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Abstract. In evidence theory, basic probability assignment plays an important role. The basic
probability assignment is usually provided by experts. The evaluation of evidence dependability is
till open issue, when preliminary data is unavailable. In this paper, we propose a new method to
evaluate evidence dependability on the stimulus of neutrosophic set. The dependability of evidence
was evaluated based on the truth degree between Basic Probability Assignments (BPAs). First, basic
probability assignments were revamp to neutrosophic set. By the similarity degree between the
neutrosophic set, we can obtain the truth degree between the Basic Probability Assignments. Then
dependability of evidence can be computed based on its rapport with supporting degree. Based on
the new evidence dependability, we formulated a new method for combining evidence sources with
different dependability degrades. Finally, the validity of the proposed method is exemplified by the
real life example.
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1. Introduction
Dempster-Shafer (D-S) theory is a mathematical theory of evidence. The D-S theory of evidence
[4,15], one of the most popular uncertainty theories used in many areas. It is also known as
the theory of probable or evidential reasoning. It is a powerful theoretical tool which can be
pertained for the representation of incomplete knowledge, belief updating. The Dempster-Shafer
model of representation and processing of uncertainty has led to a huge number of practical
applications in a wide range of domain such as information fusion expert systems, decision
making and risk assignment. Basic Probability Assignment (BPA) plays a vital role in evidence
theory. All other measures can be defined in the terms of basic probability assignment. In actual
practice the basic probability assignment is usually provided by experts subjectivity. Moreover,
the evidence theory, many other theories are expanded to deal with uncertainty, such as fuzzy
sets, intuitionistic fuzzy sets and so on.

The neutrosophy is a new branch of philosophy. F. Smarandache [6] introduced the notion
of neutrosophic sets to handle with incomplete, inconsistent and indeterminate information.
Neutrosophic set is a useful mathematical tool which is the generalization of the classic sets,
conventional fuzzy set and intuitionistic fuzzy set. In neutrosophic logic, each proposition has
a truth degree (T), an indeterminancy degree (I) and a falsity degree (F), where T , I , F are
standard or non standard subsets of ]−0,1+[.

Multi sensor data fusion has been applied in many fields, like pattern recognition, target
identification [3,7,12,13], and decision making [10,22]. When fusing information from multiple
sensors, the information provided by different sensors may be uncertain, imprecise or even
contradictory with each other. Many theories including the probability theory, fuzzy theory and
evidence theory have been applied in data fusion [2,8,14,17,18]. The evaluation of evidence is
important for the combination of basic probability assignments. Some methods to evaluate the
reliability of evidences sources, but most of these methods are developed to evaluate evidence
reliability when prior knowledge is available. The method proposed by Elouedi et al. [5] assessed
the reliability of an evidence sources in the model of transferable belief, which is developed from
evidence theory. In [19], Wu et al. proposed a new method to evaluate evidence reliability on the
basis of intuitionistic fuzzy sets by using similarity measures of basic probability assignments.

In this paper, we proposed a new method for evaluating the evidence dependability on the
stimulus of neutrosophic sets. By using of neutrosophic set, we have evaluated the evidence
dependability. Numerical examples were used to validate the performance of the proposed
method.

This paper is organized as follows: In Section 2 gives a brief recall of Dempster-Shafer
theory and neutrosophic set. In Section 3 we proposed a new method to evaluate the evidence
dependability on the stimulus neutrosophic set and numerical example are used to exemplify
the validity of the proposed method. Finally, some concluding remarks are provided in Section 4.
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2. Preliminaries
2.1 Basic Concepts
The evidence theory, initiated by Dempster and developed by Shafer, was modeled based on
the frame of discernment denoted by Θ, which is a finite set with mutually exclusive elements.
The power set of Θ, denoted by 2Θ, contains all the possible unions of the sets in Θ including
Θ itself. Singleton sets in a frame of discernment Θ are called atomic sets because they do
not contain nonempty subsets. The following terminologies are central in the Dempster-Shafer
theory [4].

Let Θ= {θ1,θ2,θ3, . . . ,θn} be the frame of discernment. A basic probability assignment is a
function m : 2Θ→ [0,1], satisfying the two following conditions:

m(Ø)= 0, (2.1)∑
A⊆Θ

m(A)= 1, (2.2)

where Ø is the empty set, and A denotes the subset of Θ. A basic probability assignment is also
called as a belief structure. For A ⊆Θ, the value assigned by the basic probability assignment
on A is the basic probability mass of A, expressed by m(A).

