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Some Smooth Compactly Supported Tight Framelets

A. San Antolín and R.A. Zalik

Abstract. For any dilation matrix with integer entries, we construct a family of
smooth compactly supported tight wavelet frames in L2(Rd ), d ≥ 1. Estimates for
the degrees of smoothness of these framelets are given. Our construction involves
some compactly supported refinable functions, the Oblique Extension Principle
and a slight generalization of a theorem of Lai and Stöckler.

1. Introduction

Given a dilation matrix with integer entries, we construct smooth compactly
supported tight framelets in L2(Rd), d ≥ 1, associated to such a dilation, and with
any desired degree of smoothness. Tight wavelet frames have recently become the
focus of increased interest because they can be computed and applied just as easily
as orthonormal wavelets, but are easier to construct.

We begin with notation and definitions. The sets of strictly positive integers,
integers, and real numbers will be denoted by N, Z and R respectively. Given a
Lebesgue measurable set S ⊂ Rd , |S| will denote its Lebesgue measure and χS will
be its characteristic function. Given a d × d matrix B, the complex conjugate of its
transpose will be denoted by B∗. The n×n identity matrix will be denoted by In×n.

We say that A ∈ Rd×d is a dilation matrix preserving the lattice Zd if all
eigenvalues of A have modulus greater than 1 and AZd ⊂ Zd . Note that if A∈ Rd×d

is a dilation matrix preserving the lattice Zd , then dA := |det A| is an integer greater
than 1. The quotient group Zd/AZd is well defined, and by∆A ⊂ Zd we will denote
a full collection of representatives of the cosets of Zd/AZd . Recall that there are
exactly dA cosets ([6], [17, p. 109]).
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A sequence {ϕn}∞n=1 of elements in a separable Hilbert space H is a frame for H
if there exist constants C1, C2 > 0 such that

C1∥h∥2 ≤
∞∑

n=1

|〈h,ϕn〉|2 ≤ C2∥h∥2, for all h ∈H,

where 〈·, ·〉 denotes the inner product on H. The constants C1 and C2 are called
frame bounds. The definition implies that a frame is a complete sequence of
elements of H. A frame {ϕn}∞n=1 is tight if we may choose C1 = C2.

Let A ∈ Rd×d be a dilation matrix preserving the lattice Zd . A set of functions
Ψ= {ψ1, . . . ,ψN} ⊂ L2(Rd) is called a wavelet frame, if the system

{d j/2
A ψℓ(A

jx+ k); j ∈ Z,k ∈ Zd , 1≤ ℓ≤ N}
is a frame for L2(Rd). If this system is a tight frame for L2(Rd) then Ψ is called a
tight wavelet frame. In particular, a tight wavelet frame with frame constant equal
to 1 is called a tight framelet.

Let bf denote the Fourier transform of the function f . Thus, if f ∈ L1(Rd),
t,x ∈ Rd ,

bf (x) :=

∫
Rd

f (t)e−2πit·xdt,

where t · x denotes the usual inner product of vectors t and x.
Han [9], and independently Ron and Shen [13], found necessary and sufficient

conditions for translates and dilates of a set of functions to be a tight framelet. Ron
and Shen also formulated what is known as the Unitary Extension Principle (UEP),
which, in addition to its other applications, provides a method for constructing
compactly supported framelets. In [14] (see also [15]), Ron and Shen describe a
method for constructing compactly supported tight affine frames in L2(Rd) from
box splines. Using Ron and Shen’s method, Gröchenig and Ron [7] show how to
construct, for any dilation matrix, compactly supported framelets with any desired
degree of smoothness. These tight wavelet frames have at most one vanishing
moment. Furthermore, based on works by Ron and Shen and by Gröchenig and
Ron, Han [8] also constructs compactly supported tight wavelet frames with
degree of smoothness and vanishing moments of order as large as desired.

In this paper we construct a family of compactly supported refinable functions
and we use these functions, the Oblique Extension Principle and a slight
generalization of Theorem 3.4 by Lai and Stöckler [12] to construct smooth
compactly supported tight framelets.

