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1. Introduction
S. Banach [3], a Polish mathematician and one of the pioneers of functional analysis, proposed a
contraction principle that laid foundation for many fixed point theorem. Further, metric space
has been generalized in a number of ways. In this process, Huang and Zhang [5] developed the
concept of cone metric space, replacing the Banach space with an ordered Banach space over
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the set of real numbers and proved several results. Following that, Abbas et al. [2], Abbas and
Rhoades [1], Rezapour and Hamlbarani [9] investigated some in cone metric spaces. Thereafter,
Song et al. [11] have derived similar fixed point theorems using weakly compatibility in cone
metric spaces. Recently, Abbas and Jungck [2] generalized the finding within a normal cone
metric space using weak compatibility. In a similar way, Vetro [13] used weak compatibility to
prove some fixed point theorem for two self-maps meeting a contractive condition. Later, Jain et
al. [7] proved certain fixed point theorems for four self-maps through compatibility and weak
compatibility that met a contractive condition. Our major goal is to extend the results of [7]
by using semi-compatibility, A-reciprocally continuity, and sub sequential continuity in cone
metric spaces.

2. Preliminaries
Definition 2.1 ([5]). Let E be a real Banach space. P ⊂ E is called a cone if and only if

(i) P is closed, nonempty and P ̸= {0};

(ii) a,b ∈R, a,b ≥ 0 and x, y ∈ P imply ax+by ∈ P ;

(iii) P ∩ (−P)= {0}.

Given a cone P ⊂ E, we define a partial ordering ≤ on E with respect to P by x ≤ y if and only
if y− x ∈ P . We shall write x < y to indicate that x ≤ y but x ̸= y, while x ≪ y will stand for
y− x ∈ intP (interior of P). A cone P ⊂ E is called normal if there is a number K > 0 such that
∀ x, y ∈ E, 0 ≤ x ≤ y ⇒ ∥x∥ ≤ K∥y∥. The normal constant of P is the least positive value that
fulfills the aforementioned inequality. It is clear that K ≥ 1.

Proposition 2.2 ([6]). Consider cone P is in a real Banach space. If a ∈ P and a ≤ ka, for some
k ∈ [0,1) then a = 0.

Proposition 2.3 ([6]). Consider cone P is in a real Banach space E. If for a ∈ P and a ≪ c,
∀ c ∈ P0 (interior point) then a = 0.

Definition 2.4 ([5]). Let X be a non-empty set and E a real Banach space with cone P . A vector-
valued function d : X × X → P is said to be a cone metric space on X with the constant K ≥ 1 if
the following conditions are satisfied:

(d1) d(x, y)> 0 and d(x, y)= 0 if and only if x = y ∀ x, y ∈ X ;

(d2) (x, y)= d(y, x) ∀ x, y ∈ X ;

(d3) (x, y)≤ K(d(x, z)+d(y, z)) ∀ x, y, z ∈ X .

Then d is called a cone metric in X and (X ,d) is called a cone metric space.

The concept of a cone metric space is more general than that of a metric space.
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Definition 2.5 ([5]). Let (X ,d) be a cone metric space. We say that a sequence

(i) (xη)η∈N ⊆ X is a cauchy sequence if for all ϵ> 0 there exists an Nϵ ∈ N such that for all
η,m > N , d(xη, xm)< ϵ, if lim

η,m→+∞d(xη, xm)= 0.

(ii) Convergent sequence if for every c ∈ E with 0≪ c, there is an N such that for all η> N ,
d(xη, x)≪ c for some fixed x ∈ X .

(iii) A cone metric space X is said to be complete if every cauchy sequence in X is convergent
in X .

Definition 2.6. Cone metric space (X ,d) is In a real Banach space E, let P be a cone. If u ≤ v,
v ≪ w then u ≪ w.

Lemma 2.7. Cone metric space (X ,d) is a real Banach space E, let P be a cone and k1,k2,k3,
k4,k > 0. If xη → x, yη → y, zη → z and Pη → p in X and ka ≤ k1d(xη, x)+k2d(yη, y)+k3d(zη, z)+
k3d(Pη, p), then a = 0.

Definition 2.8. Two self-maps F and G of a set X are occasionally weakly compatible (OWC) if
and only if there is a point x in X which is a coincidence point of F and G at which F and G
commutes.

