison of
Example 4.1 at different time levels T =
0.4,0.6,0.8 and 1 for α = 6, ∆t = 0.0001, and
M = 20

Figure 6. Absolute error comparison of
Example 4.1 at different time levels T =
0.4,0.6,0.8 and 1 for α= 6, ∆t = 0.000005, and
M = 20
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Figure 7. Absolute error comparison of
Example 4.2 at different time levels T =
0.4,0.6,0.8 and 1 for α = 1, ∆t = 0.0001, and
M = 20

Figure 8. Absolute error comparison of
Example 4.2 at different time levels T =
0.4,0.6,0.8 and 1 for α= 1, ∆t = 0.000005, and
M = 20

Table 4. Errors of Example 4.1 at α= 6

∆t = 0.0001 ∆t = 0.000005
T l2 l∞ l2 l∞

0.4 4.42530E-05 5.21652E-05 4.04398E-06 4.89540E-06
0.6 2.48444E-05 3.29639E-05 2.28567E-06 2.88950E-06
0.8 1.02717E-05 1.49734E-05 4.06231E-07 7.17900E-07
1.0 3.87287E-06 5.95150E-06 9.76728E-08 9.76728E-08

Table 5. Errors of Example 4.2 at α= 1

∆t = 0.0001 ∆t = 0.000005
T l2 l∞ l2 l∞

0.4 7.58056E-06 8.4923E-06 2.73113E-07 3.981E-07
0.6 8.17259E-06 8.8286E-06 3.27646E-07 4.237E-07
0.8 8.76592E-06 8.9761E-06 3.82155E-07 4.418E-07
1.0 8.72275E-06 9.0070E-06 4.31856E-07 4.554E-07

Table 6. Comparison of numerical solution for Example 4.1 at ∆t = 0.000005, T = 0.1 and α= 6

x BDF1 [32] BDF2 [32] BDF3 [32] SSP43 [34] Present solution Exact solution
0.1 0.35841806 0.35842071 0.35842016 0.35842328 0.35842348 0.35842691
0.2 0.32997086 0.32997260 0.32997468 0.32997524 0.32997541 0.32998421
0.3 0.30230060 0.30230157 0.30230568 0.30230424 0.30230437 0.30231742
0.4 0.27558402 0.27558442 0.27558983 0.27558708 0.27558720 0.27560315
0.5 0.24997987 0.24997993 0.24998585 0.24998256 0.24998266 0.25000000
0.6 0.22562504 0.22562500 0.22563062 0.22562757 0.22562766 0.22564477
0.7 0.20263156 0.20263170 0.20263624 0.20263415 0.20263425 0.20264943
0.8 0.18108475 0.18108534 0.18108812 0.18108759 0.18108770 0.18109917
0.9 0.16104234 0.16104363 0.16104409 0.16104557 0.16104569 0.16105159
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Table 8. Comparison of numerical solution for Example 4.1 at ∆t = 0.000005, T = 0.1 and α= 1

x BDF1 [33] BDF2 [33] Present solution Exact solution

0.1 0.26073733 0.26073824 0.26073858 0.26073843
0.2 0.25042002 0.25042078 0.25042105 0.25042110
0.3 0.24031064 0.24031127 0.24031151 0.24031169
0.4 0.23041738 0.23041791 0.23041811 0.23041838
0.5 0.22074766 0.22074815 0.22074834 0.22074865
0.6 0.21130823 0.21130872 0.21130891 0.21130920
0.7 0.20210505 0.20210558 0.20210578 0.20210601
0.8 0.19314332 0.19314394 0.19314417 0.19314428
0.9 0.18442751 0.18442824 0.18442850 0.18442843

Table 9. Numerical and exact results for Example 4.1 are compared at ∆t = 0.00005, M = 20 for α= 6

