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including fans, books, and grids admits H-E-SMGL.
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1. Introduction
In this article, we take finite simple undirected graphs. In a graph G(p, q), the set of vertices and
edges is represented by V (G) and E(G) respectively, where p = |V (G)| and q = |E(G)|. Different
types of labeling have been studied and investigated by Gallian [1] provides a comprehensive
summary of graph labeling (also see, Hafez et al. [4], Ichishima and Muntaner-Batle [5], Iyappan
et al. [6], Kavitha et al. [7], Kumar et al. [9], and Mutharasu et al. [12]).

A group of subgraphs Hi , 1≤ i ≤ h that ensures every edge of E(G) is a member of one or
more of the subgraphs Hi , 1≤ i ≤ h constitutes a covering of G. It is then claimed that G accepts
a covering of (H1,H2, . . . ,Hh). G permits a H-covering if each Hi is isomorphic to a given graph
H. Assume that G accepts a covering of H. The term H-magic labeling of G refers to a total
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labeling, which is a one-one µ from V (G)∪E(G) onto {1,2, . . . , p+q}, if
∑

v∈V (H′)
µ(v)+ ∑

e∈E(H′)
µ(e)= M

for any subgraph H′ of G that isomorphic to H. A graph that permits for this type of labeling is
called H-magic. If µ(E(G))= {1,2, . . . , q}, then the function µ is considered as H-E-super magic
labeling (H-E-SML).

The H-magic labeling was defined by Gutiérrez and Lladó [3]. Lladó and Moragas [10]
examined a few Cn-supermagic graphs. β-valuation is a labeling that was defined by Rosa [13].
A graceful labeling of G is an injection f from the vertices of G to {0,1, . . . , q}, provided the
labels that follow from assigning the label |µ(u)−µ(v)| to each edge uv are distinct (see Kumar
and Marimuthu [8] for additional details on H-E-SML).

An H-E-SMGL is an one one onto µ from V (G)∪E(G) onto {1,2, . . . , p+q} with the condition
that µ(E(G)) = {1,2, . . . , q} such that,

∑
v∈V (H′)

µ(v)− ∑
e∈E(H′)

µ(e) = M (Murugan and Kumar [11]).

We investigate H-E-SMGL of fans, graphs obtained by joining a star K1,n with one isolated
vertex, books and grids.

2. C3-E-Super Magic Graceful Graphs (C3-E-SMGL)
The C3-E-SMGL of some connected graph, such as fans, which are graphs formed by combining
a star K1,m with a single isolated vertex, is addressed in this section.

Theorem 2.1. Let n(≥ 2) be a positive integer. Then Fn is C3 −E-SMG.

Proof. Let V (Fn) = {ai, c : i = 1, . . . ,n} and E(Fn) = {aiai+1 : i = 1, . . . ,n−1}∪ {ai, c : i = 1, . . . ,n}.
Describe a function µ from V (Fn)∪E(Fn) onto {1, . . . ,3n} as follows:

µ(t)=


3n, when t = c,
2n+ 1

2 (i−1), when t = ai for i ≡ 1(mod 2),⌊1
2 (5n+ i−1)

⌋
, when t = ai for i ≡ 0(mod 2),

µ(e)=
{

n− i, when e = aiai+1 for i = 1, . . . ,n−1,
n−1+ i, when e = cai for i = 1, . . . ,n.

For i = 1, . . . ,n−1, let C(i)
3 be the subcycle of Fn. The associated subcycles are V (C(i)

3 )= {c,ai,ai+1}
and E(C(i)

3 )= {cai,aiai+1, ciai+1}. Now we prove that f µ is C3-E-SMG.

For 1≤ i ≤ n−1,∑
v∈V (C(i)

3 )

µ(v)− ∑
e∈E(C(i)

3 )

µ(e)=µ(c)+µ(ai)+µ(ai+1)−µ(aiai+1)−µ(cai)−µ(ciai+1)

= 3n+2n+ 1
2

(i−1)+
⌊

1
2

(5n+ i)
⌋
− (n− i)− (n−1+ i)− (n+ i)

=
⌊

1
2

(9n+1)
⌋

.

Hence Fn is C3-E-SMG.

Theorem 2.2. The graph G ∼= K1,n +K1, n (≥ 1) is C3-E-SMG.