Example 2.9. Define cone metric space (X ,d) a with partial ordering ≤ and E =R2,

P = {(y, z) ∈ E | y, z > 0}⊂R2, X = [0,∞), d : X × X → E,

in order for d(y, z)= (|y− z|,α|y− z|), where α≥ 0 is some constant.
Define the self-mappings A,B and S,T . On X = [0,∞) as

A(x)= x3 ∀ x ∈ [0,∞)

and

S(x)= 3x2, if x ∈ [0,∞).

We see that the pair has coincidence points (A,S) at 0,3.
At x = 3

A(3)= 27= S(3)

but

AS(3)= A(27)= 19683 ̸= SA(3)= S(27)= 2187.

At x = 0, A(0)= 0= S(0) and

AS(0)= A(0)= 0= SA(0)= S(0).

This indicates that pair (A,S) is OWC, but not weakly compatible.

Definition 2.10 ([7]). The self-mappings pair (A,S) on a cone metric space (X ,d) is claimed
to be semi-compatible, if lim

η→∞ ASxη = St, whenever {xη} is a sequence in X such that

lim
η→∞ Axη = lim

η→∞Sxη = t, for some t ∈ X .
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Example 2.11 ([7]). In a cone metric space (X ,d), define self-mappings A,B and S,T .
On X = [1,∞) as

A(x)=
{

x, if x ≤ 1,
3x+1, if x > 1,

and S(x)=


2x−1, if x ≤ 1,
2x+2, if x ∈ (1,4)∪ (4,∞),
13, if x = 4.

Consider a sequence xη = 1+ 1
η

for η> 1.
Then

Axη = A
(
1+ 1

η

)
= 3

(
1+ 1

η

)
+1→ 4

and

Sxη = S
(
1+ 1

η

)
= 2

(
1+ 1

η

)
+2→ 4, as η→∞.

Now

ASxη = AS
(
1+ 1

η

)
= A

(
4+ 2

η

)
= 3

(
4+ 2

η

)
+1→ 13= S (4) ,

and

SAxη = SA
(
1+ 1

η

)
= S

(
4+ 3

η

)
= 2

(
4+ 3

η

)
+2= 10, as η→∞.

Then ASxη → 13 and SAxη → 10, as η→∞.
Hence the pair self-mappings (A,S) is semi-compatible but not compatible.

Definition 2.12 ([4]). The self-mappings pair (A,S) on a cone metric space (X ,d) is mentioned
to be sub-sequentially continuous if a sequence {xη} exists in X as well as lim

η→∞ Axη = lim
η→∞Sxη = t,

in some cases t ∈ X as well as lim
η→∞ ASxη = At and lim

η→∞SAxη = St.

If the self-mappings A,S is continuous, hence reciprocally continuous mappings but not sub-
sequentially continuous as discussed below.

Example 2.13. In a cone metric space (X ,d), define self-mappings A,B and S,T .
On X = [1,∞) as

A(x)=


x, if x ≤ 1,
3x−1, if x ∈ (1,8)∪ (8,∞),
47, if x = 8

and

S(x)=
{

2x−1, if x ≤ 1,
x2 −1, if x > 1.

Consider a sequence xη = 3− 1
η

for η> 1.
Then

Axη = A
(
3− 1

η

)
= 3

(
3− 1

η

)
−1= 8− 3

η
→ 8
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and

Sxη = S
(
3− 1

η

)
=

(
3− 1

η

)2
−1→ 8, as η→∞.

Now

ASxη = AS
(
3− 1

η

)
= A

((
3− 1

η

)2
−1

)
= 3

((
3− 1

η

)2
−1

)
−1= 23 ̸= 47= A(8)

and

SAxη = SA
(
3− 1

η

)
= S

(
8− 3

η

)
=

(
8− 3

η

)2
−1= 63= S(8), as η→∞.

However, for a sequence xη = 1− 1
η

for η≥ 1, then

Axη = 1− 1
η
→ 1

and

Sxη = 1− 1
η
→ 1 as η→∞.

Now

ASxη = AS
(
1− 1

η

)
= 2

(
1− 1

η

)
−1= A (1)= 1= A(1)

and

SAxη = SA
(
1− 1

η

)
= 2

(
1− 1

η

)
−1= 1= S(1).