T x DQM [4], [18] Present method Exact solution

0.5 0.25 0.81847 0.818409 0.818393
0.75 0.72592 0.725845 0.725824

1.0 0.25 0.98293 0.982920 0.982919
0.75 0.97208 0.972073 0.972071

5. Conclusions
This paper presents a new approach to solving nonlinear partial differential equations.
The method of lines is used to discretize the equation, and the resulting system of ordinary
differential equations is solved using the strong stability preserving time-steping Runge-Kutta
(SSP-RK74) method. To evaluate the accuracy and efficiency of the technique, two test examples
involving the Fisher equation were examined. The numerical solutions were compared with
exact solution at various values of the parameter ‘α’ within the system of ODEs. The norms l2
and l∞ were also used to measure the absolute errors of the numerical solutions. This technique
can be applied to numerically solve higher-dimensional nonlinear partial differential equations.

Acknowledgment
The authors would like to thank the editor and the anonymous referees for the helpful
suggestions to improve the quality of the manuscript.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
All the authors contributed significantly in writing this article. The authors read and approved
the final manuscript.

Communications in Mathematics and Applications, Vol. 16, No. 2, pp. 679–691, 2025



Higher-Order Numerical Techniques for Solving the Nonlinear Fisher Equation. . . : R. Kumari et al. 689

References
[1] K. M. Agbavon, A. R. Appadu and M. Khumalo, On the numerical solution of Fisher’s equation with

coefficient of diffusion term much smaller than coefficient of reaction term, Advances in Difference
Equations 2019 (2019), article number 146, DOI: 10.1186/s13662-019-2080-x.

[2] B. S. Alshammari and D. S. Mashat, Numerical study of Fisher’s equation by finite difference
schemes, Applied Mathematics 8(8) (2017), 1100 – 1116, DOI: 10.4236/am.2017.88083.

[3] A. J. Ammerman and L. L. Cavalli-Sforza, Measuring the rate of spread of early farming in Europe,
Man 6(4) (1971), 674 – 688, DOI: 10.2307/2799190.

[4] M. Bastani and D.K. Salkuyeh, A highly accurate method to solve Fisher’s equation, Pramana 78
(2012), 335 – 346, DOI: 10.1007/s12043-011-0243-8.

[5] M. Bonkile, A. Awasthi and S. Jayaraj, A numerical implementation of higher order time integration
algorithm on unsteady Burgers’ equation, in: Proceedings of the International Conference On
Mathematical Modeling and Computer Simulation, Indian Institute of Technology Madras,
Chennai, India (2014).

[6] M. D. Bramson, Maximal displacement of branching Brownian motion, Communications on Pure
and Applied Mathematics 31(5) (1978), 531 – 581, DOI: 10.1002/cpa.3160310502.

[7] J. Canosa, Diffusion in nonlinear multiplicative media, Journal of Mathematical Physics 10(10)
(1969), 1862 – 1868, DOI: 10.1063/1.1664771.

[8] V. Chandrakera, A. Awasthib and S. Jayaraja, A numerical treatment of Fisher equation, Procedia
Engineering 127 (2015), 1256 – 1262, DOI: 10.1016/j.proeng.2015.11.481.

[9] R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics 7(4) (1937), 355 –
369, DOI: 10.1111/j.1469-1809.1937.tb02153.x.

[10] D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, 2nd enlarged and
revised edition, Plenum Press, New York – London, xxvi + 574 pages (1969).

[11] S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization
methods, SIAM Review 43(1) (2001), 89 – 112, DOI: 10.1137/S003614450036757X.

[12] S. Hasnain and M. Saqib, Numerical study of one dimensional Fishers KPP equation with
finite difference schemes, American Journal of Computational Mathematics 7(01) (2017), 70 –
83, DOI: 10.4236/ajcm.2017.71006.

[13] A. C. Hindmarsh, Toward a Systematized Collection of ODE Solvers, No. UCRL-87465; CONF-
820810-6, Lawrence Livermore National Laboratory, CA (USA), (1982), URL: https://ntrl.ntis.gov/
NTRL/dashboard/searchResults/titleDetail/DE82012217.xhtml.

