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Abstract. The present study deals with the plane waves moving in a solid medium qualifying for
anisotropic, homogeneous, microstretch and elastic properties. Primarily, the Christoffel equations
have been derived for propagation of waves (coupled longitudinal and coupled transverse) in the
medium. A system of homogeneous equations has been established to study polarization of medium
particles for wave motion, polarization of medium particles in microrotation and microstretch present
in the medium. Condition of solvability for a system of homogeneous linear equations has been
applied to derive an equation for determining phase velocities of coupled waves propagating in
the medium. Using the software Mathematica and hypothetical values for parameters and elastic
constants, numerical discussion has been carried out to see the possible number of waves propagating
in arbitrarily chosen phase directions in the medium. Finally, a special case of anisotropic homogeneous
elastic medium (absence of microstretch) has been discussed to support the results derived in the
present study.

Keywords. Microstretch, Microrotation, Phase velocity, Polarization, Coupled longitudinal waves,
Coupled transverse waves

Mathematics Subject Classification (2020). 74J, 74H

Copyright © 2023 Neetu Rani and Savita Garg. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

1. Introduction
A medium can be described completely by considering its both macro and micro studies,
structures, movements and properties. One such micro property is micropolar and microstretch.
It was due to work of Eringen [4–6] published in 1990, 1999 and 2001 that theory on microstretch
elastic solids came into existence. The theory of micropolar elastic solids was extended to develop
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this theory having three deformable directors associated with each and every material point.
Although a wide range of materials are covered in micropolar continua theory, but many solids
having microstretch elastic properties like polymers, asphalt, graphite, human bones, composite
material with reinforced chopped elastic fibers etc. cannot be modelled by micropolar theory. The
development of models for microstretch materials under different conditions could be possible
only after the development of microstretch continuum theory. A few studies related to elastic,
microstretch and wave motion at macro and micro level have been summarized in this section.

Casolo [3] in 2006 presented a model at macro level. Composite solids having texture
of orthotropic nature were taken for modelling. Their in-plane elastic response was modelled
microscopically in this study. Kiris and Inan [11] in 2008 used the microstretch theory introduced
by Eringen and identified the upper bounds for microstretch elastic moduli of the vibrating
plates. Then in 2011, Barsoum and Faleskog [2] analyzed the coalescence and growth of void in
the presence of the Lode parameter at micro-mechanical scale. They developed a model showing
a band comprised of an array squared in shape and made up of cells having equal size. Also,
each cell was also embedded by a void of spherical shape.

