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Abstract. This study considers examining and bifurcation of traveling wave solutions in time-
fractional nonlinear differential equations of the symmetric case. We blend Li and He’s derivative
of fractional order techniques with Lyapunov-Schmidt reduction in our approach. To simplify the
analysis, the initial fractional equation that is differential is transformed into a partial differential
equation through the utilization of the fractional complex transform. This conversion results in a
condensed equation, presented as a pair of nonlinear algebraic equations, tackling the core issue.
Furthermore, our investigation involves examining linear approximation solutions for a nonlinear
fractional equation (NFE) that is differential.
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1. Introduction

A wide range of research and engineering fields are increasingly adopting fractional differential
equations (FDEs). Due to their wide range of applications in several fields of applied
sciences, their adaptability has attracted the interest of many academics in recent years.
Finite difference equations offer a robust basis for developing models of various phenomena


http://doi.org/10.26713/cma.v16i2.2906
https://orcid.org/0000-0001-7084-8478
https://orcid.org/0000-0002-4730-6942

670 An Investigation of the Bifurcation of Traveling Wave Solutions...: M. T. Yaseen and M. A. A. Hussain

such as electromagnetics, solid mechanics, fluid mechanics, viscoelasticity, bio population
dynamics, electrochemistry, and signal processing (Berger [5], Ghanim et al. [7], Vainberg and
Trenogin [21]]).

Recent study introduced a new numerical method for addressing nonlinear time-fractional
differential equations, particularly in the Caputo framework. The approach integrates the
Laplace transform with an adapted Adomian decomposition method, termed LTAADM. This
method was contrasted with the conventional Laplace transform integrated with the standard
Adomian technique (LADM). To demonstrate the benefits of the proposed method, LMADM and
LTSAT were utilized on several nonlinear time-fractional differential equations (AL-Humedi
and Hasan [1]).

The propagation of long-wave nonlinear waves in various environments is an important
physical phenomenon, widely studied in fields such as ocean dynamics, laboratory experiments
on stratification, and atmospheric research. To analyze the propagation of these long-wave
nonlinear waves from a purely physical point of view, many mathematical models have been
developed, many of which are based on the well-known Korteweg de Vries (KdV) equation, which
serves as a basic model for examining weak long-wave nonlinearity.

Research suggests that the KdV equation arises from applying a multiscale asymptotic
approach to the fundamental Euler equations governing incompressible and nonviscous fluids.
It typically describes small-amplitude, long-wavelength surface waves in shallow water, as well
as internal waves in shallow, densely layered fluids. In the first-order turbulent expansion, only
first-order dispersion and nonlinearity are considered, leading to the KdV equation. However,
a deeper understanding of physical processes often requires the inclusion of higher-order
nonlinear and dispersive effects. In such cases, removing the second-order components from
the perturbation expansions and applying the perturbation technique to the leading Euler
equations results in a fifth-order KdV-like equation.

Several nonlinear equations encountered in fields such as mathematics, engineering and
physics can be expressed as operator equations:

H(x,A\)=b, x€e0OcX,beY, LeR". (1.1)

Here, H : X — Y represents a smooth Fredholm function with zero index, where X and Y denote
the real Banach spaces, as well as O denotes an open set in X. The technique of the finite-
dimensional reduction offers a solution approach for this equation. This methodology relies on
employing Lyapunov-Schmidt reduction to transform eq. to a similar finite-dimensional
equation:

QA =8, (eM, BeN. (1.2)

In this context, M and N represent smooth finite-dimensional manifolds. Previous studies
of Loginov [[15]], Sapronov and Zachepa [[18]], Sapronov [19], and Vainberg and Trenogin [21]
have illustrated a transition from eq. to eq. (1.2, utilizing a localized variant of the
Lyapunov-Schmidt method. This transition ensures that maintains all the topological and
analytic characteristics of (1.1), encompassing features such as multiplicity and bifurcation
diagrams. Scholars like Vainberg and Trenogin [21]], Loginov [|15], Sapronov and Zachepa [18],
and Sapronov [20] have achieved this transformation through the localized Lyapunov-Schmidt
approach, guaranteeing that eq. preserves the full spectrum of properties possessed by

eq. (L.I).
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In 2024, Amir et al. [2]] investigated the heat transfer and dynamics of nanofluids in
the framework of fractional calculus, using Riemann-Liouville and Caputo derivatives (see,
Ghanimet al. [7]]). In addition, from 2021 to 2023, many researchers developed various numerical
methods to solve single and diverse systems of fractional differential equations (see, AL-Humedi
and Hasan [1]], Arshad et al. [3]], Ashraf, et al. [4], Khan et al. [11]]).

There has been a growing interest in fractional differential equations owing to their
significance in various domains, including physics, biology, economics, engineering, system
identification, control theory, fluid dynamics, fractional dynamics, and signal processing. More
and more researchers are focusing on finding exact solutions to these equations through
analytical methods, such as the fractional sub equations method (Sapronov [[19], Sapronov
and Zachepa [18]). Li and He [[12,13] Implemented a fractional complex transformation to
convert fractional differential equations into partial differential equations, hence enabling their
analysis through existing methodologies.