Therefore, the mappings A,S are sub-sequentially continuous but not continuous.

Definition 2.14 ([8]). The self-mappings pair (A,S) on a cone metric space (X ,d) is called
reciprocally continuous if for each sequence {xη} in X , lim

η→∞ ASxη = At and lim
η→∞SAxη = St,

whenever lim
η→∞ Axη = lim

η→∞Sxη = t for some t ∈ X .

Further reciprocally continuous mappings can be divided into A-reciprocally continuous and
S-reciprocally continuous mappings.

Definition 2.15. The self-mappings pair (A,S) on a cone metric space (X ,d) is called
A-reciprocally continuous if for each sequence {xη} in X , lim

η→∞ ASxη = At, whenever lim
η→∞ Axη =

lim
η→∞Sxη = t, for some t ∈ X .

Definition 2.16. The self-mappings pair (A,S) on a cone metric space (X ,d) is called
S-reciprocally continuous if for each sequence {xη} in X , lim

η→∞SAxη = St, whenever lim
η→∞ Axη =

lim
η→∞Sxη = t, for some t ∈ X .

Reciprocally continuous implies A-reciprocally continuous and S-reciprocally continuous but
not conversely. We present a counter example as following.
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Example 2.17. In a cone metric space (X ,d), define the self-mappings A,B and S,T ,
on X = [1,∞) as

Ax = Bx =
{

x
3 , if x ∈ (−∞,1),
4x−3, if x ∈ [1,∞),

and Sx = Tx =
{

x+2, if x ∈ (−∞,1),
3x−2, if x ∈ [1,∞).

Consider a sequence {xη}=
{
1+ 1

η

}
, η ∈ N in X .

Then

lim
η→∞ Axη = lim

η→∞ A
(
1+ 1

η

)
= 4

(
1+ 1

η

)
−3=

(
1+ 4

η

)
= 1,

lim
η→∞Sxη = lim

η→∞S
(
1+ 1

η

)
= 3

(
1+ 1

η

)
−2=

(
1+ 3

η

)
= 1, as η→∞.

Also,

lim
η→∞ ASxη = lim

η→∞ AS
(
1+ 1

η

)
= lim

η→∞ A
(
1+ 3

η

)
= 4

(
1+ 3

η

)
−3→ 1= A(1),

lim
η→∞SAxη = lim

η→∞SA
(
1+ 1

η

)
= lim

η→∞S
(
1+ 4

η

)
= 3

(
1+ 4

η

)
−2→ 1= S (1) , as η→∞ .

Consider another sequence {xη}=
{

1
η
−3

}
, η ∈ N in X .

Then

lim
η→∞ Axη = lim

η→∞

(
1

3η
−1

)
=−1 as η→∞.

lim
η→∞Sxη = lim

η→∞

(
1
η
−3

)
= 1
η
−3+2= 1

η
−1→−1, as η→∞.

Next,

lim
η→∞ ASxη = lim

η→∞ AS
(
1
η
−3

)
= lim

η→∞ A
((

1
η
−3

)
+2

)
= lim

η→∞ A
(
1
η
−1

)
= 1

3

(
1
η
−1

)
→−1

3

= −1
3

= A(−1),

lim
η→∞SAxη = lim

η→∞SA
(
1
η
−3

)
= lim

η→∞S
(
−1+ 1

3η

)
=

(
−1+ 1

3η

)
+2→ 1=1=S(−1), as η→∞.

Thus, the self-mappings pair (A,S) is A-reciprocally continuous but neither continuous nor
reciprocally continuous.

Now we present a theorem by Jain et al. [7].

Theorem (α). Let (X ,d) be a complete cone metric space with respect to a cone P contained in a
real Banach space E. Let A,B and S,T be self-mappings on X satisfying:

(i) A(X )⊆ T(X ), B(X )⊆ S(X );

(ii) the pair (A,S) is compatible and the pair (B,T) is weakly compatible;

(iii) one of A or S is continuous;

(iv) d(Ax,By)≤λd(Ax,Sx)+µd(By,T y)+δd(Sx,T y)+γ[d(Ax,T y)+d(Sx,By)].

for some λ,γ,δ,µ ∈ [0 1) with λ+µ+δ+2γ< 1, ∀ x, y ∈ X .
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Then A,B,S and T will be having a single common fixed point in X .