For A ⊆Θ, if m(A)> 0, A is the focal element of m. The set of all focal elements is expressed
by {A | A ⊆Θ, m(A)> 0}. If the focal elements of a basic probability assignment ‘m’ are all atomic
sets with only one element, the basic probability assignment is called Bayesian Belief Structure
(BBS). The basic probability assignment with the following form:

m(A)= 1, for all A ⊆Θ and m(B)= 0, for all B ⊆Θ, B ̸= A,

is called as a categorical belief structure. The basic probability assignment with m(Θ)= 1 and
m(A)= 0, for all A ̸=Θ, is called as a vacuous basic probability assignment.

Given a basic probability assignment m defined on Θ, its belief function and plausibility
function can be, respectively, defined as:

Bel(A)= ∑
B⊆A

m(B), (2.3)

Pl(A)= ∑
B∩A

m(B)= 1− ∑
B∩A

m(B), (2.4)

Bel(A) quantifies all basic probability masses exactly assigned to A and its subsets. Pl(A)
measures all possible basic probability masses that could be assigned to A and its subsets.
In such sense, Bel(A) and Pl(A) can be regarded as the lower bound and upper bound of the
probability to which A is supported. So, the belief degree of A can be considered as an interval
number BI(A)= [Bel(A),Pl(A)].

One of the four basic evidential belief functions is uncertainty. The uncertainty function [9]
is defined by

u(A)=Bel(A)−Pl(A) . (2.5)
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The pignistic transformation [16] is defined to transform a belief structure m to the so-called
pignistic probability function, which is helpful for decision making. For a basic probability
assignment m defined on Θ= {θ1,θ2, . . . ,θn}, the pignistic transformation is expressed by

Bet P(A)= ∑
B⊆Θ

|A∩B|
|B|

m(B)
(1−m(Ø)

, for all A ⊆Θ, (2.6)

where |A| is the number of elements in set A, which is also called as the cardinality of set A.
Particularly, given m(Ø)= 0 and Θ ∈Θ, we have

BetP({Θ})= ∑
Θ∈B

m(B)
|B| , θ = θ1,θ2, . . . ,θn, B ⊂Θ . (2.7)

2.2 Dempster’s Combination Rule
Given two basic probability assignments m1 and m2 defined on Θ, the basic probability
assignment that results from their combination, denoted as m1⊕m2, or m12 for short, can be
obtained by Dempster’s combination rule [4], shown as:

m12(A)=


∑

B∩C=A
m1(B)m2(C)

1− ∑
B∩C=Ø

m1(B)m2(C)
, for all A ⊆Θ, A ̸=Ø,

0, A =Ø .

(2.8)

For more than two basic probability assignments to be combined, the combination results of all
basic probability assignments can be obtained as:

m(A)=



∑
∩A i=A

∏n
i=1 mi(A i)

1− ∑
∩A i=Ø

m1(B)m2(C)
, for all A ⊆Θ, A =Ø,

0, A =Ø.

(2.9)

Here, ‘n’ is the number of evidence pieces in the process of combination, i denotes the ith piece
of evidence, and mi(A i) is the basic probability assignment of hypothesis A i supported by basic
probability assignment i. The amount of conflict among ‘n’ mutually independent pieces of
evidence is equal to the mass of the empty set after the conjunctive combination and before the
normalization step. It represents contradictory evidence. It is calculated as:

k = ∑
∩A i=Ø

n∏
i=1

mi(A i) . (2.10)

The case of k = 0 indicates that there is no conflict among basic probability assignments, while
k = 1 indicates that all basic probability assignments are in complete conflict. Dempster’s rule
has many good properties, such as commutativity and associativity. So, it has been widely
applied in many areas. However, when the basic probability assignment to be combined are
completely contradictory, that is, k = 1, the combination rule cannot be performed. When they
are in high conflict, that is, k → 1, we may get counter-intuitive combination results, which do
not coincide with the actual situation. This can be demonstrated by the following example [21].
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When the evidence source is not dependable, and its reliability degree is assigned as λ with
λ ∈ [0,1], we can use the discounting operation introduced by Shafer [15] to modify the original
basic probability assignment. Based on Shafer’s discounting operation, the basic probability
assignment mλ obtained by discounting is expressed as:{

mλ(A)=λm(A), A ⊂Θ,
mλ(Θ)= 1−λ+λm(Θ).