Various categories of elastic media and behaviour of waves in these media have been analyzed
by many researchers since many decades. Viscoelastic solids exhibit non-linear properties. By
taking these materials as initially stressed and having constant temperature, a theory was
developed by Schapery [19] in 1966. The theory provided quite simple stress-strain relations.
In 2007, Garg [7] investigated harmonic wave motion in viscoelastic anisotropic continua.
Biot’s theory was used to observe the reaction of harmonic waves in terms of their attenuation
and phase velocity under the influence of prestresses. Again in 2009, Garg [8] derived the
results for primary waves propagating in anisotropic elastic solid under the influence of initial
stress. Specific directions in which primary waves can exist were also suggested in this study.
Both primary and secondary waves were analyzed by Sharma [20] in 2010 in media having
anisotropic and thermoelastic properties. Wave propagation in microstretch solids has also
been a research area of interest of many mathematicians and scientists. In 2006, Tomar and
Singh [24] considered the interface comprised of two microstretch elastic half-spaces having
different properties. At this interface, they examined Stoneley waves propagation and derived
frequency equations for these waves. They found the waves to be dispersive in nature. Based
on microstretch theory, Inan and Kiriş [10] in 2007 presented a model for rectangular plates
under many boundary conditions. They investigated the propagation of waves by Ritz method
and observed new waves as compared to waves described in classical theory of elasticity. Along
with this, Chebyshev-Ritz method was also used to find frequency equations for microstretch
plate and obtained additional frequencies compared with the values specified by classical theory
of elasticity. Tomar and Khurana [23] in 2008 presented a study on electro-microelastic solid
free from any stresses. Propagation of elastic waves on the plane boundary of this medium
was studied. They investigated the condition along with the frequency range for electric waves
existence in electro-microelastic infinite solid. They also noticed the effect of micro-stretch
elastic parameter on coefficients of reflection.
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Some studies are available in literature for thermo-elastic microstretch half-space which is
homogeneous and isotropic in nature. Othman and Lotfy [17] in 2010 derived equations for this
medium. Then in 2011, they [14] introduced the effect of rotation on the dynamical equations
of this half space but with a thermal shock applied on the surface of medium. Xiong and Tian
[25] in 2011 investigated the effect of a time oriented heat shock subjected on the surface
of this semi-infinite medium. They concluded that microstretch affects the results related to
displacements, stresses etc. to a great extent whereas micropolar slightly affects these results.
In 2012, Shaw and Mukhopadhyay [21] studied that how Rayleigh surface waves get affected
due to electromagnetic field present in this medium and obtained the governing equations for
the waves. Then in 2014, Othman et al. [18] contributed for the effects of gravitational force
and initial stress present in this medium. Recently, Singh and Goyal [22] in 2017 came up with
a study on waves propagating in elastic solid falling in transverse, isotropic and microstretch
material class. They derived results on various coupled waves existing in this medium. But
these models cannot be applied for the general case of anisotropic medium. A few studies on
specific microstretch solids came across while going through the literature. In 2015, on the basis
of theory given by Green and Naghdi, a model was generated by Othman and Jahangir [16] for
plane wave motion in microstretch elastic medium rotating with fixed angular frequency. One
paper of interest published in 2017 and authored by Marin et al. [15] in this field with a different
outlook was found during literature survey. The authors of this paper used some concepts of
Hilbert space and semi-groups theory of linear operators to study the IBVP in microstretch
solids. They showed that the solutions of IBVP in these solids continuously depend upon the
initial values and supply data. This paper only provided a fact on solutions of the IBVP in
microstretch solids but not described any approach to find these solutions.

In the present study, the research gaps namely, most general case of anisotropic elastic
medium belonging to homogeneous and microstretch class, has been bridged over. Results on
wave motion in simplified class of isotropic, homogeneous, microstretch continuum is available
in literature, but not on microstretch anisotropic media. This motivated the authors to work on
the objective of present study. The paper will definitely be a precious add-on in microstretch
material research world.

2. Equations for Wave Motion
2.1 Assumptions
To study the dynamical wave equations, the following assumptions are made:

• The medium is homogeneous, anisotropic, microstretched and elastic by nature.

• No body force, initial stress and couple stress are acting on the medium.

• The medium is free from any intrinsic equilibrated body forces.

• A fixed system of rectangular Cartesian axes denoted by xi-axes (i = 1,2,3) is used for
study.

• Cartesian tensor notation is used in study.
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2.2 Field Equations, Constitutive Relations, Symmetry Relations and Strain Tensors
In the medium under study, the following equations contribute for the fundamental system of
dynamical equations for wave motion.

(a) Equations of motion:

t ji, j = ρüi , (2.1)

m ji, jεi jkt jk = I i jψ̈ j . (2.2)

(b) Equation for the balance of equilibrated forces:

λi,i = ρκφ̈ . (2.3)

The constitutive equations for the medium are given as
ti j = A i jmnεmn +Bi jmnµmn +D i jkγk ,
mi j = Bi jmnεmn +Ci jmnµmn +E i jkγk ,
λi = Dmniεmn +Emniµmn +Fi jγ j .