The UEP led to the Oblique Extension Principle (OEP), a method based on
the UEP; it was developed by Chui, He and Stöckler [2], and independently by
Daubechies, Han, Ron and Shen [4], who gave the method its name. With the
definition of the Fourier transform that we shall adopt in the next section, the OEP
may be formulated as follows:
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Theorem A. Let A ∈ Rd×d be a dilation matrix preserving the lattice Zd . Let
ϕ ∈ L2(Rd) be compactly supported and refinable, i.e.bϕ(A∗t) = P(t) bϕ(t),
where P(x) is a trigonometric polynomial and A∗ is the transpose of A. Assume
moreover that | bϕ(0)| = 1 and | bϕ(t)| ≤ C(1 + |t|)−α for some α > d/2. Let S(t)
be another trigonometric polynomial such that S(t) ≥ 0 and S(0) = 1. Assume there
are trigonometric polynomials or rational functions Qℓ, ℓ= 1, · · · , N, that satisfy the
OEP condition

S(A∗t)P(t)P(t+ j) +
N∑
ℓ=0

Qℓ(t)Qℓ(t+ j) =

(
S(t) if j ∈ Zd ,

0 if j ∈ ((A∗)−1(Zd)/Zd) \Zd .
(1)

If cψℓ(t) :=Qℓ(t) bϕ(t), ℓ= 1, . . . , N ,

then Ψ= {ψ1, . . . ,ψN} is a tight framelet in L2(Rd).

This version of the OEP is a straightforward consequence of [13, Corollary 6.7].

Using the OEP and the following slight generalization of Theorem 3.4 of Lai and
Stöckler [12], we obtain a general method for constructing compactly supported
framelets in L2(Rd) associated to any fixed dilation matrix. The proof is identical,
and we include it for the sake of completeness. We have also included in the
statement a generalization of the algorithm implicit in the proof of Theorem 3.4.

Theorem 1. Let A ∈ Rd×d be a dilation matrix preserving the lattice Zd and let
∆A = {qs}dA−1

s=0 and ∆A∗ = {ps}dA−1
s=0 be full collections of representatives of the cosets

of Zd/AZd and Zd/A∗Zd respectively with q0 = p0 = 0. Let P(t) be a trigonometric
polynomial defined on Rd that satisfies the condition

dA−1∑
s=0

|P(t+ (A∗)−1(ps))|2 ≤ 1,

let

P (t) :=
�

P(t+ (A∗)−1(ps)); s = 0, . . . , dA− 1
�T ,

and let

M (t) := d−1/2
A

�
ei2πql ·(t+(A∗)−1(ps)); l, s = 0, . . . , dA− 1

�
(2)

be the polyphase matrix, where s denotes the row index and l denotes the column
index.

Let the dA× 1 matrix function G(t) be defined by

G(t) :=M ∗(t)P (t) = �Lk(A
∗t); k = 0, . . . , dA− 1

�T , (3)
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whereM ∗(t) denotes the complex conjugate transpose ofM (t). Suppose that there
exist trigonometric polynomials eP1, . . . , ePM such that

dA−1∑
k=0

|Lk(t)|2 +
M∑

j=1

|ePj(t)|2 = 1. (4)

Let N := dA+M and let the N × 1 matrix function G (t) be defined by

G (t) :=
�

Lk(A
∗t); k = 0, . . . , dA− 1, ePj(A

∗t); 1≤ j ≤ M
�T ,

and eQ(t) := IN×N −G (t)G ∗(t).
Let H(t) denote the first dA× N block matrix of Q̃(t),

Q(t) :=M (t)H(t),
and let [Q1(t), . . . ,QN (t)] denote the first row of Q(t). Then the trigonometric
polynomials P and Qℓ, ℓ= 1, . . . , N, satisfy the identity (1) with S(t) = 1.

Proof. Using (4), we have G ∗(t)G (t) = 1; theneQ(t) eQ∗(t) = IN×N − 2G (t)G ∗(t) +G (t)G ∗(t)G (t)G ∗(t)
= IN×N −G (t)G ∗(t) = eQ(t).

Thus

G (t)G ∗(t) + eQ(t) eQ∗(t) = IN×N .

Restricting to the first principal dA× dA blocks in the above matrices, we have

G(t)G∗(t) +H(t)H∗(t) = IdA×dA
. (5)

From Lemma 5.1 of [5], we know that M (t) is unitary. Hence from (5) we
conclude that

M (t)G(t)G∗(t)M ∗(t) +M (t)H(t)H∗(t)M ∗(t) = IdA×dA
.