This research examines the bifurcation of periodic traveling wave solutions of a nonlinear
fractional differential equation, utilizing the local Lyapunov-Schmidt method and its fractional
derivative. We investigate the division of periodic traveling wave solutions. Our approach
involves utilizing the localized Lyapunov-Schmidt method in conjunction with He’s fractional
derivative.

a 2 3 5
OW 2V fIWIW 6W+6W:u/, W =Wy, 1), (1.3)
ot oy dy 0y2 oy ay®
where % represents the fractional derivative of He, and a € (0,1] and v is a continuous
function.

Theorem 1.1 ([5]). Suppose that both X and Y denote the Banach spaces as well as H(x,1)
represents a C! map given in a neighborhood U of (xg,yo) in the range subset in Y in a way
which H(xg,A9) =0 as well as H,(xg, o) represents a linear Fredholm operator. Consequently,
each one of the solution sets (x,A) of H(x,A) =0 close to (x9,Ao) (with the value of A fixed) is
a one-to-one correspondence to the set of the solutions in the system with a finite dimension

of N1 of variables Finite number of variables in real equations Ny of real variables. Moreover,
Ny =dim(KerL) and N1 =dim(CokerL), (L = H,(xo, o))

Definition 1;1 ([18[). The discriminant set X for (1.1) is characterized as the collection of all
values of 1 = A for which (1.1) shows a solution that is degenerate, x € O:

_ o0H —
G(x,1)=b, codim (Im a—(i,ﬂt)) >0,
X
where Im depicts the operator %(E,X).

Definition 1.2 ([14]). The derivative expressed as a fraction by Li and He [12] can be
represented as the following

a _ 1 da" [* _syn—a-1 _
th(t)_F(n—a)dt” to(s t) (fo(s)— f(s))ds,

where fo(x) is a known function.

To initiate the application of the Lyapunov-Schmidt method to analyze eq. (1.3), the initial
step involves transforming the equation into a partial differential equation. This transformation
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is achieved through the fractional complex transformation described as follows [[12]:

ta
T= ) 1.4
I'l+a) (1.4)
The transformation of eq. (1.3) yields the subsequent partial differential equation:
oW oW oW 2w BW  8°W
— +H5W2—+5 +EW—— + —— =1, W=W(y,0). (1.5)

oT oy 0y 0y? ay3  0y°
For examining the traveling wave solutions of eq. (1.5), we employ the subsequent
transformation.

u(x)=W(y,t), x=y-cT, c=xa, (1.6)

where x stands as the constant, @ represents a parameter. By inserting in (L.5), we
transform into a fourth order nonlinearity ordinary differential equation.
" " 5 ! d
u" +5uu +§u—cu—w, c=A, =T
This study posits that u is a periodic function, u(x) = u(x + 27) (Hussain [9,10], Mizeal and
Hussain [[17]]) examined the bifurcation solutions of eq. utilizing the classical Lyapunov-
Schmidt approach and an adapted version of the Lyapunov-Schmidt method. In the subsequent
section, we will employ the Local approach of Lyapunov-Schmidt to transform eq. into a
corresponding finite-dimensional system of nonlinear algebraic equations.

(1.7)

2. Bifurcation Equation Simplification (Reduction Technique)

The objective is to examine the bifurcation of moving wave solutions that are periodic to (1.5),
it’s advantageous to express (1.7) as an operator equation.

5
H(u,/l):u""+5uu"+§u3—cu, 2.1)

where H : E — M represents a nonlinear Fredholm operator with zero index, where E =
I14([0,27],R) denotes the space containing each function having derivatives of order up to 4, and
M =TIy([0,27],R) represents all continuous functions that are periodic comprise the space. Here,
R denotes the real space, and u = u(x), where x € [0,27]. Therefore, the solution for bifurcation
in eq. the solution of the operator equation matches exactly with the bifurcation solution

H@u,M)=vy. (2.2)
According to Theorem the solutions of eq. (1.5) are interchangeable with a system of finite
dimensions solved comprising 2 variables and 2 equations, where 2 represents the dimension

of both Ker H,,(0,A) and Coker H,(0,A). The initial step in this simplification process involves
deriving the linearized equation corresponding to eq. (2.2), expressed as follows:
Ah=0, heE,
oF d*
A=—(0,1)=—-A.
ou ( ) dx4
The periodic solution of the equation that got linearized can be represented as:

ep(x) =apsin(px) +b,cos(px), p=12,....
Thus, the characteristic equation that is identical to this solution can be stated as:
pt-21=0.
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A small change in the parameter A, lead to bifurcation along to the two modes
e1 =aisin(x), eo =asgcos(x)

such that |le;llsc =1 as well as a; = V2, i = 1,2, (K is Hilbert space L2([0,27],R)). Suppose that
N = Ker(A) = Span{e1,es}, then the space E decompose into two subspaces, each forming a
direct sum, N and N* the orthogonal complement to N,

E=NeN*, Nt={veE:vLN}.