 (2.4)

Here, ui and ψi represent the components of displacement vector and microrotation vector,
respectively. The microstretch is characterized by the scalar function φ. The components
of the stress tensor, couple stress tensor and microstress vector have been denoted by ti j ,
mi jand λi , respectively. Parameters ρ, I i j = I ji and κ represent the reference constant mass
density, coefficients of microinertia and equilibrated inertia, respectively. Einstein summation
convention, subscript j after comma and superposed dot have been used for repeated indices,
partial derivative with respect to the spacial coordinate x j and derivative with respect to time,
t respectively. All the subscripts range from 1 to 3. The constitutive coefficients A i jmn, Bi jmn,
Ci jmn, D i jk, E i jk and Fi j , characterizing the properties of the medium, satisfy the following
symmetry relations:

A i jmn = Amni j = A jimn = A i jnm ;
Ci jmn = Cmni j = C jimn = Ci jnm ;
D i jk = D jik, E i jk = E jik, ;Fi j = F ji .

 (2.5)

The coefficients Bi jmn related to coupling of displacement and microrotation fields do not exhibit
any kind of symmetry. The strain tensors giving deformation are defined as

εi j = u j,i +εi jkψk ,
µi j =ψ j ,
γi =φ,i ,

 (2.6)

where εi jk is the alternating tensor.

Resulting Equations of Motion
Making use of equations (2.4) and (2.6) into equations (2.1), (2.2) and (2.3) resulted into a
system of three coupled partial differential equations given as

ρüi = [A i jmn(un,m +εnmkψk)+Bi jmnψn,m +D i jkφ,k], j ,
I i jψ̈ j = [Bi jmn(un,m +εnmkψk)+Ci jmnψn,m +E i jkφ,k], j

+εi jk[A jkmn(un,m +εnmsψs)+B jkmnψn,m +D jkrφ,r] ,
ρκφ̈= [Dmni(un,m +εnmsψs)+Emniψn,m +Fi jφ, j],i .

 (2.7)
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In a homogeneous medium, these equations reduce to the form
ρüi = A i jmn(un,m j +εnmkψk, j)+Bi jmnψn,m j +D i jkφ,k j ,
I i jψ̈ j = Bi jmn(un,m j +εnmkψk, j)+Ci jmnψn,m j +E i jkφ,k j

+εi jk[A jkmn(un,m +εnmsψs)+B jkmnψn,m +D jkrφ,r] ,
ρκφ̈= Dmni(un,mi +εnmsψs,i)+Emniψn,mi +Fi jφ, ji .

 (2.8)

2.3 Condition for Existence and Uniqueness of Solution
The existence of unique solution of system (2.8) is guaranteed by the following conditions of
positivity satisfied by parameters and constitutive coefficients [15]. For any ξi j , ηi j and κi ,

ρ > 0, I i j > 0, κ> 0,
A i jmnξi jξmn +2Bi jmnξi jηmn +Ci jmnηi jηmn +2D i jsξi jκs +2E i jsηi jκs +Fi jκiκ j

≥α(ξi jξi j +ηi jηi j +κiκi), α> 0.

 (2.9)

3. Propagation of Plane Waves
The harmonic solution for the system of equations (2.8) is assumed as,

(u j,ψ j,φ)= (U j,Ψ j,Φ)exp
[
ιω

(
1
v

nkxk − t
)]

, ( j = 1,2,3), (3.1)

where wave propagates along (n1,n2,n3), a unit vector orthogonal to wave surface, with phase
velocity v and angular frequency ω.

Represent the direction of phase propagation by a row vector N = (n1,n2,n3). Then use of
harmonic solution (3.1) and symmetry relations (2.5) in equations of motion (2.8) results in the
following system of equations,

[E−ρv2δin]Un +HΨn +GΦ= 0,
HUn + (L−v2I)Ψn +MΦ= 0,
ζUn +χΨn + (NFNT −ρκv2)Φ= 0,

 (3.2)

where E, H, L, I , F are square matrices of order 3, G and M are column vectors having three
elements, and ζ, χ are row vectors having 3 elements. These matrices represent the tensors
given as,

E = A i jmnnmn j, H = Bi jmnnmn j, L = Ci jmnnmn j, I = I i j, NFNT = Fi jn jni,
G = D i jknkn j, M = E i jmknkn j, ζ= Dmninmni, χ= Emninmni.