Thus,

P (t)P ∗(t) +Q(t)Q∗(t) = IdA×dA

which is equivalent to saying that the P(t) and Q1(t), . . . ,QN (t) satisfy the equality
(1) with S(x) = 1 and dilation matrix A. �

2. A Family of Tight Framelets

We begin by constructing a family of smooth compactly supported refinable
functions in L2(Rd), d > 1, associated to a dilation matrix A.

We will use the following theorem of Gröchenig and Madych (see [6,
Theorem 2] and remark following the statement of the theorem).
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Theorem B. Let A ∈ Rd×d be a dilation matrix preserving the lattice Zd , let
∆A = {qs}dA−1

s=0 be a full collection of representatives of the cosets of Zd/AZd with
q0 = 0. Then the characteristic function χE , where the set E is defined by

E :=
�

x ∈ Rd : x=
∞∑
j=1

A− jk( j),k( j) ∈∆A

�
, (6)

is a non null compactly supported measurable function such that ∥χE∥L1(Rd ) ≥ 1 and
satisfies the refinement equationbχE(A

∗(t)) = H(t)bχE(t) (7)

where

H(t) :=
1

dA

dA−1∑
s=0

e−2πit·qs (8)

We will also need the following

Lemma 1. Let A ∈ Rd×d be a dilation matrix preserving the lattice Zd , let ∆A =
{qs}dA−1

s=0 and ∆A∗ = {ps}dA−1
s=0 be full collections of representatives of the cosets of

Zd/AZd and Zd/A∗Zd respectively with q0 = p0 = 0, and let H(t) de given by (8).
Then

dA−1∑
s=0

|H(t+ (A∗)−1(ps))|2 = 1.

Proof. We have

|H(t)|2 = 1

d2
A

� dA−1∑
s=0

e−2πit·qs

�� dA−1∑
r=0

e2πit·qr

�
=

1

d2
A

dA−1∑
s,r=0

e−2πit·(qs−qr )

=
1

d2
A

�
dA+

dA−1∑
s,r=0,s ̸=r

e−2πit·(qs−qr )
�

.

Thus
dA−1∑
s=0

|H(t+ (A∗)−1(ps))|2

=
dA−1∑
s=0

1

d2
A

�
dA+

dA−1∑
j,r=0, j ̸=r

e−2πi(t+(A∗)−1(ps))·(q j−qr )
�

= 1+
1

d2
A

dA−1∑
j,r=0, j ̸=r

e−2πit·(q j−qr )
dA−1∑
s=0

e−2πi(A∗)−1(ps)·(q j−qr ).

However, from e.g. [5] or [1, Lemma 3], we see that if k ∈ Zd \ A(Zd), then
dA−1∑
s=0

e−2πi(A∗)−1(ps)·k = 0,

and the assertion follows. �
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The following statement may be found in ([17, Appendix A.2]). The proof is
straightforward and will be omitted.

Lemma C. Let C0 be the class of continuous functions in L2(Rd), and let C r ,
r = 1,2, . . . be the class of functions f such that all partial derivatives of f of order
not greater than r are continuous and in L2(Rd). If

[bf (t)| ≤ C(1+ |t|)−N−ϵ

for some integer N ≥ d and ϵ > 0, then f is in CN−d .

Proofs of the following proposition may be found in [16, Lemma 3.1], [17,
Proposition 5.23] or [7, Result 2.6].

Proposition D. Let A ∈ Rd×d be a dilation matrix preserving the lattice Zd , let
∆A = {qs}dA−1

s=0 be a full collection of representatives of the cosets of Zd/AZd with
q0 = 0, and let E ⊂ Rd be the set defined by (6). Then there exist two positive
constants ε and C such that

|bχE(t)| ≤ C |t|−ε.
We can now prove the following.

Proposition 1. Let A ∈ Rd×d be a dilation matrix preserving the lattice Zd , let
∆A = {qs}dA−1

s=0 be a full collection of representatives of the cosets of Zd/AZd with
q0 = 0, let ϕ1 := |E|−1χE and for n ∈ N let ϕn denote the n-fold convolution of ϕ1

with itself. Let Hn be defined by (8). Then ϕn is non null, compactly supported, and
square-integrable on Rd , ∥ϕn∥L2(Rd ) ≤ 1, bϕn(0) = 1, and, setting P(t) = Hn(t), the
refinement equationbϕn(A

∗(t)) = P(t) bϕn(t) (9)

holds. Moreover, if εn − d > r > 1, where ε is defined in Proposition D, ϕn is in
continuity class C r .