[14] R. Jiwari and R. C. Mittal, A higher order numerical scheme for singularly perturbed Burger-
Huxley equation, Journal of Applied Mathematics and Informatics 29(3-4) (2011), 813 – 829,
URL: https://koreascience.kr/article/JAKO201121559392442.pdf.

[15] A. Kolmogorov, Étude de l’équation de la diffus̀ion avec croissance de la quantité de matière et son
application à un problème biologigue, Bulletin de l’Universite d’Etat a Moscou Serie Internationale
Section 1 (1937), 12 pages.

[16] J. E. Macías-Díaz, I. E. Medina-Ramírez and A. Puri, Numerical treatment of the spherically
symmetric solutions of a generalized Fisher–Kolmogorov–Petrovsky–Piscounov equation, Journal of
Computational and Applied Mathematics 231(2) (2009), 851 – 868, DOI: 10.1016/j.cam.2009.05.008.

[17] R. E. Mickens, A best finite-difference scheme for the fisher equation, Numerical Methods for
Partial Differential Equations 10(5) (1994), 581 – 585, DOI: 10.1002/num.1690100505.

Communications in Mathematics and Applications, Vol. 16, No. 2, pp. 679–691, 2025

http://doi.org/10.1186/s13662-019-2080-x
http://doi.org/10.4236/am.2017.88083
http://doi.org/10.2307/2799190
http://doi.org/10.1007/s12043-011-0243-8
http://doi.org/10.1002/cpa.3160310502
http://doi.org/10.1063/1.1664771
http://doi.org/10.1016/j.proeng.2015.11.481
http://doi.org/10.1111/j.1469-1809.1937.tb02153.x
http://doi.org/10.1137/S003614450036757X
http://doi.org/10.4236/ajcm.2017.71006
https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/DE82012217.xhtml
https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/DE82012217.xhtml
https://koreascience.kr/article/JAKO201121559392442.pdf
http://doi.org/10.1016/j.cam.2009.05.008
http://doi.org/10.1002/num.1690100505


690 Higher-Order Numerical Techniques for Solving the Nonlinear Fisher Equation. . . : R. Kumari et al.

[18] R. C. Mittal and R. Jiwari, Numerical study of Fisher’s equation by using differential quadrature
method, International Journal of Information and System Sciences 5(1) (2009), 143 – 160.

[19] R. C. Mittal and S. Kumar, Numerical study of Fisher’s equation by wavelet Galerkin
method, International Journal of Computer Mathematics 83(3) (2006), 287 – 298,
DOI: 10.1080/00207160600717758.

[20] O. Oymak and N. Selçuk, Method-of-lines solution of time-dependent two-dimensional Navier-
Stokes equations, International Journal for Numerical Methods in Fluids 23(5) (1996), 455 – 466,
DOI: 10.1002/(SICI)1097-0363(19960915)23:5%3C455::AID-FLD435%3E3.0.CO;2-J.

[21] R. A. V. Parambu, A. Awasthi, V. Vimal and N. Jha, A numerical implementation of higher-order
time integration method for the transient heat conduction equation with a moving boundary
based on boundary immobilization technique, AIP Conference Proceedings 2336(1) (2021), 030012,
DOI: 10.1063/5.0045874.

[22] Y. Qiu and D. M. Sloan, Numerical solution of Fisher’s equation using a moving mesh method,
Journal of Computational Physics 146(2) (1998), 726 – 746, DOI: 10.1006/jcph.1998.6081.

[23] E. Rothe, Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler
Randwertaufgaben, Mathematische Annalen 102(1) (1930), 650 – 670, DOI: 10.1007/BF01782368.

[24] N. A. Shah, An analytical view of fractional-order Fisher’s type equations within Caputo operator,
Mathematical Problems in Engineering 2021(1) (2021), 5516392, DOI: 10.1155/2021/5516392.

[25] L. F. Shampine, ODE solvers and the method of lines, Numerical Methods for Partial Differential
Equations 10(6) (1994), 739 – 755, DOI: 10.1002/num.1690100608.

