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Abstract. The impact of multiple stenoses on the stream of a Casson fluid over a non-uniform pipe
has been studied. Under the assumption of mild-stenosis, explicit solutions have been derived to
calculate the flow resistance and shear-stress on the wall. The consequences of numerous relevant
factors on these flow qualities are deliberated. It is experiential that the flow resistance declines with
a change of radius in the plug region, where as the shear stress increases with the same. Further,
both the above two flow characteristics upsurge with the elevations of the stenoses. The impacts of
boundaries identified with statures of stenoses on shear-stress may support in improved recognition
of the fluid mechanical viewpoints in stenotic stream area, which thusly would support in further
comprehension of the advancement and improvement of ‘Arteriosclerosis’ in biological frameworks.
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1. Introduction
Stenosis is the word usually used when narrowing is brought about by lesion that decreases
the space of lumen. This decrease occurs due to abnormal and unnatural growth of the plaques
along the walls of the lumen. As stenosis is been a widespread disease in many countries, it is
necessary to study the flow field in a constricted stenotic tube in detail. This study may help us
in better thoughtful of the illnesses occur in arteries.

In view of this, to realize the influence of stenosis on flow in the narrowed section of an artery,
a good deal theoretical analysis has been done under different conditions. Young [18] considered
axially symmetric mild stenosis and analyzed the result of stenotic growth on shear stress and
impedance. Forrester and Young [5] considered the steady stream of an incompressible fluid in a
contracting and expanding axisymmetric tube theoretically and determined the velocity profiles,
pressure and shearing stresses. Chaturani and Ponnalagarsamy [2] inspected the impacts of
inlet velocity profiles on the 2D flow of blood over a stenosed tube. However, in these studies
a Newtonian fluid was considered to compensate the blood by ignoring its suspension nature.
There are experimental evidences which exhibit the non-Newtonian comportment of blood
at modest shear rates in pipes of tiny widths (Huckaba and Hahn [6]). Therefore, numerous
authors have premeditated the flow of blood in stenotic region by considering blood as a non-
Newtonian fluid. For instance, Shukla et al. [15] investigated the consequences of stenosis on
movement of the blood (non-Newtonian) in an artery, Jung et al. [7] studied irregular streams
of non-Newtonian fluids in symmetric constricted artery. Also, there are several authors who
considered blood as non-Newtonian fluid (Kiran et al. [8], Sreenadh et al. [16], Kiran et al. [10],
Kiran and Radhakrishnamacharya [11], Das and Mandal [3], Kiran et al. [9], and Kumar et
al. [12]).

The Casson fluid model is renowned for recognizing the existence of yield stress and also
exhibits a plug flow. In view of its importance, various researchers have considered the flow of
Casson fluid in the study of biological systems (Mishra and Pandey [13], Vajravelu et al. [17],
and Amlimohamadi et al. [1]).

Motivated by this, the main purpose of this article is to deliberate the effect of multiple
stenoses on the flow of a Casson fluid through a tube of non-uniform cross section. The non-
Newtonian character of blood is represented by a Casson fluid and computationally derived
closed form expressions to examine the deviation of velocity profiles, the shear stress near the
wall and also the resistive impedance in the flow. The results are presented graphically.

2. Mathematical Model of the Problem
Contemplate a 2-dimensional stream of an incompressible Casson fluid in a non-uniform
tube with two stenoses. Polar cylindrical coordinate system is preferred to facilitate the
z-axis overlaps with center line of tube. The stenoses are considered as mild and grow in
a symmetric way about axis. The geometry of the problem is kept as proposed by Prasad and
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Radhakrishnamacharya [14],
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where B is the total channel length, L1 and δ1 are the length and extreme height of the primary
stenosis, L2 and δ2 are the length and extreme height of the secondary stenosis (Figure 1).
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Figure 1. Physical geometry of the considered problem

The governing equation of the flow of Casson fluid is given by
1
r
∂
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, (2)
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Considering the forces in the plug region, we have 2πr0Bτ0 = Pπr2
0B which can be simplified as

τ0 = Pr0

2
, (4)

where P = ∂p
∂z .

