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1. Introduction
A square matrix H of order n is called a Hadamard matrix if HH′ = nIn. It is known that
the order of a Hadamard matrix will be 1,2 or some integral multiple of 4. According to the
Hadamard conjecture, there exists a Hadamard matrix of every order of the form 4t, t being
some integer (for more details see [5,7,10,14,15]). Despite the availability of a large number
of methods for constructing Hadamard matrices, the Hadamard matrix conjecture has still
remained an open problem in mathematics for the past 100 years. 668, 716, 892 and 956 are
some of the orders for which the Hadamard matrix is not yet known. Hadamard matrices are
used in error-correcting code and communication systems (for more details see [7]). Holzmann
et al. [6] are credited with the construction of a new Hadamard matrix of order 448 in the year
2005 which is the last new construction.

The Hadamard matrices were first given by J. J. Sylvester in 1867 [15]. Sylvester’s
method enabled us to construct a Hadamard matrix of order 2k where k is a positive integer.
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In 1893, Hadamard [5] proved one of the famous theorems of Hadamard’s inequality and this
led to the popularity of Hadamard matrices in the mathematical community. R. Paley [11]
discovered a new method of constructing Hadamard matrices in 1933, using finite fields.
Paley’s method gives Hadamard matrices of order (q+1), (2(q+1)) for q ≡ 3 (mod 4), q ≡ 1
(mod 4) respectively where q is an odd prime power. The Williamson method of constructing
Hadamard matrices was given by Williamson in 1944 [16]. The modern computational era in
the construction of Hadamard matrices can be attributed to Williamson’s method.

Symmetric and circulant matrices A,B,C,D of order n, are known as Williamson matrices
if A2+B2+C2+D2 = 4nIn. These matrices are named after J. Williamson who introduced these
matrices [16] while developing a method for the construction of Hadamard matrices. He showed
that if A,B,C,D are Williamson matrices of order n, then

H =


A B C D
−B A D −C
−C −D A B
−D C −B A

 (1)

is a Hadamard matrix of order 4n ([12, 16]). He conjectured that Williamson matrices exist
for all positive integers n. This was proved false by Ðoković, by exhaustive computer search
showing that for n = 35, no Williamson matrix exists (for more details see [4]). The majority of
work in Williamson matrices has been done for odd orders. Williamson matrices of odd order
exist for all orders n < 65 except for n = 35,47,53,59. A complete enumeration for n < 60 has
been done so far [6]. For n = 61 it was done by Lang and Schneider in 2012 [8]. For even orders,
a complete enumeration up to n = 64 has been done so far by Bright et al. in 2018 [1]. Later in
2019, a complete enumeration for n = 63,66,68,70 have been by Bright et al. [2], and thereby
they have conjectured that Williamson matrices exist in every even order. By taking B = C in
the above matrix H (see (1)) three block construction of Hadamard matrices have been specified
by Sergeev and Vostrikov [13].

In 2018, Manjhi and Kumar [10] introduced a method of construction of Hadamard matrices
which is of the type (1) with A = Jn and B = C = D, where Jn is all 1s matrix and A is a ±1
matrix, each of order n, as given below:

H =


Jn A A A
−A Jn A −A
−A −A Jn A
−A A −A Jn

 . (2)

Manjhi and Kumar [10] showed that H given in (2) is a Hadamard matrix if n is a multiple of 3.
In addition, some other properties of this type of Hadamard matrices have been discussed with
one illustration.

In this article, some examples of small orders of Williamson matrices of particular types have
been obtained. Furthermore, the patterns of obtained examples have been analyzed. Meanwhile,
some non-existence results have been obtained for some particular orders.
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2. Main Work
In eq. (1) the four symmetric circulant matrices A,B,C,D with entries ±1 will give a Hadamard
matrix if and only if A2+B2+C2+D2 = 4nIn. This article brings all exhaustive search results
on the special cases up to n = 10 with the first entry 1. The results are given below:

(i) A = B = C = D

Sl. No. Value of n Existence of A,B,C and D

1 2,3,5,6,7,8,9,10 Does not exist

2 4 (i) A = circ(1,−1,−1,−1)

(ii) A = circ(1,1,−1,1)