Proof. Let V (G)= {a1,a2,b j : i = 1, . . . ,n} and E(G)= {a1a2}∪ {aib j : i = 1,2;1≤ j ≤ n}. Describe
a function µ from V (G)∪E(G) onto {1,2, . . . ,3n+3} as follows:
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Suppose n is odd:

µ(s)=



2n+1+ i, when s = ai for i = 1,2,
3n+3− (i−1), when s = bi for 1≤ i ≤ n,
1, when s = a1a2,
1
2 (n+3+2i), when s = a1bi for i = 1,2, . . . , n−1

2 ,
1
2 (−n+3+2i), when s = a1bi for i = n+1

2 , n+3
2 , . . . ,n,

2n+2−2i, when s = a2bi for i = 1,2, . . . , n−1
2 ,

3n+2−2i, when s = a2bi for i = n+1
2 , n+3

2 , . . . ,n.

Suppose n is even:

µ(t)=



2n+1+ i, when t = ai for i = 1,2,
3n+3− (i−1), when t = bi for 1≤ i ≤ n,
n+2

2 , when t = a1a2
2n+3−i

2 , when t = a1bi for i = 1,3, . . . ,n−,1
n+2−i

2 , when t = a1bi for i = 2,4, . . . ,n,
3n+3−i

2 , when t = a2bi for i = 1,3, . . . ,n−1,
4n+4−i

2 , when t = a2bi for i = 2,4, . . . ,n.

Let C(i)
3 be the subcycle of G for 1 ≤ i ≤ n, and let E(C(i)

3 ) = {a1a2,a1bi,a2bi} and V (C(i)
3 ) =

{a1,a2,bi}.

Case 1: Suppose n is odd.

Subcase 1: For i = 1,2, . . . , n−1
2 ,∑

v∈V (C(i)
3 )

µ(v)− ∑
e∈E(C(i)

3 )

µ(e)=µ(a1)+µ(a2)+µ(bi)−µ(a1a2)−µ(a1bi)−µ(a2bi)

= (2n+2)+ (2n+3)+ (3n+3− i+1)− (1)

−
(
1
2

(n+3+2i)
)
− (2n+2−2i)

= 9n+9
2

.

Subcase 2: For i = n+1
2 , n+3

2 , . . . ,n,∑
v∈V (C(i)

3 )

µ(v)− ∑
e∈E(C(i)

3 )

µ(e)=µ(a1)+µ(a2)+µ(bi)−µ(a1a2)−µ(a1bi)−µ(a2bi)

= (2n+2)+ (2n+3)+ (3n+3− i+1)− (1)

−
(
1
2

(−n+3+2i)
)
− (3n+2−2i)

= 9n+9
2

.

Case 2: Suppose n is even.
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Subcase 3: For i = 1,3, . . . ,n−1,∑
v∈V (C(i)

3 )

µ(v)− ∑
e∈E(C(i)

3 )

µ(e)=µ(a1)+µ(a2)+µ(bi)−µ(a1a2)−µ(a1bi)−µ(a2bi)

= (2n+2)+ (2n+3)+ (3n+3− i+1)

−
(

n+2
2

)
−

(
2n+3− i

2

)
−

(
3n+3− i

2

)
= 4n+5.

Subcase 4: For i = 2,4, . . . ,n,∑
v∈V (C(i)

3 )

µ(v)− ∑
e∈E(C(i)

3 )

µ(e)=µ(a1)+µ(a2)+µ(bi)−µ(a1a2)−µ(a1bi)−µ(a2bi)

= (2n+2)+ (2n+3)+ (3n+3− i+1)

−
(

n+2
2

)
−

(
n+2− i

2

)
−

(
4n+4− i

2

)
= 4n+5.

Hence G is C3-E-SMG.

3. C4-E-Super Magic Graceful Graphs
In this section, we investigates C4-E-SMGL of grids and books.

Theorem 3.1. The graph Bm = K1,m ×K2, m ≥ 2 is C4-E-SMG.