}
(3.3)

Here, n takes the values 1, 2 and 3. Representing the column vectors (U1,U2,U3)T and
(Ψ1,Ψ2,Ψ3)T by U and Ψ respectively, the system of 7 equations (3.2) in 7 variables looks
like a system of 3 homogeneous equations in 3 variables U , Ψ, and Φ, given as

[E−ρv2I]U +HΨ+GΦ= 0,
HU + (L−v2I)Ψ+MΦ= 0,
ζU +χΨ+ (NFNT −ρκv2)Φ= 0.

 (3.4)

Here, I is the identity matrix of order 3. For the condition NFNT −ρv2κ ̸= 0, this system
is transformed into the following simpler system of three homogeneous equations in three
variables U1, U2 and U3 known as Christoffel equations for the propagation of waves (coupled
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longitudinal and coupled transverse waves) in the medium.[(
E−ρv2I − Gζ

NFNT −ρv2κ

)
−

(
Gχ

NFNT −ρv2κ
−H

)(
L−v2I − Mχ

NFNT −ρv2κ

)−1

·
(

Mζ

NFNT −ρv2κ
−H

)]
U = 0 . (3.5)

The expressions for Ψ and Φ in terms of U obtained from system (3.4) are given as

Ψ=
(
L−v2I − Mχ

NFNT −ρv2κ

)−1 (
Mζ

NFNT −ρv2κ
−H

)
U (3.6)

and

Φ= −1
NFNT −ρv2κ

[
ζ+χ

(
L−v2I − Mχ

NFNT −ρv2κ

)−1 (
Mζ

NFNT −ρv2κ
−H

)]
U . (3.7)

Non-trivial solution of system (3.5) is guaranteed by the condition

det
[(

E−ρv2I − Gζ
NFNT −ρv2κ

)
−

(
Gχ

NFNT −ρv2κ
−H

)(
L−v2I − Mχ

NFNT −ρv2κ

)−1

·
(

Mζ

NFNT −ρv2κ
−H

)]
= 0, (3.8)

where det stands for the determinant of a square matrix. Equation (3.8) is a polynomial
equation in v2. Positive square roots of real solutions of this polynomial equation give the phase
velocities of the existing waves in the medium. The phase velocities when used in the system
(3.5) make it possible to evaluate (U1,U2,U3), the polarization of particles of the medium
for propagation of corresponding wave. The corresponding polarization of the particles in
microrotation, (Ψ1,Ψ2,Ψ3) and the microstretch present in the wave are then calculated by
the relations (3.6) and (3.7), respectively.

4. Special Case: Absence of Microstretch
In the absence of microstretch, the coefficients characterizing the microstretch properties of the
medium vanish given as

Bi jmn = Ci jmn = D i jk = E i jk = Fi j = 0 (4.1)

which results in the following:

G = H = L = M = K = ζ= χ= 0. (4.2)

As a result, the Christoffel equations for the propagation of plane waves in anisotropic
homogeneous elastic medium will be

(E−ρv2I)U = 0 (4.3)

which witness three plane waves propagating in the medium. This system being an eigen system
of a symmetric matrix E confirms that the polarizations of these three waves are mutually
orthogonal, which is in agreement with the results for anisotropic medium available in literature.
On the contrary, due to absence of this type of symmetry in matrices present in system (3.5),
the displacement vectors corresponding to each wave in anisotropic homogeneous microstretch
elastic medium may not be mutually orthogonal in an arbitrary phase direction.
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5. Numerical Discussion
Due to non-availability of micromechanics experimental data for anisotropic homogeneous
microstretch elastic medium in literature, hypothetical values for parameters and constitutive
coefficients following some similar literature works [1, 9, 12, 13, 22] satisfying the positivity
assumptions (2.9), are taken to evaluate the phase velocities of waves. The elastic constants are
taken in GPa. Elastic moduli of the medium in two-suffixed notations are denoted as, A i jmn by
a symmetric square matrix A = AIJ of order 6, Bi jmn by a square matrix B = BMN of order 9,
and Ci jmn by a symmetric square matrix C = CIJ of order 6.

Also, represent the coefficients of microinertia, I i j by a symmetric square matrix MI of
order 3.