The aforementioned result can be generalized in the following way.

3. Main Result
Theorem 3.1. Complete cone metric space (X ,d) is with respect to a cone P contained in a real
Banach space E. Let A,B and S,T be self-mappings on X satisfying:

(i) A(X )⊆ T(X ), B(X )⊆ S(X );

(ii) the pair (A,S) is semi-compatible and A-reciprocally continuous and the pair (B,T) is
weakly compatible;

(iii) d(Ax,By)≤λd(Ax,Sx)+µd(By,T y)+δd(Sx,T y)+γ[d(Ax,T y)+d(Sx,By)]

for some λ,γ,δ,µ ∈ [0,1) with λ+µ+δ+2γ< 1 with ∀ x, y ∈ X .
Then A,B and S,T having a single common fixed point in X .

Proof. Consider x0 ∈ X be any arbitrary point. Using (3.3) assemble sequences {xη}, and {yη} in
X in order for

Ax2η = Tx2η+1 = y2η and Bx2η+1 = Sx2η+2 = y2η+1, η≥ 0. (3.1)

We show that {yη} is a cauchy sequence.
Substitute x = x2η, y= x2η+1 in (3.3) we get

d(Ax2η,Bx2η+1)=λd(Ax2η,Sx2η)+µd(Bx2η+1,Tx2η+1)+δd(Sx2η,Tx2η+1)

+γ[d(Ax2η,Tx2η+1)+d(Sx2η,Bx2η+1)].

Using (3.1), we get

d(y2η, y2η+1)=λd(y2η, y2η−1)+µd(y2η+1, y2η)+δd(y2η−1, y2η)+γ[d(y2η, y2η)+d(y2η−1, y2η+1)]

=λd(y2η, y2η−1)+µd(y2η+1, y2η)+δd(y2η−1, y2η)+γ[d(y2η−1, y2η)+d(y2η, y2η+1)].

Writing d(yη, yη+1)= dη, we have

d2η <λd2η−1 +µd2η+δd2η−1 +γ[d2η+d2η−1].

That is (1−γ−µ) d2η = (λ+γ+δ)d2η−1 which implies

d2η = hd2η−1 , (3.2)

where h = (λ+γ+δ)
(1−γ−µ) .

In view of (3.3), h < 1.
Now substitute x = x2η+2, y= x2η+1 in (3.3) we get

d(Ax2η+2,Bx2η+1)=λd(Ax2η+2,Sx2η+2)+µd(Bx2η+1,Tx2η+1)+δd(Sx2η+2,Tx2η+1)

+ γ[d(Ax2η+2,Tx2η+1)+d(Sx2η+2,Bx2η+1)].

Using (3.1), we get

d(y2η+2, y2η+1)=λd(y2η+2, y2η+1)+µd(y2η+1, y2η)+δd(y2η+1, y2η)
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+γ[d(y2η+2, y2η)+d(y2η+1, y2η+1)]

=λd(y2η+2, y2η+1)+µd(y2η+1, y2η)+δd(y2η+1, y2η)

+γ[d(y2η+2, y2η+1)+d(y2η+1, y2η)].

So, we have

d2η+1 <λd2η+1 +µd2η+δd2η+γ[d2η+1 +d2η].

That is (1−γ−µ) d2η+1 = (λ+γ+δ)d2η which implies

d2η+1 = kd2η , (3.3)

where k = (λ+γ+δ)
(1−γ−µ) .

By condition (3.3), k < 1.
In view of (3.2) and (3.3) we have,

d2η+1 = kd2η = khd2η−1 = k2hd2η−2 = ·· · = kη+1hηd0, where d0 = d(y0, y1)

and

d2η = hd2η−1 = hkd2η−2 = h2kd2η−3 = ·· · = hηkηd0, where d0 = d(y0, y1).

Therefore,

d2η+1 = kη+1hηd0 and d2η = hηkηd0 .

Also,

d(yη+l , yη)= d(yη+l , yη+l−1)+d(yη+l−1, yη+l−2)+·· ·+d(yη+1, yη).