(ii) A,B are distinct; B = C = D

Sl. No. Value of n Existence of A,B,C and D

1 2,5,6,7,8,9,10 Does not exist

2 3 (i) A = circ(1,1,1),

B = circ(1,−1,−1)

3 4 (i) A = circ(1,−1,−1,−1),

B = circ(1,1,−1,1)

(ii) A = circ(1,1,−1,1),

B = circ(1,−1,−1,−1)

(iii) A,C are distinct; A = B and C = D

Sl. No. Value of n Existence of A,B,C and D

1 2 A = circ(1,−1),

C = circ(1,1)

2 3,5,6,7,9,10 Does not exist

3 4 A = circ(1,−1,−1,−1),

C = circ(1,1,−1,1)

4 8 (i) A = circ(1,−1,−1,1,1,1,−1,−1),

C = circ(1,−1,1,1,1,1,1,−1)

(ii) A = circ(1,−1,−1,1,1,1,−1,−1),

C = circ(1,1,1,−1,1,−1,1,1)

(iii) A = circ(1,−1,1,1,1,1,1,−1),

C = circ(1,1,−1,−1,1,−1,−1,1)

(iv) A = circ(1,1,−1,−1,1,−1,−1,1),

C = circ(1,1,1,−1,1,−1,1,1)
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(iv) A,B,C are distinct; C = D

Sl. No. Value of n Existence of A,B,C and D

1 2,3,4,6,9,10 Does not exist

2 5 A = circ(1,−1,1,−1,−1),

B = circ(1,1,−1,−1,1),

C = circ(1,−1,−1,−1,−1)

3 7 (i) A = circ(1,−1,−1,1,1,−1,−1),

B = circ(1,1,1,−1,−1,1,1),

C = circ(1,−1,1,1,1,1,−1)

(ii) A = circ(1,−1,1,−1,−1,1,−1),

B = circ(1,1,−1,1,1,−1,1),

C = circ(1,1,1,−1,−1,1,1)

(iii) A = circ(1,−1,1,−1,−1,1,−1),

B = circ(1,1,−1,−1,−1,−1,1),

C = circ(1,1,−1,1,1,−1,1)

4 8 (i) A = circ(1,−1,−1,1,1,1,−1,−1),

B = circ(1,1,−1,−1,1,−1,−1,1),

C = circ(1,−1,1,1,1,1,1,−1)

(ii) A = circ(1,−1,−1,1,1,1,−1,−1),

B = circ(1,1,−1,−1,1,−1,−1,1),

C = circ(1,1,1,−1,1,−1,1,1)

(iii) A = circ(1,−1,1,1,1,1,1,−1),

B = circ(1,1,1,−1,1,−1,1,1),

C = circ(1,−1,−1,1,1,1,−1,−1)

(iv) A = circ(1,−1,1,1,1,1,1,−1),

B = circ(1,1,1,−1,1,−1,1,1),

C = circ(1,1,−1,−1,1,−1,−1,1)
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(v) A,B,C, and D all are distinct.

Sl. No. Value of n Existence of A,B,C and D

1 2,3,4,5,8,9,10 Does not exist

2 6 (i) A = circ(1,−1,−1,−1,−1,−1),

B = circ(1,−1,−1,1,−1,−1),

C = circ(1,−1,1,1,1,−1),

D = circ(1,1,−1,−1,−1,1)

(ii) A = circ(1,−1,−1,−1,−1,−1),

B = circ(1,−1,−1,1,−1,−1),

C = circ(1,1,−1,−1,−1,1),

D = circ(1,1,−1,1,−1,1)

(iii) A = circ(1,−1,−1,−1,−1,−1),

B = circ(1,−1,1,1,1,−1),

C = circ(1,1,−1,−1,−1,1),

D = circ(1,1,1,−1,1,1)

(iv) A = circ(1,−1,−1,1,−1,−1),

B = circ(1,1,−1,−1,−1,1),

C = circ(1,1,−1,1,−1,1),

D = circ(1,1,1,−1,1,1)

3 7 (i) A = circ(1,−1,−1,−1,−1,−1,−1),

B = circ(1,−1,−1,1,1,−1,−1),

C = circ(1,−1,1,−1,−1,1,−1),

D = circ(1,1,−1,−1,−1,−1,1)

In the construction of Hadamard matrix of the form (2), Manjhi and Kumar [10] illustrated
the methodology by considering A = J3−2I3 for order 12. However, no more illustrations have
been forwarded by them. We note that in the illustration Manjhi and Kumar [10], the matrix
A is taken as a linear combination of In and Jn. Herewith we forward some non-existence
theorems for the Hadamard matrices of higher order by adopting the same process of selecting
the matrix A.