Proof. By Theorem B, χE is a non null compactly supported function, which
implies that also ϕn is a non-null compactly supported function. Moreover, sincebϕn(t) = bϕn

1 (t), it follows that bϕn(0) = 1. Further, by Young’s inequality for
convolutions and bearing in mind that |E| ≥ 1,

∥ϕn∥L2(Rd ) ≤ ∥ϕn−1∥L2(Rd )∥|E|−1χE∥L1(Rd ) ≤ ∥ϕ1∥L2(Rd ) ≤ 1.

We now verify that the refinement equation (9) is satisfied. Taking the Fourier
transform of ϕn and applying (7), we havebϕn(A

∗(t)) = |E|−n[bχE(A
∗(t))]n = H(t)n|E|−n[bχE(t)]

n = P(t) bϕn(t).

We now prove the estimates on the degree of smoothness of ϕn. By
Proposition D, we have

| bϕn(t)|= |bχE(t)|n ≤ C |t|−εn.
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Moreover, since bϕn is continuous,

| bϕn(t)| ≤ K(1+ |t|)−εn.

Hence, if εn− d > r > 1, Lemma C implies that ϕ is in continuity class C r . �

We now use Theorem 1 and the refinable functions obtained in Proposition 1,
to construct a family of tight framelets Ψ = {ψ1, . . . ,ψN} in L2(Rd), d > 1, such
that the functions ψℓ, ℓ = 1, . . . , n, are smooth and compactly supported. First we
prove

Lemma 2. Let A ∈ Rd×d be a dilation matrix preserving the lattice Zd , let ∆A∗ =
{ps}dA−1

s=0 be a full collection of representatives of the coset Zd/A∗Zd with p0 = 0, let
P(t) a trigonometric polynomial with real coefficients. Then there are numbers αk

such that

1−
dA−1∑
s=0

|P(t+ (A∗)−1(ps))|2 =
∑
k∈Zd

αke2πik·A∗(t), αk ∈ R. (10)

Moreover, a finite number of αk are nonzero, and αk = α−k.

Proof. Clearly P(t) may be written in the form

P(t) =
∑
k∈Zd

ake2πik·t,

where ak ∈ R and a finite number of the ak are nonzero. We have

|P(t)|2 =
�∑

k∈Zd

ake2πik·t
��∑

r∈Zd

are
−2πir·t
�
=
∑
k,r

akare
2πi(k−r)·t.

Thus,

dA−1∑
s=0

|P(t+ (A∗)−1(ps))|2 =
dA−1∑
s=0

∑
k,r∈Zd

akare
2πi(k−r)·(t+(A∗)−1(ps).

Let ∆A = {qs}dA−1
s=0 be a full collection of representatives of the coset Zd/AZd

with q0 = 0. Since k ∈ Zd may be written in the form k = qs + A(k′) for some
s ∈ {0, · · · , dA− 1} and k′ ∈ Zd , we have

dA−1∑
s=0

|P(t+ (A∗)−1(ps))|2

=
dA−1∑
s=0

dA−1∑
m,l=0

∑
k,r∈Zd

bm,k bl,re
2πi(qm+A(k)−ql+A(r))·(t+(A∗)−1(ps)

=
dA−1∑
m,l=0

∑
k,r∈Zd

bm,k bl,re
2πi(qm+A(k)−ql−A(r))·t

dA−1∑
s=0

e2πi(qm+A(k)−ql−A(r))·(A∗)−1(ps) .
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Since k, r,ps ∈ Zd , it follows that
dA−1∑
s=0

|P(t+ (A∗)−1(ps))|2

=
dA−1∑
m,l=0

∑
k,r∈Zd

bm,k bl,re
2πi(qm+A(k)−ql−A(r))·t

dA−1∑
s=0

e2πi(qm−ql )·(A∗)−1(ps).

If l ̸= m, then qm − ql /∈ A(Zd) because qm and ql are representatives of different
cosets of Zd/A(Zd). Using Lemma 5.1 in [5] we have

dA−1∑
s=0

|P(t+ (A∗)−1(ps))|2 = dA

dA−1∑
m=0

∑
k,r∈Zd

bm,k bm,re
2πi(A(k)−A(r))·t

= dA

dA−1∑
m=0

∑
k,r∈Zd

bm,k bm,re
2πi(k−r)·A∗t .

