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1. Introduction
The notion of metric spaces was generalized by many researchers [1–3,7,8,12]. Recently, Sedghi
et al. [11] initiated S-metric spaces as one more generalization, which generated lot of interest
among researchers.

Jungck and Rhoades [6] proposed weakly compatibility as the generalization of compatibility
of mappings introduced by Jungck [4,5].

In this paper with the aid of weakly compatibility, we establish a common fixed point
theorem for four self maps of a complete S-metric space. An example is provided to validate our
result. This theorem generalizes the theorem proved by Sedghi et al. [13].
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2. Preliminaries
Definition 2.1 ([11]). Let M be a non empty set. By S-metric, we mean a function S : M3 → [0,∞)
which satisfy the following conditions:

(a) S(α′,β′,γ′)≥ 0,

(b) S(α′,β′,γ′)= 0 if and only if α′ =β′ = γ′,
(c) S(α′,β′,γ′)≤ S(α′,α′,ω)+S(β′,β′,ω)+S(γ′,γ′,ω),

for any α′,β′,γ′,ω ∈ M. Then (M,S) is known as S-metric space.

Lemma 2.1 ([9]). Let (M,S) be a S-metric space. Then we have S(α′,α′,β′)= S(β′,β′,α′), for any
α′,β′ ∈ M.

Definition 2.2 ([10]). Let (M,S) be a S-metric space.
(i) A sequence (αn) in M converges to α if S(αn,αn,α)→ 0 as n →∞, that is, for each ϵ> 0

there exists n0 ∈ N such that for n ≥ n0, S(αn,αn,α) < ϵ. In this case, we denote it by
writing lim

n→∞αn =α.

(ii) A sequence (αn) is called a Cauchy sequence if for any ϵ> 0, there exists an n0 ∈N such
that S(αn,αn,αm)< ϵ for any n,m ≥ n0.

(iii) By a complete S-metric space, we mean a S-metric space (M,S) in which every Cauchy
sequence is convergent.

Lemma 2.2 ([10]). In a S-metric space (M,S), if there exist two sequences (αn) and (βn) such
that lim

n→∞αn =α and lim
n→∞βn =β, then lim

n→∞S(αn,αn,βn)= S(α,α,β).

Definition 2.3 ([13]). In a S-metric space (M,S), a pair of self maps (E,F) is called as
compatible if lim

n→∞S(EFαn,EFαn,FEαn) = 0, where (αn) is a sequence in M such that
lim

n→∞Eαn = lim
n→∞Fαn = t, for some t ∈ M.

Definition 2.4 ([6]). In a S-metric space (M,S), the self maps E and F of M are called as
weakly compatible if EFt = FEt whenever Et = Ft, for any t ∈ M.

Remark 2.1 ([6]). Clearly, compatible maps are weakly compatible but not conversely.

Example 2.1. Let M = [5
2 ,9

]
. Define S(α,β,γ) = d(α,γ)+ d(β,γ), where d(α,β) = max{α,β}.

Define two maps E and F on M such that

E(α)=


5
2 , α ∈ {5

2

}∪ (4,9],

3, α ∈ (5
2 ,4

]
,

F(α)=


5
2 , α= 5

2 ,

3+α, α ∈ (5
2 ,4

]
,

α+1
2 , α ∈ (4,9].

Taking αn = 4+ 1
n

, for any n ≥ 1.

lim
n→∞Eαn = lim

n→∞E
(
4+ 1

n

)
= 5

2
,
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lim
n→∞Fαn = lim

n→∞F
(
4+ 1

n

)
= 5

2
,

lim
n→∞EFαn = lim

n→∞EF
(
4+ 1

n

)
= lim

n→∞E
(
5
2
+ 1

2n

)
= 3,

lim
n→∞FEαn = lim

n→∞FE
(
4+ 1

n

)
= lim

n→∞F
(
5
2

)
= 5

2
.

Proving that the pair (E,F) is weakly compatible but not compatible.