Parameter values:

ρ = 2.74×103 kg/m3, κ= 0.279m2;

Matrix MI (in m2):

MI =
0.793 0.072 0.112

0.072 0.572 0.012
0.112 0.012 0.543

 ;

Elastic constants matrices/values (in GPa):

A =



17.8 5.23 7.59 6.94 8.23 7.99
5.23 9.7 9.76 7.69 8.97 4.42
7.59 9.76 18.43 5.97 7.97 7.79
6.94 7.69 5.97 7.62 9.56 4.79
8.23 8.97 7.97 9.56 4.357 1.89
7.99 8.94 7.79 4.79 1.89 4.42

 ;

B =



2.14 2.11 2.23 1.97 1.74 0.192 0.211 0.199 0.212
2.16 1.98 1.75 2.13 2.31 0.179 0.178 0.187 0.198
2.25 1.78 2.15 2.21 2.23 0.201 0.203 0.15 0.13
1.99 2.16 2.25 2.75 2.95 0.16 0.11 0.121 0.131
1.77 2.36 2.25 2.92 2.13 0.09 0.08 0.19 0.20
0.19 0.17 0.207 0.19 0.07 2.15 0.097 0.08 0.07
0.23 0.18 0.20 0.13 0.07 0.09 2.22 0.051 0.17
0.20 0.19 0.16 0.125 0.197 0.088 0.054 2.17 0.25

0.215 0.195 0.139 0.133 0.199 0.077 0.175 0.255 2.21


;

C =



0.023 0.012 0.013 0.0019 0.00191 0.0018
0.012 0.021 0.017 0.0018 0.0009 0.0011
0.013 0.017 0.0201 0.00182 0.00191 0.00193

0.0019 0.0018 0.00182 0.0201 0.00187 0.0009
0.0019 0.0009 0.00191 0.00187 0.0241 0.0008
0.0018 0.0011 0.00193 0.0009 0.0008 0.0221

 ;

D111=0.0173, D112=0.0165, D113=0.0101, D121=0.0091, D122=0.0087, D123=0.0075,

D131 = 0.0054, D132 = 0.0097, D133 = 0.0099, D211 = D121, D212 = D122, D213 = D123,

D221=0.0078, D222=0.0077, D223=0.0073, D231=0.0087, D232=0.0089, D232 = 0.0088,
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D311 = D131, D312 = D132, D313 = D133, D321 = D231, D322 = D232, D323 = D233,

D331 = 0.0165, D332 = 0.0176, D333 = 0.0191;

E111 = 0.00021, E112 = 0.00013, E113 = 0.00017, E121 = 0.00016, E122 = 0.0001,

E123 = 0.00023, E131 = 0.00019, E132 = 0.00018, E133 = 0.0002;

E211 = E121, E212 = E122, E213 = E123,

E221 = 0.00024, E222 = 0.00015, E223 = 0.00011, E231 = 0.00009, E232 = 0.00007,

E233 = 0.00024, E311 = E131, E312 = E132, E313 = E133, E321 = E231, E322 = E232,

E323 = E233, E331 = 0.00007, E332 = 0.0005, E333 = 0.00022;

F11 = 0.003, F12 = 0.0009, F13 = 0.0007,

F21 = F12, F22 = 0.002, F23 = 0.0008,

F31 = F13, F32 = F23, F33 = 0.004.

Using the above hypothetical values and the software Mathematica, the obtained positive
squared phase velocity values calculated in arbitrarily chosen phase directions and hence the
possible number of waves propagating in those directions are given as,

• If θ = 0 and φ= 0 to π
2 , then v2:

0.0864533 0.0404048 0.0404048 0.00101941 5.27856×10−6 5.23245×10−6

5.23245×10−6 5.23245×10−6 5.23245×10−6 5.23245×10−6 5.23245×10−6

Number of possible waves: 11 distinct waves.
Along the directions of zero polar angle and arbitrary azimuth angle, eleven waves
came into existence. In these phase directions, five types of waves have been observed,
categorized according to their squared phase velocity.