That is,

d(yη+l , yη)= dη+l−1 +dη+l−2 +·· ·+dη . (3.4)

If η+ l−1 is even then by (3.4) we have

d(yη+l , yη)= (h(η+l−1)/2k(η+l−1)/2 +h(η+l−1)/2k(η+l)/2 +·· ·+)d0

= h(η+l−1)/2k(η+l−1)/2[1+k+hk+hk2 +h2k2 + . . . ]d0

= h(η+l−1)/2k(η+l−1)/2[(1+hk+h2k2 + . . . )+ (k+hk2 +h2k3 + . . . )]d0

= h(η+l−1)/2k(η+l−1)/2[(1+hk+h2k2 + . . . )+k(1+hk+h2k2 + . . . )]d0

= h(η+l−1)/2k(η+l−1)/2(1+k)(1+hk+h2k2 + . . . )d0

= h(η+l−1)/2k(η+l−1)/2(1+k)(1−hk)d0.

As hk < 1, P is closed, then

d(yη+l , yη)= h(η+l−1)/2k(η+l−1)/2(1+k)(1−hk)d0 . (3.5)

Now for c ∈ P0, there exists r > 0 such that c− y ∈ P0 if ∥y∥ < r.
Choose a positive integer Nc then ∀ η= Nc, then

∥h(η+l−1)/2k(η+l−1)/2(1+k)(1−hk)d0∥ < r
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which implies c−h(η+l−1)/2k(η+l−1)/2(1+k)(1−hk)d0 ∈ P0 and

h(η+l−1)/2k(η+l−1)/2(1+k)(1−hk)d0 −d(yη+l , yη) ∈ P on using (3.5)

So, we have c−d(yη+l , yη) ∈ P0, ∀ η= Nc and ∀ p by Proposition 2.6.
The same thing is true if η+ l−1 is odd.
This implies d(yη+l , yη)≪ c, ∀ η> Nc , ∀ p.
Hence {yη} is a cauchy sequence in X , which is complete.
As {yη}→ u ∈ X implies as

{Ax2η}→ u and {Bx2η+1}→ u, (3.6)

{Sx2η}→ u and {Tx2η+1}→ u, (3.7)

lim
η→∞ Ax2η = lim

η→∞Sx2η = u. (3.8)

Because the self-mappings pair (A,S) is semi-compatible

lim
η→∞ ASx2η = Su and lim

η→∞ Ax2η = lim
η→∞Sx2η = u for some u ∈ X . (3.9)

Also the self-mappings pair (A,S) is A-reciprocally continuous

lim
η→∞ ASx2η = Au . (3.10)

From (3.9) and (3.10) we get

Au = Su. (3.11)

Now

d(Su,u)≤ d(Su, Ax2η)+d(Ax2η,Bx2η+1)+d(Bx2η+1,u)

= d(Su, ASx2η)+d(y2η+1,u)+d(ASx2η,Bx2η+1).

Using (3.3) with x = x2η and y= x2η+1 we have

d(Su,u)≤ d(Su, ASx2η)+d(y2η+1,u)+λd(ASx2η,Sx2η)+µd(Bx2η+1,Tx2η+1)

+ δd(Sx2η,Tx2η+1)+γ[d(ASx2η,Tx2η+1)+d(Sx2η,Bx2η+1)

≤ d(Su, ASx2η)+d(y2η+1,u)+λd(ASx2η,u)+µd(y2η+1, y2η)

+ δd(u, y2η)+γ[d(ASx2η, y2η)+d(u, y2η+1)]

≤ d(Su, ASx2η)+d(y2η+1,u)+λ[d(ASx2η,Su)+d(Su,u)]

+µ[d(y2η+1,u)+d(u, y2η)]+δ[d(u,Su)+d(Su,u)+d(y2η,u)]

+ γ[d(ASx2η,Su)+d(Su,u)+d(u, y2η)+d(u, y2η+1)]

this implies

(1−λ−2δ−γ)d(Su,u)≤ (1+λ+γ)d(ASx2η,Su)+(1+µ+γ)d(y2η+1,u)+(µ+δ+γ)d(u, y2η)

as ASx2η → Su, {y2η}→ u and {y2η+1}→ u.
Then by Lemma 2.7 we have

d(Su,u)= 0 and hence Su = u . (3.12)
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Now

d(Au,Su)≤ d(Au,Bx2η+1)+d(Bx2η+1,Su)

= d(y2η+1,Su)+d(Au,Bx2η+1).