3. Main Result
We now state our main theorem

Theorem 3.1. In a complete S-metric space (M,S), suppose A,B,E and F are self maps of M
such that

(i) A(M)⊆ F(M), B(M)⊆ E(M),

(ii) the pairs (A,E) and (B,F) are weakly compatible,

(iii) E(M) and F(M) are closed subsets of M
and

S(Aα, Aβ,Bγ)≤ d max{S(Eα,Eβ,Fγ),S(Aα, Aα,Eα),S(Bγ,Bγ,Fγ),S(Aβ, Aβ,Bγ)} (3.1)

for any α,β,γ ∈ M with 0< d < 1, then A,B,E and F have a unique common fixed point in M.

Proof. Let α0 ∈ M. We know that A(M)⊆ F(M) then there exists α1 ∈ M such that Aα0 = Fα1,
and also Bα1 ∈ E(M), we choose α2 ∈ M such that Bα1 = Eα2. In general, α2n+1 ∈ M is chosen
such that Aα2n = Fα2n+1, and α2n+2 ∈ M such that Bα2n+1 = Eα2n+2, we obtain a sequence (βn)
in M such that β2n = Aα2n = Fα2n+1, β2n+1 = Bα2n+1 = Eα2n+2, n ≥ 0.
To prove that (βn) is a Cauchy sequence.

S(β2n,β2n,β2n+1)= S(Aα2n, Aα2n,Bα2n+1)

≤ d max{S(Eα2n,Eα2n,Fα2n+1),S(Aα2n, Aα2n,Eα2n),

S(Bα2n+1,Bα2n+1,Fα2n+1),S(Aα2n, Aα2n,Bα2n+1)}

= d max{S(β2n−1,β2n−1,β2n),S(β2n,β2n,β2n−1),

S(β2n+1,β2n+1,β2n),S(β2n,β2n,β2n+1)}

= d max{S(β2n−1,β2n−1,β2n),S(β2n,β2n,β2n+1)} .

Now if, S(β2n,β2n,β2n+1)> S(β2n−1,β2n−1,β2n), giving

S(β2n,β2n,β2n+1)< d S(β2n,β2n,β2n+1)

which is a contradiction.
Hence, S(β2n,β2n,β2n+1)≤ S(β2n−1,β2n−1,β2n).
Therefore, by above inequality, we get

S(β2n,β2n,β2n+1)≤ d S(β2n−1,β2n−1,β2n). (3.2)
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By a similar argument, we have

S(β2n−1,β2n−1,β2n)= S(β2n,β2n,β2n−1)

= S(Aα2n, Aα2n,Bα2n−1)

≤ d max{S(Eα2n,Eα2n,Fα2n−1),S(Aα2n, Aα2n,Eα2n),

S(Bα2n−1,Bα2n−1,Fα2n−1),S(Aα2n, Aα2n,Bα2n−1)}

= d max{S(β2n−1,β2n−1,β2n−2),S(β2n,β2n,β2n−1),

S(β2n−1,β2n−1,β2n−2),S(β2n,β2n,β2n−1)}

= d max{S(β2n−2,β2n−2,β2n−1),S(β2n,β2n,β2n−1)}.

Now if, S(β2n,β2n,β2n−1)> S(β2n−2,β2n−2,β2n−1), giving

S(β2n,β2n,β2n−1)< d S(β2n,β2n,β2n−1)

which is a contradiction.
Hence, S(β2n−1,β2n−1,β2n)≤ S(β2n−2,β2n−2,β2n−1).
Therefore, by above inequality, we get

S(β2n−1,β2n−1,β2n)≤ d S(β2n−2,β2n−2,β2n−1). (3.3)

Now from (3.2) and (3.3), we get

S(βn,βn,βn−1)≤ d S(βn−1,βn−1,βn−2),

where 0< d < 1. Hence for n ≥ 2, it follows that

S(βn,βn,βn−1)≤ . . .≤ dn−1 S(β1,β1,β0). (3.4)

For n > m, we get

S(βn,βn,βm)≤ 2S(βm,βm,βm+1)+2S(βm+1,βm+1,βm+2)+ . . .+S(βn−1,βn−1,βn)

< 2S(βm,βm,βm+1)+2S(βm+1,βm+1,βm+2)+ . . .+2S(βn−1,βn−1,βn).