• If θ = 0.2 to π
2 and φ= 0 to π

2 , then v2: no positive real value.

Number of possible waves: no wave.
For arbitrary azimuth, if we go on increasing the polar angle beyond a point (in the present
case, this limit point exists between 0.1 and 0.2 radians), then no wave is found in these
phase directions.

• If θ = 0.1 and φ= 0, then v2:
0.102444 0.0399805 0.0399805 0.0342426 0.0341956
0.0341956 0.0294655 0.0290779 0.0290779 5.40133×10−6

5.40133×10−6 5.40133×10−6 5.39227×10−6 5.39227×10−6 4.64544×10−6

Number of possible waves: 15 distinct waves.
For 0.1 radians polar angle and zero azimuth, nine types of waves come into existence.

• If θ = 0.1 and φ= 0.5, then v2:
0.110076 0.0431058 0.0431058 0.0328957 0.0321738
0.0321738 0.0291699 0.0286164 0.0286164 5.48561×10−6

5.48561×10−6 5.48561×10−6 5.4758×10−6 5.4758×10−6 5.38626×10−6
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Number of possible waves: 15 distinct waves.
In this phase direction also, nine types of waves appear.

• If θ = 0.1 and φ= 1, then v2:
0.112018 0.0454911 0.0454911 0.03177 0.0309273
0.0309273 0.02926 0.0280515 0.0280515 5.49409×10−6

5.49409×10−6 5.49409×10−6 5.48401×10−6 5.48401×10−6 5.41458×10−6

Number of possible waves: 15 distinct waves.
This phase direction also witnesses nine types of waves.

• If θ = 0.1 and φ= 1.5, then v2:
0.107855 0.0468969 0.468969 0.0307044 0.0307044 0.0272652

0.0272652 5.42835×10−6 5.42835×10−6 5.42835×10−6 5.28099×10−6

Number of possible waves: 11 distinct waves.
In this phase direction, six types of waves make their propagation path.

• If θ = 0.01 and φ= 0, then v2:
0.0880305 0.0401376 0.0401376 0.0300389 0.0300389

0.00096106 5.30093×10−6 5.25063×10−6 5.25063×10−6 5.25063×10−6

Number of possible waves: 10 distinct waves.
Six types of waves follow this phase direction.

• If θ = 0.01 and φ= 0.5, then v2:
0.088821 0.0404644 0.0404644 0.0300135 0.0300135 0.000937967

5.31015×10−6 5.25849×10−6 5.25849×10−6 5.25849×10−6 5.25054×10−6 5.25054×10−6

Number of possible waves: 12 distinct waves.
In this phase direction, seven types of waves can be seen.

• If θ = 0.01 and φ= 1, then v2:
0.0890333 0.0407724 0.0407724 0.0299115 0.0299115

0.000936141 5.31138×10−6 5.25984×10−6 5.25984×10−6 5.25984×10−6

5.25984×10−6 5.25984×10−6 5.25187×10−6 5.25187×10−6

Number of possible waves: 14 distinct waves.
Seven types of waves prefer to propagate in this phase direction.

• If θ = 0.01 and φ= 1.5, then v2:
0.0886175 0.0297527 0.0297527 0.00095655

5.30426×10−6 5.24644×10−6 5.24644×10−6

Number of possible waves: 7 distinct waves.
This phase direction observes five types of waves.

6. Conclusion
In an anisotropic homogeneous microstretch elastic solid medium, the following conclusions
may be stated based upon the theoretical and numerical discussion:
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• Different phase directions may witness different number of waves propagating in the
medium.

• There may exist some phase directions where not a single wave propagates.

• Number of distinct waves propagating in different phase directions may vary from 0 to 15.

• There is possibility of nine types of waves propagating in the medium.

• Coupling of microstretch and microrotation fields with displacement fields may be
responsible for affecting the number of distinct waves and number of types of waves
propagating in different phase directions.

• The results derived in the present study will definitely be of great utility for real
experimental data based problems in an anisotropic homogeneous microstretch elastic
solid medium.
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