Theorem 2.1. The matrix H (2) is a Hadamard matrix with A = Jn −2In if and only if n = 3.

Proof. H will be a Hadamard matrix if and only if J2
n +3(Jn −2In)2 = 4nIn

if and only if J2
n +3(J2

n +4In −4Jn)= 4nIn

if and only if nJn +3(nJn +4In −4Jn)= 4nIn

if and only if 4(n−3)Jn +12In = 4In

if and only if n = 3.
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Remark 2.1. The method of construction of Hadamard matrix of the form (2) is a tedious job for
the next possible order 24, the above theorem only suggests the non-existence of higher order
Hadamard matrices in a particular approach of selecting matrix A.

In the particular case of the Williamson Hadamard matrix when A,B are distinct and A = B,
C = D, the obtained results show that the order of Williamson matrices must be 2,4 or 8 up to
order 10. However, when Williamson matrices are itself Hadamard then we will get a Hadamard
matrix of the form (1). The conclusion is shown in the form of a theorem below:

Theorem 2.2. If A and C are symmetric circulant Hadamard matrices, then (1) will be a
Hadamard matrix for A,B distinct and A = B, C = D.

Proof. The matrix H given in (1) will be a Hadamard matrix if and only if A2+C2 = 4nIn where
A,C are distinct and A = B, C = D. If A and C are symmetric circulant Hadamard matrices,
then A = A′ and B = B′. This implies that A2+C2 = A ·A+C ·C = A ·A′+C ·C′ = nIn+nIn = 2nIn.
Thus, A2 +B2 +C2 +D2 = 4nIn. This proves the theorem.

Remark 2.2. The above result may not be continued for the construction of Hadamard matrices
for n > 4 due to the conjecture of Ryser on circulant Hadamard matrices ([3, 7]). However,
the selection of non-symmetric circulant matrices A,B,C,D may be found beyond our search
domain (up to n = 10) so that H given in (1) will become a Hadamard matrix.

3. Discussions and Conclusion
We note that in the searching process, we have taken symmetric circulant Williamson matrices,
and the searching chain is limited up to order 10. From the search results for all the above-
mentioned cases, it may be observed that Williamson matrices do not exist for orders 9 and
10. The distinct symmetric circulant matrices have been found only for orders 6 and 7. The
Williamson matrices have been found for the orders 5, 7, and 8 in the case when C = D. Seberry
and Bolonin 1 showed that such type of Williamson matrices exist for the order q+1

2 where q is a
prime power such that q ≡ 1 (mod 4); the results obtained satisfy the conditions. The symmetric
circulant Williamson matrices have been obtained only for the orders 2, 4, and 8 when A = B,
C = D, indicating that this type of symmetric circulant Williamson matrices have an order of
the form 2n, this case has been discussed in theorem 2 and the subsequent remark. Williamson
Hadamard matrices with two distinct symmetric circulants have been obtained only for orders 3
and 4, it seems that there does not exist any symmetric circulant Williamson matrices of higher
orders. In the case when A = B = C = D, we must have A2 = mIm with symmetric circulant
matrix A. So, A will be a circulant Hadamard matrix, and, as per Ryser’s conjecture [3,9], there
does not exist any circulant Hadamard matrix of order greater than 4, the reported outputs are
supportive results for Ryser’s conjecture.

1J. Seberry and N.A. Balonin, The Propus construction for symmetric Hadamard matrices, arXiv: Combinatorics
(2015), DOI: 10.48550/arXiv.1512.01732.
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In addition, the examples are clearly arranged on a platform for orders up to 10, the data
will help researchers with multi-purpose applications in various disciplines.
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