The boundary conditions are:

τrz is finite at r = 0 , (5)

u = 0 at r = h . (6)

Taking the constraint of mild stenoses and evaluating eq. (2) using eqs. (5) and (6), the velocity
is obtained as
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Substituting r = r0 in eq. (7), we get the plug velocity as
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3. Analysis of the Solution
The fluid flux Q is given by:

Q =
∫ r0

0
2uprdr+2

∫ h

r0

urdr (9)

= P
µ

[ −1
168

r4
0 −

2
7

r
1
2
0 h

7
2 + h4

8
+ 1

6
r0h3

]
. (10)

Using the following non dimensional quantities,
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in eq. (10), we get (ignoring the primes)
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From eq. (12),
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The resistance to flow, denoted by

λ= ∆P
Q

. (15)

By considering eqs. (14) and (15) together, we get
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In case of ignored stenoses (H = 1), the pressure change denoted by ∆pn is obtained from
eq. (14)
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∫ 1
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The flow resistance in the nonappearance of stenoses λn is demarcated by

λn = ∆pn

Q
. (18)
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By means of eq. (17) in eq. (18), we get
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∫ 1
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The normalized flow resistance λ̄ is given by
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. (20)

Applying dimensionless quantities in eq. (11) collected with
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Eq. (20) reduces to
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Using eq. (7) in non-dimensional form and eq. (13) in eq. (22) (after dropping the primes), we get
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The shear-stress near the wall when the constriction is ignored (H = 1), denoted by (τw)n can be
found from eq. (23) as
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Q
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 2r
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The normalized shear-stress at the wall τ̄w is given by

τ̄w = τw

(τw)n
. (25)

4. Numerical Results and Discussion
The flow resistance and wall shear stress are two significant attributes in the examination
of blood flow over a constricted stenosed artery. The mathematical equations for flow
resistance and wall shear are specified by the eqs. (23) and (25), respectively. These have been
numerically calculated using MATHEMATICA for diverse values of the pertinent parameters
and displayed graphically. Moreover, it is assumed R∗(z)

R0
= exp[βB2(z − B1)2] (Prasad and

Radhakrishnamacharya [14]).
Further, it is also assumed that d1 = 0.2, d2 = 0.6, L1 = 0.2, L2 = 0.2, B1 = 0.3, β= 0.1.
Figures 2-5 demonstrate the impacts of numerous parameters on the resistance to flow. It

is detected that the resistance to flow λ̄ decreases with the increase in the radius of the plug
region, i.e., the resistance decreases with non-Newtonian character of the fluid. It is also noticed
that the resistance increases with the elevations of both the primary and secondary stenoses δ1

and δ2. This result agrees with the earlier results obtained by Young [18], Shukla et al. [15],
and Prasad and Radhakrishnamacharya [14].
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Figure 2. Impact of r0 on resistance λ̄ (δ2 = 0.2)

Figure 3. Impact of r0 on resistance λ̄ (δ1 = 0.2)

Figure 4. Impact of r0 on resistance λ̄ (δ2 = 0)
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Figure 5. Impact of r0 on resistance λ̄ (δ1 = 0)

Figure 6. Impact of r0on shear stress τ̄w (δ2 = 0.2)

Figure 7. Impact of r0on shear stress τ̄w (δ1 = 0.2)
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Figure 8. Impact of r0 on shear stress τ̄w (δ2 = 0)

Figure 9. Impact of r0 on shear stress τ̄w (δ1 = 0)

It is observed that the effects of diverse parameters on the wall shear stress is portrayed in
Figure 6 - Figure 9. The stress (τ̄w) increases with the heights of the stenoses δ1 and δ2. This
result also agrees with the results of Young [18], and Shukla et al. [15]. It is also seen that shear
stress increases with plug region radius r0.

Further, the changes in resistance to the flow and wall shear stress are more significant in
the case of two stenoses (Figures 2, 3, 6 and 7) than those of single stenosis (Figures 4, 5, 8
and 9).
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