(2.11)

We note that if the evidence source is totally dependable, i.e., λ= 1, then the basic probability
assignment mλ is identical to the original basic probability assignment m. If the evidence
source is completely undependable, i.e., λ = 0, we can get mλ(Θ) = 1, which means that the
discounted basic probability assignment is a vacuous one providing no information.

2.3 Neutrosophic Set
Let X be a space of points, with a generic element in X denoted by x. A neutrosophic set A in X
is characterized by a truth membership function TA , indeterminancy membership function IA

and falsity membership function FA ·TA(x), IA(x) and FA(x) are real standard or non standard
subsets of ]0−1,1+[.
That is, TA : X →]0−1,1+[,

IA : X →]0−1,1+[,

FA : X →]0−1,1+[.

There is no restriction on the sum of TA(x), IA(x) and FA(x), thus 0−1 ≤ supTA(x)+sup IA(x)+
supF(A)(x)≤ 3+.

3. Evaluating the Evidence Dependability
3.1 The Relation between Basic Probability Assignment and Neutrosophic Set
Let m be basic probability assignment. If m is regarded as an neutrosophic set A defined in Θ=
{θ1,θ2, . . . ,θn}, Bel(θ) is the degree of truth membership, 1−u(θ) is the degree of indeterminancy
membership, 1−Pl(θ) is the degree of falsity membership. Based on these analysis, the basic
probability assignment m, defined on the discernment frame Θ= {θ1,θ2, . . . ,θn}, can be expressed
as an neutrsophic set A defined on Θ= {θ1,θ2, . . . ,θn}. The neutrosophic set A is written as:

A = {〈θ,TA(θ), IA(θ),FA(θ)〉 | θ ∈Θ}

= {〈θ1,Bel(θ1),1−u(θ1),1−Pl(θ1)〉,〈θ2,Bel(θ2),1−u(θ2),1−Pl(θ2)〉, . . . ,
〈θn,Bel(θn),1−u(θn),1−Pl(θn)〉}. (3.1)

The relation between basic probability assignment and neutrosophic set has its physical
interpretation from the viewpoint of target identification. Let the discernment frame be
Θ= {θ1,θ2, . . . ,θn}, i.e., all possible classes of the target are contained in the set Θ= {θ1,θ2,θ3}.
The output of the sensor expressed by a basic probability assignment m indicates that the target
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is identified as an neutrosophic set A with

A = {〈θ1,Bel(θ1),1−u(θ1),1−Pl(θ1)〉,〈θ2,Bel(θ2),1−u(θ1),1−Pl(θ2)〉,
〈θ3,Bel(θ3),1−u(θ3),1−Pl(θ3)〉}.

Specially, if a sensor identifies the target as a singleton subset of Θ, taking {θ1} as an example,
the basic probability assignment can be written as:

m({θ1})= 1, m({θ2})= 0, m({θ3})= 0.

Then the corresponding neutrosophic set is A = {〈θ1,1,0,0〉,〈θ2,0,0,1〉,〈θ3,0,0,1〉}, which is
same as the set {θ1}.

3.2 Supporting Degree of Basic Probability Assignments
Supporting degree of basic probability assignment has been introduced to develop the modified
combination rules [11, 20]. Generally, the supporting degree is calculated on the basis of the
similarity or distance measures between basic probability assignments. If we use Sup to
express the supporting degree, we have Sup(m1,m2)=Sup(m1,m2). Taking Sim and Dis as the
similarity and distance measures between basic probability assignments, respectively, we can
get the following relations:

Sup(m1,m2)∝Sim(m1,m2), Sup(m1,m2)∝ 1−Dis(m1,m2).

In other words, the higher similarity degree between the two basic probability assignments
indicates the higher supporting degree between them. The lower distance between the two basic
probability assignments also indicates higher supporting degree between the basic probability
assignments. For clarity, the supporting degree between basic probability assignments can be
usually considered as consistent to the similarity degree between basic probability assignments.