[26] C.-W. Shu, Total-variation-diminishing time discretizations, SIAM Journal on Scientific and
Statistical Computing 9(6) (1988), 1073 – 1084, DOI: 10.1137/0909073.

[27] R. J. Spiteri and S. J. Ruuth, A new class of optimal high-order strong-stability-preserving
time discretization methods, SIAM Journal on Numerical Analysis 40(2) (2002), 469 – 491,
DOI: 10.1137/S0036142901389025.

[28] R. J. Spiteri and S. J. Ruuth, Non-linear evolution using optimal fourth-order strong-stability-
preserving Runge-Kutta methods, Mathematics and Computers in Simulation 62(1-2) (2003), 125 –
135, DOI: 10.1016/S0378-4754(02)00179-9.

[29] S. Tang and R. Weber, Numerical study of Fisher’s equation by a Petrov-Galerkin finite element
method, The ANZIAM Journal 33(1) (1991), 27 – 38, DOI: 10.1017/S0334270000008602.

[30] J. J. Tyson and P. K. Brazhnik, On traveling wave solutions of Fisher’s equation in two spatial
dimensions, SIAM Journal on Applied Mathematics 60(2) (2000), 371 – 391, URL: http://www.jstor.
org/stable/118487.

[31] A. Verma, R. Jiwari and M. E. Koksal, Analytic and numerical solutions of nonlinear diffusion
equations via symmetry reductions, Advances in Difference Equations 2014 (2014), article number
229, DOI: 10.1186/1687-1847-2014-229.

[32] V. Vimal, R. K. Sinha and L. Pannikkal, Numerical methods for solving nonlinear Fisher equation
using backward differentiation formula, Applications and Applied Mathematics 19(4) (2024),
Article 4, URL: https://digitalcommons.pvamu.edu/aam/vol19/iss4/4.

[33] V. Vimal, R. K. Sinha and P. Liju, An unconditionally stable numerical scheme for solving nonlinear
Fisher equation, Nonlinear Engineering 13(1) (2024), 20240006, DOI: 10.1515/nleng-2024-0006.

[34] V. Vimal, R. Kumari and R. K. Sinha, Higher-order numerical technique based on strong stability
preserving method for solving nonlinear Fisher equation, Communications in Mathematics and
Applications 15(3) (2024), 997 – 1010, DOI: 10.26713/cma.v15i3.2806.

Communications in Mathematics and Applications, Vol. 16, No. 2, pp. 679–691, 2025

http://doi.org/10.1080/00207160600717758
http://doi.org/10.1002/(SICI)1097-0363(19960915)23:5%3C455::AID-FLD435%3E3.0.CO;2-J
http://doi.org/10.1063/5.0045874
http://doi.org/10.1006/jcph.1998.6081
http://doi.org/10.1007/BF01782368
http://doi.org/10.1155/2021/5516392
http://doi.org/10.1002/num.1690100608
http://doi.org/10.1137/0909073
http://doi.org/10.1137/S0036142901389025
http://doi.org/10.1016/S0378-4754(02)00179-9
http://doi.org/10.1017/S0334270000008602
http://www.jstor.org/stable/118487
http://www.jstor.org/stable/118487
http://doi.org/10.1186/1687-1847-2014-229
https://digitalcommons.pvamu.edu/aam/vol19/iss4/4
http://doi.org/10.1515/nleng-2024-0006
http://doi.org/10.26713/cma.v15i3.2806


Higher-Order Numerical Techniques for Solving the Nonlinear Fisher Equation. . . : R. Kumari et al. 691

[35] X. Y. Wang, Exact and explicit solitary wave solutions for the generalised Fisher equation, Physics
Letters A 131(4-5) (1988), 277 – 279, DOI: 10.1016/0375-9601(88)90027-8.

Communications in Mathematics and Applications, Vol. 16, No. 2, pp. 679–691, 2025

http://doi.org/10.1016/0375-9601(88)90027-8

	Introduction
	Problem Statement
	Numerical Scheme
	Semi-discretization: Method of Lines (MOL)
	SSP-RK74


	Numerical Experiment
	Conclusions
	References