Proof. Let V (Bm)= {a1,a2}∪ {bi, ci : 1≤ i ≤ m} and E(Bm)= {a1a2}∪ {a1ci,a2bi,bi ci : 1≤ i ≤ m}.
Describe a function µ : V (Bm)∪E(Bm)→ {1,2, . . . ,5m+3} as follows:

Suppose m is odd:

µ(s)=



3m+1+ i, when s = ai for i = 1,2,

3m+3+ i, when s = bi for 1≤ i ≤ m,

5m+4− i, when s = ci for 1≤ i ≤ m,

1, when s = a1a2,

1+ i, when s = a2bi for 1≤ i ≤ m,

3m+3−2i, when s = a1ci for 1≤ i ≤ ⌈m
2 ⌉,

4m+3−2i, when s = a1ci for ⌈m
2 ⌉+1≤ i ≤ m,

1
2 (3m+1+2i), when s = bi ci for 1≤ i ≤ ⌈m

2 ⌉,
1
2 (m+1+2i), when s = bi ci for ⌈m

2 ⌉+1≤ i ≤ m.
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Suppose m is even:

µ(t)=



3m+1+ i, when t = ai for i = 1,2,

3m+3+ i, when t = bi for 1≤ i ≤ m,

5m+4− i, when t = ci for 1≤ i ≤ m,
m
2 +1, when t = a1a2,

i, when t = a2bi for 1≤ i ≤ m
2 ,

1+ i, when t = a2bi for m
2 ≤ i ≤ m,

3m+3−2i, when t = a1ci for 1≤ i ≤ m
2 ,

4m+2−2i, when t = a1ci for m
2 ≤ i ≤ m,

1
2 (3m+2+2i), when t = bi ci for 1≤ i ≤ m

2 ,
1
2 (m+2+2i), when t = bi ci for m

2 +1≤ i ≤ m.

Let C(i)
4 be the subcycle of Bm for 1 ≤ i ≤ m, and let E(C(i)

4 ) = {a1a2,a2bi,a1ci,bi ci} and
V (C(i)

4 )= {a1,a2,bi, ci}.

Case 1: Suppose m is odd.

Subcase 1: For i = 1,2, . . . ,
⌈m

2

⌉
.

Then ∑
v∈V (C(i)

4 )

µ(v)− ∑
e∈E(C(i)

4 )

µ(e)=µ(a1)+µ(a2)+µ(bi)+µ(ci)−µ(a1a2)−µ(a2bi)−µ(a1ci)−µ(bi ci)

= (3m+2)+ (3m+3)+ (3m+3+ i)+ (5m+4− i)− (1)

− (1+ i)− (3m+3−2i)−
(
1
2

(3m+1+2i)
)

= 19m+13
2

.

Subcase 2: For i = ⌈m
2 ⌉+1,⌈m

2 ⌉+2, . . . ,m.
Then ∑

v∈V (C(i)
4 )

f (v)− ∑
e∈E(C(i)

4 )

µ(e)=µ(a1)+µ(a2)+µ(bi)+µ(ci)−µ(a1a2)−µ(a2bi)−µ(bi ci)−µ(ai ci)

= 3m+2+3m+3+3m+3+ i+5m+4− i−1− (1+ i)

− (4m+3−2i)−
(
1
2

(m+1+2i)
)

= 19m+13
2

.

Case 2: Suppose m is even.

Subcase 3: For i = 1,2, . . . , m
2 .

Then ∑
v∈V (C(i)

4 )

µ(v)− ∑
e∈E(C(i)

4 )

µ(e)=µ(a1)+µ(a2)+µ(bi)+µ(ci)−µ(a1a2)−µ(a2bi)−µ(a1ci)−µ(bi ci)
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= (3m+2)+ (3m+3)+ (3m+3+ i)+ (5m+4− i)

−
(m

2
+1

)
− (1+ i)− (3m+3−2i)−

(
1
2

(3m+2+2i)
)

= 9m+7.

Subcase 4: For i = m
2 +1, m

2 +2, . . . ,m,∑
v∈V (C(i)

4 )

µ(v)− ∑
e∈E(C(i)

4 )

µ(e)=µ(a1)+µ(a2)+µ(bi)+µ(ci)−µ(a1a2)−µ(a2bi)−µ(a1ci)−µ(bi ci)

= (3m+2)+ (3m+3)+ (3m+3+ i)+ (5m+4− i)

−
(m

2
+1

)
− (1+ i)− (4m+2−2i)−

(
1
2

(m+2+2i)
)

= 9m+7.

Hence Bn is C4-E-SMG.

Theorem 3.2. The graph G = Pt ×P2 is C4-E-SMG.