Similarly, the space M Two subspaces can be combined using a direct sum to represent the
original, N and N1 perpendicular complement to N,

M=NeoN', N'={weM:0 LN}

From the above decomposition of E this implies the existence of two projections P : E — N and
I—P:E — N where (I is the identity operator),

Pu=W, I-P)u=v,
it follows that every element u € E has a unique form,

2
u=z+v, Z:Z{ieiEN, UENJ', (i =(u,e;).
i=1

Similarly, the decomposition of M entails the existence of two projections, @ : M — N and
I-Q:M — N* such that

QH(u,A)=H;(u,A), (I-Q)H(u,A)=Hz(u,A).

Therefore, each and every item can be inferred H(u,A) € M a unique form can represent it,
H(u,A)=H(u,A)+Ho(u,A)
=QHu, )+ -Q)H(u,A)=vy.

Since ¥ € M implies that w =1+ Y2, v1 =ti1e1+t2ea € N, yo € Nt

2
Hi(u,A)=) vi(u,Ne; €N, Hyu,\)eN*,
=1

vi(u,A)=(Hu,A),e;)y.

Consequently, eq. become as,
QH(u,A)=vy1, I-Q)H(u,1) =1y

or
QH(z+v,)=v1, I-Q)H(z+v,1)=1ya.

A smooth map can be explicitly represented using the implicit function theorem ¢ : N — N+
such that ¢(u,1)=v and

(I -@Q)H (z+ pu, M), 1) = ya.
To solve eq. in the area surrounding the pointu = 0, it is sufficient to solve the equation:
QH(u+ p(u,1),A)=vy1. (2.3)
The bifurcation solutions of eq. has the form,
M, q) =1, (=(1,02),
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where

H(,A) = Hi(z + p(u, 1), A).
Equation (2.2) can be written in the form of,

Hz+v,M)=A(z+v)+T(z+v)=Az+Nw)+...,

3

N(u)=5uu" + gu3,

where N and the dots denote the terms of element v. Thus,
2
¢, q)=Hi(z+v,1) = Z(Au +w(u),e;)gce; +---=tie1 +taeq. (2.4)
i=1

Upon performing some calculations on eq. (2.4) and by using the property Ae; = g(1)ej,
Aeg =q(1)eg, we have the following system

{ B2+ () +qly =1,

202+ 12+ qla =to,

where g =1-«xa, x € R and

1 2n
(N(),h(x))y3 = — N(x)h(x)dx.
271 Jo

The symmetry of the function w(x) in relation to the variable representing involution,
w(x) — w(m + x) implies that ¢; = g1, t2 =0, then we obtain:

2B +{H+ql1=q1,
2092 +12)+ql2=0.

In the vicinity of point zero, the bifurcation equation of eq. (2.5) is identical to the mathematical
expression,

(2.5)

5 2 72
¢1((,q): 2(1((1+(2)+QC1 qi, (26)
30T+ 03+ qls,
where q,q1 € R, a solution to eq. yields the parameters’ equation in terms of {1,{s.
We identified a selective collection of bifurcation sets for eq. and constructed the q1q-
plane graph.
By decomposing the solution set into regions, S1,S9 the discriminate set yields three genuine
solutions; but for S3,S4, we have only one real solution.
In set S1, we choose g1 = —10.1, ¢ = —30.1. These numbers yield three genuine solutions to
the system (2.6),

P;=(0.3387775393,0), Py =(3.288055711,0), P3=(-3.626833250,0).
The planar graph illustrating the decomposition of the solution regions is shown in Figure
while the corresponding phase portraits associated with the equilibrium points P, Py, and P3
are presented in Figures and [4] respectively.
In set S3, we choose g1 =10.1, ¢ = 30.1. Considering these variables, we obtain a single
genuine solution of the system (2.6), i.e.,

P, =(0.3387775393,0).
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Figure 1. Discriminate set of systems (2.6)

Figure 2. Geometric representation of P; Figure 3. Geometric representation of Py

Figure 4. Geometric representation of P
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3. Conclusion

In our research, we study the bifurcation of solutions of periodic traveling waves in nonlinear
fractional differential equations using its fractional derivative and Lyapunov-Schmitt reduction.
Converting a fractional differential equation to a partial differential equation, we employed
the fractional complex transformation, followed by the traveling wave transform to reduce
the partial differential equation to an Ordinary Differential Equation (ODE). This process
led to the discovery of a simplified ODE, which consists of two nonlinear algebraic equations.
We also gave geometric descriptions of solutions to nonlinear fractional differential equations.
Linear approximation. Finally, we demonstrate the applicability of the examination of nonlinear
fractional differential equations using topological techniques, offering the possibility of obtaining
deeper insights into their behaviour.
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