Using (3.3) with x = u and y= x2η+1, we have

d (Au,Su)≤ d(y2η+1,Su)+λd(Au,Su)+µd(Bx2η+1,Tx2η+1)+δd(Su,Tx2η+1)

+γ[d(Au,Tx2η+1)+d(Bx2η+1,Su)]

≤ d(y2η+1,Su)+λd(Au,Su)+µd(y2η+1, y2η)+δd(Su, y2η)

+γ[d(Au, y2η)+d(y2η+1,Su)]

≤ d(y2η+1,Su)+λd(Au,Su)+µ[d(y2η+1,Su)+d(Su, y2η)]+δd(Su, y2η)

+γ[d(Au,Su)+d(Su, y2η)+d(y2η+1,Su)].

So

(1−λ−γ)d(Au,Su)≤ (µ+δ+γ)d(y2η,Su)+ (1+µ+γ)d(y2η+1,Su).

Using (3.12) Su = u, we have

(1−λ−γ)d(Au,u)≤ (µ+δ+γ)d(u,u)+ (1+µ+γ)d(u,u).

As {y2η}→ u and {y2η+1}→ u.
By Lemma 2.7 we get

d(Au,u)= 0

and we get

Au = u (3.13)

From (3.11) and (3.12), we get

Au = Su = u.

Thus u is a coincidence point of intersection (A,S).
As A(X )⊆ T(X ), ∃ v ∈ X with u = Au = Tv, then

u = Au = Su = Tv. (3.14)

Substitute x = u and y= v in (3.3) we have

d(Au,Bv)≤λd(Au,Su)+µd(Bv,Tv)+δd(Su,Tv)+γ[d(Au,Tv)+d(Su,Bv)].

Using (3.10) we have

d(u,Bv)≤ (µ+γ)d(u,Bv)

As µ+γ< 1, by Proposition 2.2, it gives and hence d(Bv,u)= 0 and we get

Bv = u

thus Bv = Tv = u as the self-mappings (B,T) is weakly compatible we get

Bu = Tu.
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Substitute x = u, y= u in (3.4) and using Au = Su, Bu = Tu we get

d(Au,Bu)≤ (δ+2γ)d(Au,Bu).

Hence Au = Bu, by Proposition 2.2 as δ+2γ< 1 and we have

u = Au = Su = Bu = Tu.

In this case, Thus u is common fixed point between the four self-maps A,B and S,T .

Uniqueness:
w is another common fixed point.
Let w = Aw = Bw = Sw = Tw.
Taking x = u and y= w in (3.3) we get

d(Au,Bw)=λd(Au,Su)+µd(Bw,Tw)+δd(Su,Tw)+γ[d(Au,Tw)+d(Su,Bw)].

Hence d(u,w)= (δ+2γ)d(u,w) by Proposition 2.2, as δ+2γ< 1,

d(u,w)= 0, u = w.

Thus u is such required common fixed point for four self-maps A,B and S,T .

Our theorem validated by discussing a relevant example.

Example 3.2. In cone metric space (X ,d), the self-mappings A,B and S,T .
On X = [0,∞) define

Ax = Bx =
{

x2, if x ∈ [0,2],
0, if x ∈ (2,4]

and Sx = Tx =


(
p

2)x, if x ∈ [0,2),
4, if x ∈ [2,4),
0, if x = 4.

Consider a sequence xη =
p

2
η

, η ∈ N in X . Then x = 0,
p

2 are coincidence points of B,T .
At x = 0,

B(0)= T(0)= 0 and BT(0)= TB(0)

At x =p
2,

B(
p

2)= 2= T(
p

2),

BT(
p

2)= B(2)= 4, TB(
p

2)= T(2)= 4,

B(
p

2)= T(
p

2)⇒ BT(
p

2)= TB(
p

2).

That implies the pair (B,T) is weakly compatibility. Now

lim
η→∞ Axη = lim

η→∞ A

(p
2
η

)
= lim

η→∞

(p
2
η

)2

= 0,

lim
η→∞Sxη = lim

η→∞S

(p
2
η

)
= (

p
2)

(p
2
η

)
= 0, as η→∞
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and

lim
η→∞ ASxη = lim

η→∞ AS

(p
2
η

)
= lim

η→∞ A
(
2
η

)
= lim

η→∞

(
2
η

)2
= 0= S(0),

lim
η→∞ ASxη = lim

η→∞ AS

(p
2
η

)
= lim

η→∞ A
(
2
η

)
= lim

η→∞

(
2
η

)2
= 0= A(0).