The relation between basic probability assignment and neutrosophic set allow us to calculate
the supporting degree of basic probability assignments in the framework of neutrosophic set.
Thus, the supporting degree Sup(m1,m2) can be obtained by calculating the supporting degree
between neutrosophic set A1 and A2, where A1 and A2 are neutrosophic sets derived from m1

and m2, respectively. So, we have:

Sup(m1,m2)=Sup(A1, A2)=Sim(A1, A2) . (3.2)

In recent years, a lot of similarity measures of neutrosophic sets have been proposed [1].
This provides us much convenience in calculating the supporting degree of basic probability
assignments. In the following, similarity measure between A and B is defined as following:

Let A = {〈x,TA(x), IA(x),FA(x)〉 | x ∈ X } and B = {〈x,TB(x), IB(x),FB(x)〉 | x ∈ X } be two
neutrosophic set defined in X = {x1, x2, . . . , xn}. The similarity degree between A and B are
calculated by:

S(A,B)=

n∑
1

(TA(xi) ·TB(xi)+ IA(xi) · IB(xi)+FA(xi) ·FB(xi)

max
( n∑

1
((TA(xi))2 + (IA(xi))2 + (FA(xi))2,

n∑
1

((TB(xi))2 + (IB(xi))2 + (FB(xi))2)
) . (3.3)
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It has been proved that the similarity measure S(A,B) satisfies all axiomatic properties of
neutrosophic similarity measure [1].

Based on the above analysis, we can obtain the supporting degree between two basic
probability assignments m1 and m2, by the following steps:

Step 1: From equations (2.3), (2.4) and (2.5), we can get the values of the belief function,
uncertainty function and plausibility function of all singleton subsets, corresponding
to the basic probability assignments m1 and m2.

Step 2: From equation (3.1), we can get the two neutrosophic sets A1 and A2 according to m1

and m2.

Step 3: Following equation (3.3), we can calculate the similarity degrees S(A1, A2).
Finally, we can get the degree to which m1 supports m2 is Sup(m1,m2) = S(A1, A2),
the degree of m2 supporting m1

Sup(m2,m1)=Sup(m1,m2)= S(A1, A2).

Based on the axiomatic properties of S(A,B), we have

m1 = m2 ⇒ Sup(m1,m2)=Sup(m2,m1)= 1.

3.3 Evidence Reliability
Suppose that there are N basic probability assignments expressed as m1,m2, . . . ,mN . Based on
the supporting degree between any two basic probability assignments, we can construct the
Supporting Degree Matrix (SDM) as:

SDM=




Sup(m1,m2) Sup(m1,m2) . . . Sup(m1,m2)
Sup(m1,m2) Sup(m1,m2) . . . Sup(m1,m2)

...
... . . . ...

Sup(m1,m2) Sup(m1,m2) . . . Sup(m1,m2)


 . (3.4)

Now, the elements in the ith row represent the degree to which mi is supported by other
basic probability assignments. So, the total supporting degree of mi can be calculates as:

TotalSup(mi)=
N∑
j=1
j ̸=1

Sup(mi,m j). (3.5)

Generally, the larger support degree of a basic probability assignment indicates that this
basic probability assignment is more reliable. Otherwise, the basic probability assignment is
less reliable. So the reliability of each basic probability assignment can be calculated by its total
support degree. In application, the reliability should be normalized. If we consider the relative
reliability of all basic probability assignments [19], they can be normalized to the dependability
of mi as:

D′(mi)=
TotalSup(mi)

N∑
j=1

TotalSup(m j)
. (3.6)
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If the reliability of the most reliable basic probability assignment is set, the absolute dynamic
reliability of mi can be obtained as:

D(mi)=
TotalSup(mi)

max
j=1,2,...,N

TotalSup(m j)
. (3.7)

3.4 A New Method to Combine the discounted Basic Probability Assignments
Once the dependability of all basic probability assignments are obtained, we can use
evidence dependability to modify the original basic probability assignments by the discounting
operation. Then, we can combine the discounted basic probability assignments using Dempster’s
combination rule. So, we can propose a new method for evidence combination. Suppose that there
are ‘N ’ basic probability assignments m1,m2, . . . ,mN to be combined, they can be combined as
the following steps:

Step 1: Calculate the supporting degree of each basic probability assignment. From equations
(2.3), (2.4) and (2.5), we can get the value of the belief function, the uncertainty
function and the plausibility function, for all singleton subsets with respect to mi ,
i = 1,2, . . . , N . From equation (3.1), we can get Neutrosophic sets corresponding to all
basic probability assignments. Following equation (3.3), we can calculate the similarity
degrees S(A i, A j), i = 1,2, . . . , N . Finally, we get the supporting degree between mi and
m j , shown as:

Sup(mi,m j)=Sup(m j,mi)= S(A i, A j)= S(A j, A i).