Proof. Let V (G)= {ai,bi : 1≤ i ≤ t} and E(G)= {aibi : 1≤ i ≤ t}∪ {aiai+1,bibi+1 : 1≤ i ≤ t−1}.

Describe a function f : V (G)∪E(G)→ {1,2, . . . ,5t−2} as follows:

f (s)=



3t+ i−2, when s = ai for 1≤ i ≤ t,
5t− i−1, when s = bi for 1≤ i ≤ t,
3i, when s = aiai+1 for 1≤ i ≤ t−1,
3i−1, when s = bibi+1 for 1≤ i ≤ t−1,
3t+1−3i, when s = aibi for 1≤ i ≤ t.

For 1 ≤ i ≤ t−1, let C(i)
4 be the subcycle of G with V (C(i)

4 ) = {ai,ai+1,bi,bi+1} and E(C(i)
4 ) =

{aiai+1,bibi+1,aibi,ai+1bi+1}.

For 1≤ i ≤ t−1,∑
v∈V (C(i)

4 )

f (v)− ∑
e∈E(C(i)

4 )

µ(e)

=µ(ai)+µ(ai+1)+µ(bi)+µ(bi+1)−µ(aiai+1)−µ(bibi+1)−µ(aibi)−µ(ai+1bi+1)

= (3t+ i−2)+ (3t+ i−1)+ (5t− i−1)+ (5t− i−2)− (3i)− (3i−1)− (3t+1−3i)−(3t+1−3i−3)

= 10t−4.

Hence G is C4-E-SMG.

Theorem 3.3. The graph G = Pt ×P3, t ≥ 2 is C4-E-SMG.

Proof. Let V (G) = {ai, j : 1 ≤ i ≤ 3,1 ≤ j ≤ t} and E(G) = {ai, jai, j+1 : 1 ≤ i ≤ 3,1 ≤ j ≤ t− 1}∪
{ai, jai+1, j : 1≤ i ≤ 2,1≤ j ≤ t}.

Describe a function µ : V (G)∪E(G)→ {1,2, . . . ,8t−3} as follows:

For 1≤ j ≤ t,

µ(ai, j)=
{

( i−1
2 )t+5t−3+ j, when i = 1,3,

7t−3+ j, when i = 2,
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µ(ai, jai+1, j)=
{

3t+2( j−1)−2, when i = 1,
3t+2( j−1)−1, when i = 2.

For 1≤ j ≤ t−1,

µ(ai, jai, j+1)=


t− j, when i = 1,
t+ j−1, when i = 2,
3t− j−2, when i = 3.

For 1≤ i ≤ 2 and 1≤ j ≤ t−1, let C(i, j)
4 be the subcycle of G with

V (C(i, j)
4 )= {ai, j,ai, j+1,ai+1, j,ai+1, j+1}

and

E(C(i, j)
4 )= {ai, jai, j+1,ai+1, jai+1, j+1,ai, jai+1, j,ai, j+1ai+1, j+1}.

For 1≤ i ≤ 2 and 1≤ j ≤ t−1, then∑
v∈V (C(i, j)

4 )

f (v)− ∑
e∈E(C(i, j)

4 )

µ(e)=µ(ai, j)+µ(ai, j+1)+µ(ai+1, j)+µ(ai+1, j+1)−µ(ai, jai, j+1)

−µ(ai+1, jai+1, j+1)−µ(ai, jai+1, j)−µ(ai, j+1ai+1, j+1).

Case 1: Suppose i = 1, then∑
v∈V (C(1, j)

4 )

µ(v)− ∑
e∈E(C(1, j)

4 )

µ(e)= (5t−3+ j)+ (5t−3+ j+1)+ (7t−3+ j)+ (7t−3+ j+1)

− (t− j)+ (t+ j−1)+ (3t+2( j−1)−2)− (3t+2( j)−2)

= 16t−3.

Case 2: Suppose i = 2, then∑
v∈V (C(2, j)

4 )

µ(v)− ∑
e∈E(C(2, j)

4 )

µ(e)= (7t−3+ j)+ (7t−3+ j+1)+ (6t−3+ j)+ (6t−3+ j+1)

− (t+ j−1)+ (3t− j−2)+ (3t+2( j−1)−1)− (3t+2 j−1)

= 16t−3.

4. Conclusion
We studied H-E-SMGL of fans, graphs obtained by joining a star K1,n with one isolated vertex,
books and grids in this paper.
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