Consider another sequence {xη}= {
p

2− 1
η
}, η ∈ N in X . Then x = 0,

p
2 are coincidence points of

A,S.
At x = 0,

lim
η→∞ Axη = lim

η→∞ A
(p

2− 1
η

)
=

(p
2
)2 = 2 as η→∞,

lim
η→∞Sxη = lim

η→∞S
(p

2− 1
η

)
= (

p
2)

(p
2− 1

η

)
= 2 as η→∞

and

lim
η→∞ ASxη = lim

η→∞ AS
(p

2− 1
η

)
= lim

η→∞ A (2)= (2)2 = 4= S(2),

lim
η→∞ ASxη = lim

η→∞ AS
(p

2− 1
η

)
= lim

η→∞ A (2)= (2)2 = 4= A(2),

lim
η→∞SAxη = lim

η→∞SA
(p

2− 1
η

)
= lim

η→∞S(2)= 4 ̸= S(0).

Thus, the self-mappings (A,S) is semi-compatible as well as A-reciprocally continuous. Further
the pair (B,T) is weakly compatible. Moreover, at x = 0, A(0)= S(0)= B(0)= T(0)= 0.
But the pair of mappings (A,S) is neither compatible nor reciprocally continuous.
Now we proved contractive condition different cases as the following.

Case I: If x ∈ [0,2)

d(Ax,By)≤λd(Ax,Sx)+µd(By,T y)+δd(Sx,T y)+γ[d(Ax,T y)+d(Sx,By)],

d(Ax,Bx)≤λd(Ax,Sx)+µd(Bx,Tx)+δd(Sx,Tx)+γ[d(Ax,Tx)+d(Sx,Bx)],

d(x2, x2)≤λd(x2,
p

2x)+µd(x2,
p

2x)+δd(
p

2x,
p

2x)+γ[d(x2,
p

2x)+d(
p

2x, x2)],

0≤λd(x2,
p

2x)+µd(x2,
p

2x)+δ(0)+γ[d(x2,
p

2x)+d(
p

2x, x2)],

0≤ (λ+µ+2γ)d(x2,
p

2x).

0≤ (λ+µ+2γ) so that contractive condition is satisfied.

Case II: If x = 2

d(Ax,By)≤λd(Ax,Sx)+µd(By,T y)+δd(Sx,T y)+γ[d(Ax,T y)+d(Sx,By)],

d(Ax,Bx)≤λd(Ax,Sx)+µd(Bx,Tx)+δd(Sx,Tx)+γ[d(Ax,Tx)+d(Sx,Bx)],

0≤ 0.

So that inequalities satisfied.
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Case III: If x ∈ (2,4)

d(Ax,By)≤λd(Ax,Sx)+µd(By,T y)+δd(Sx,T y)+γ[d(Ax,T y)+d(Sx,By)],

d(Ax,Bx)≤λd(Ax,Sx)+µd(Bx,Tx)+δd(Sx,Tx)+γ[d(Ax,Tx)+d(Sx,Bx)],

d(0,0)≤λd(0,4)+µd(0,4)+δd(4,4)+γ[d(0,4)+d(4,0)],

0≤ 4λ+4µ+0δ+8γ,

0≤ 4(λ+µ+2γ),

0≤ (λ+µ+2γ).

Case IV: If x = 4

d(Ax,By)≤λd(Ax,Sx)+µd(By,T y)+δd(Sx,T y)+γ[d(Ax,T y)+d(Sx,By)],

d(Ax,Bx)≤λd(Ax,Sx)+µd(Bx,Tx)+δd(Sx,Tx)+γ[d(Ax,Tx)+d(Sx,Bx)],

0≤ 0.

If we take λ= 1
4 , µ= 1

8 , γ= 1
16 and δ= 1

3 .
The contractive condition (3.3) of above said Theorem 3.1 holds true and 0 is the only common
fixed point for the four maps A, B and S,T .
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