Hence from (3.4), it follows that

S(βn,βn,βm)≤ 2(dm +dm+1 + . . .+dn−1)S(β1,β1,β0)

= 2dm[1+d+d2 + . . .]S(β1,β1,β0)

= 2dm

1−d
S(β1,β1,β0)→ 0 as n →∞.

It follows that (βn) is a Cauchy sequence in complete S-metric space. Therefore, there is an η in
M such that

lim
n→∞ Aα2n = lim

n→∞Fα2n+1 = lim
n→∞Bα2n+1 = lim

n→∞Eα2n+2 = η .

We now establish that η is a common fixed point of A,B,E and F .
As F(M) is a closed subset of M, we have

Fv = η= lim
n→∞Fα2n+1, for some v ∈ M.
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Keeping α=β=α2n and γ= v in (3.1), we get

S(Aα2n, Aα2n,Bv)≤ d max{S(Eα2n,Eα2n,Fv),S(Aα2n, Aα2n,Eα2n),

S(Bv,Bv,Fv),S(Aα2n, Aα2n,Bv)}. (3.5)

On passing to the limits

S(η,η,Bv)≤ d max{S(η,η,Fv),S(η,η,η),S(Bv,Bv,Fv),S(η,η,Bv)}

≤ d S(η,η,Bv),

which implies Bv = η.
Hence Fv = Bv = η.
Therefore, BFv = FBv, which gives

Bη= Fη. (3.6)

Putting α=β=α2n and γ= η in (3.1), we get

S(Aα2n, Aα2n,Bη)≤ d max{S(Eα2n,Eα2n,Fη),S(Aα2n, Aα2n,Eα2n),

S(Bη,Bη,Fη),S(Aα2n, Aα2n,Bη)}. (3.7)

On passing to the limits

S(η,η,Bη)≤ d max{S(η,η,Bη),S(η,η,η),S(Bη,Bη,Fη),S(η,η,Bη)}

≤ d S(η,η,Bη),

which implies Bη= η.
From (3.6),

Bη= Fη= η. (3.8)

We have Eu = η= lim
n→∞Eα2n+2, for some u ∈ M as E(M) is a closed.

Putting α=β= u and γ=α2n+1 in (3.1), we get

S(Au, Au,Bα2n+1)≤ d max{S(Eu,Eu,Fα2n+1),S(Au, Au,Eu),

S(Bα2n+1,Bα2n+1,Fα2n+1),S(Au, Au,Bα2n+1)}. (3.9)

On passing to the limits

S(Au, Au,η)≤ d max{S(η,η,η),S(Au, Au,η),S(η,η,η),S(Au, Au,η)}

≤ d S(Au, Au,η),

which gives Au = η.
Hence Eu = Au = η.
Therefore, AEu = EAu, which gives

Aη= Eη. (3.10)

Putting α=β= η and γ= v in (3.1), we get

S(Aη, Aη,Bv)≤ d max{S(Eη,Eη,Fv),S(Aη, Aη,Eη),S(Bv,Bv,Fv),S(Aη, Aη,Bv)}

S(Aη, Aη,η)≤ d max{S(Aη, Aη,η),S(Aη, Aη, Aη),S(η,η,η),S(Aη, Aη,η)}
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S(Aη, Aη,η)≤ d S(Aη, Aη,η),

which implies Aη= η.
From (3.10),

Aη= Eη= η. (3.11)

From (3.8) and (3.11), we get

Aη= Eη= Eη= Fη= η. (3.12)

Therefore η is a fixed point of A,B,E and F .
We now prove η is unique, for if ζ(ζ ̸= η) in M is such that

Aζ= Bζ= Eζ= Fζ= ζ.
Keeping α=β= η and γ= ζ in (3.1), we get

S(Aη, Aη,Bζ)≤ d max{S(Eη,Eη,Fζ),S(Aη, Aη,Eη),S(Bζ,Bζ,Fζ),S(Aη, Aη,Bζ)}

S(η,η,ζ)≤ d max{S(η,η,ζ),S(η,η,η),S(ζ,ζ,ζ),S(η,η,ζ)}

S(η,η,ζ)≤ d S(η,η,ζ),

showing ζ= η, proving the uniqueness of common fixed point of A,B,E and F .