Step 2: Calculate the dependability of each basic probability assignment. From the supporting
degree between every two basic probability assignments, the support degree matrix
can be constructed as equation (3.4). Then the dependability of each basic probability
assignment can be obtained based on equation (3.6).

Step 3: Modify the original basic probability assignments. Using the evidence dependability
and evidence discounting operation shown in equation (2.11), we can modify the
original basic probability assignments m1,m2, . . . ,mN . The discounted basic probability
assignments are denoted by mD

1 ,mD
2 , . . . ,mD

N .

Step 4: Evidence combination by Dempster’s combination rule. By Dempster’s combination rule,
the discounted basic probability assignments mD

1 ,mD
2 , . . . ,mD

N can be combined to an
integrated basic probability assignment.

Example 3.1. In a target identification system based on multiple sensors, three sensors X1, X2,
X3 are employed to recognize the identification of a target. Three possible types of the target
are denoted by θ1,θ2 and θ3. So the frame of discernment can be expressed as Θ= {θ1,θ2,θ3}.
The outputs of three sensors are expressed by three basic probability assignments. They are
listed as the following:

m1({θ1})= 0.6, m1({θ2})= 0.2, m1({θ3})= 0.2,

m2({θ1})= 0.3, m2({θ2})= 0.6, m2({θ3})= 0.1,
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m3({θ1})= 0.3, m3({θ2})= 0.3, m1({θ3})= 0.4.

Three neutrosophic set in Θ = {θ1,θ2,θ3} can be generated from these basic probability
assignments. They are expressed as:

A1 = {〈θ1,0.6,0.8,0.4〉,〈θ2,0.2,0.4,0.8〉,〈θ3,0.2,0.4,0.8〉},
A2 = {〈θ1,0.3,0.6,0.7〉,〈θ2,0.6,0.8,0.4〉,〈θ3,0.1,0.2,0.9〉},
A3 = {〈θ1,0.3,0.6,0.7〉,〈θ2,0.3,0.6,0.7〉,〈θ3,0.4,0.8,0.6〉}.

The Supporting Degree Matrix (SDM) for the three basic probability assignments is:

SDM=
 1 0.8514 0.8818

0.8514 1 0.8618
0.8818 0.8618 1

 .

Based on equation (3.5), the total supporting degree of the basic probability assignment can be
calculated:

TotalSup(m1)= 0.8514+0.8818= 1.7333,

TotalSup(m2)= 0.8514+0.8618= 1.7132,

TotalSup(m3)= 0.8818+0.8618= 1.7436.

Finally, the absolute dependability of each basic probability assignment can be yielded according
to equation (3.7):

D(m1)= 1.7333
1.7436

= 0.99,

D(m2)= 1.7132
1.7436

= 0.98,

D(m3)= 1.7436
1.7436

= 1.

Based on the dependability factor, we can modify three original basic probability assignments
by the discounting operation. We can get the discounted basic probability assignments as:

m(D)
1 ({θ1})= 0.594, m(D)

1 ({θ2})= 0.198, m(D)
1 ({θ3})= 0.198,

m(D)
2 ({θ1})= 0.294, m(D)

2 ({θ2})= 0.588, m(D)
2 ({θ3})= 0.098,

m(D)
3 ({θ1})= 0.3, m(D)

3 ({θ2})= 0.3, m(D)
3 ({θ3})= 0.4.

Combining these discounted basic probability assignments by using Dempster’s rule, we get the
final result:

m({θ1})= 0.5357, m({θ2})= 0.4413, m({θ3})= 0.1947.

Based on the final fusion result, a comprehensive recognition on the target can be obtained. As
shown in the result, the unknown target is identified as Θ1, according to the outputs of three
sensors. This example demonstrates that the proposed method provides an alternative way to
combine uncertain evidence sources with different dependability, when a prior knowledge is not
available.
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4. Conclusion
The estimation of basic probability assignment plays a very important role in the application
of DS theory in complex uncertain problems. In this paper, the supporting degree based on
the similarity measure between basic probability assignment has been computed and then the
dependability of evidence can be evaluated by using the total supporting degree of each basic
probability assignment. A numerical example is used to illustrate the efficiency of the proposed
method.
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