Hence the identity (10) is satisfied, and only a finite number of coefficients are non

zero. Finally, since 1−
dA−1∑
s=0
|P(t+ (A∗)−1(ps))|2 is a real trigonometric polynomial

with real coefficients, it follows that α−k = αk. �

We need the following generalization of [12, Theorem 4.2].

Lemma 3. Let A ∈ Rd×d be a dilation matrix preserving the lattice Zd , let ∆A =
{qs}dA−1

s=0 and∆A∗ = {ps}dA−1
s=0 be full collections of representatives of the cosets Zd/AZd

and Zd/A∗Zd respectively with q0 = p0 = 0, let the trigonometric polynomial H(t) be
defined by (8), and let P(t) := Hn(t). Let the numbers αk be such that the identity
(10) is satisfied, let Γ denote the set of nonzero αk, let the trigonometric polynomialsePk be defined by

eP0(t) = 0, ePk(t) :=

r |αk|
2
(1− e2πik·t), if k ∈ Γ \ {0}, (11)

and let the trigonometric polynomials L j(A∗t), j ∈ {0, . . . , dA− 1} be defined by (3).
Then

dA−1∑
j=0

|L j(t)|2 +
∑
k∈Γ
|ePk(t)|2 = 1.

Proof. Observe that αk = α−k. Since the coefficients of the trigonometric
polynomial H defined by (8) are positive so are the coefficients of P(t), and it
follows that αk < 0 if k ∈ Γ \ 0. Moreover, we know that P(0) = 1; therefore
α0 =− ∑

k∈Γ\0
αk.

Using the elementary formula 1− cos(2πk · t) = 1
2
|1− e−2πik·t|2, we have:∑

k∈Γ
|ePk(A

∗t)|2 = ∑
k∈Γ\0

|αk|
2
|1− e2πik·A∗t|2
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=
∑

k∈Γ\0
|αk|�1− cos(2πk · A∗t)�

=− ∑
k∈Γ\0

αk +
∑

k∈Γ\0
αk cos(2πk · A∗t)

= α0 +
∑

k∈Γ\0
αk cos(2πk · A∗t)

=
∑
k∈Γ

αk

2
(e2πik·A∗t + e−2πik·A∗t).

Bearing in mind that αk = α−k, we obtain

dA−1∑
s=0

|P(t+ (A∗)−1(ps))|2 +
∑
k∈Γ
|ePk(A

∗t)|2 = 1. (12)

On the other hand, note that, sinceM (t) defined by (2) is unitary,

dA−1∑
j=0

|L j(A
∗t)|2 =P ∗(t)M (t)M ∗(t)P (t) =

dA−1∑
s=0

|P(t+ (A∗)−1(ps))|2, (13)

and the proof follows from (12) and (13). �

The following theorem describes a construction of a tight smooth framelet of
compact support associated to a fixed dilation matrix A preserving the lattice Zd .

Theorem 2. Let A ∈ Rd×d be a dilation matrix preserving the lattice Zd , let ∆A =
{qs}dA−1

s=0 be a full collection of representatives of the cosets of Zd/AZd with q0 = 0, let
E ⊂ Rd be defined by (6) and let H be the trigonometric polynomial defined by (8).
Let n ∈ N and P(t) = Hn(t). Let ePj(t), j = 1, . . . , M be the trigonometric polynomials
defined as in Lemma 3, let N := dA+M, and let Q1(t), . . . ,QN (t) be the trigonometric
polynomials obtained by the algorithm described in Theorem 1. Ifbϕn(t) = |E|−n[cχE(t)]

n,bψℓ(t) :=Qℓ(t) bϕn(t), ℓ= 1, . . . , N .

and Ψ = {ψ1, . . . ,ψN} is the set of inverse Fourier transforms of the functions bψℓ
defined in the preceding displayed identity, then Ψ is a tight framelet in L2(Rd) with
dilation matrix A, and the functionsψℓ(t) are square-integrable on Rd and compactly
supported. Moreover, if εn− d > r > 1 where ε is defined in Proposition D, then the
functions ψℓ(t) are in continuity class C r .

Proof. That Ψ = {ψ1, . . . ,ψN} is a tight framelet follows from Lemma 3,
Theorem 1 and Theorem A.

Since the functions Qℓ are trigonometric polynomials and therefore bounded on
Rd , the smoothness of the functions ψℓ follows from Proposition 1 and Lemma C.

Finally, note that the functions ψℓ are compactly supported because ϕ is
compactly supported and the Qℓ are trigonometric polynomials. �
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