As an illustration, we have the following example.

Example 3.1. Let M = [5
2 ,9

]
and S(α,β,γ)= d(α,γ)+d(β,γ), where d(α,β)=max{α,β}. Define

mappings A,B,E and F on M such that

A(α)=


5
2 α ∈ {5

2

}∪ (4,9],

3, α ∈ (5
2 ,4

]
,

B(α)=


5
2 α ∈ {5

2

}∪ (4,9],

4, α ∈ (5
2 ,4

]
,

E(α)=


5
2 , α= 5

2 ,

3+α, α ∈ (5
2 ,4

]
,

α+1
2 , α ∈ (4,9],

F(α)=


5
2 , α= 5

2 ,

7, α ∈ (5
2 ,4

]
,

α+1
2 , α ∈ (4,9].

Clearly, A(M)= {5
2 ,3

}
, B(M)= {5

2 ,4
}
, E(M)= [5

2 ,5
]∪ (11

2 ,7
]

and F(M)= [5
2 ,5

]∪ {7}.
We observe that A(M)⊆ F(M) and B(M)⊆ E(M) and (A,E), (B,F) are weakly compatible.
Conditions (i) and (ii) of Theorem 3.1 are satisfied.

Taking αn = 4+ 1
n

, for any n ≥ 1.

lim
n→∞ Aαn = lim

n→∞ A
(
4+ 1

n

)
= 5

2
,

lim
n→∞Bαn = lim

n→∞B
(
4+ 1

n

)
= 5

2
,

lim
n→∞Eαn = lim

n→∞E
(
4+ 1

n

)
= 5

2
,

lim
n→∞Fαn = lim

n→∞F
(
4+ 1

n

)
= 5

2
,
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lim
n→∞ AEαn = lim

n→∞ AE
(
4+ 1

n

)
= lim

n→∞ A
(
5
2
+ 1

2n

)
= 3 ,

lim
n→∞EAαn = lim

n→∞EA
(
4+ 1

n

)
= lim

n→∞E
(
5
2

)
= 5

2
,

lim
n→∞BFαn = lim

n→∞BF
(
4+ 1

n

)
= lim

n→∞B
(
5
2
+ 1

2n

)
= 7 ,

lim
n→∞FBαn = lim

n→∞FB
(
4+ 1

n

)
= lim

n→∞F
(
5
2

)
= 5

2
.

Therefore, (A,E) and (B,F) are weakly compatible but not compatible.
Now we check the condition stated in inequality (3.1) of Theorem 3.1 in different cases.

Case (i): If α,β,γ ∈ (5
2 ,4

]
.

Then, Aα= 3, Aβ= 3, Bγ= 4, Eα= 3+α, Eβ= 3+β, Fγ= 7, S(Aα, Aβ,Bγ)= 8,
S(Eα,Eβ,Fγ)= 14, S(Aα, Aα,Eα)= 14, S(Bγ,Bγ,Fγ)= 14, S(Aβ, Aβ,Bγ)= 8.
From (3.1), 8≤ d max{14,14,14,8}, which shows 4

7 ≤ d < 1.

Case (ii): If α,β,γ ∈ (4,9].
Then, Aα= 5

2 , Aβ= 5
2 , Bγ= 5

2 , Eα= α+1
2 , Eβ= β+1

2 , Fγ= γ+1
2 , S(Aα, Aβ,Bγ)= 5,

S(Eα,Eβ,Fγ)= 10, S(Aα, Aα,Eα)= 10, S(Bγ,Bγ,Fγ)= 10, S(Aβ, Aβ,Bγ)= 5.
From (3.1), 5≤ d max{10,10,10,5}, which shows 1

2 ≤ d < 1.
Similarly, the other cases can be checked with suitable modifications wherever they are
necessary. Clearly, 5

2 is a unique common fixed point of A,B,E and F in M.
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