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Abstract. In real life, there is a significant role of neighboring vehicles as well as driver’s behavior
in the nonlinear dynamics of traffic flow. Based on the car-following model, we examined the impact
of individual expectations on a single-lane highway with a Backward-Forward Looking (BFL) effect
on traffic flow. The model’s stability criterion is determined through linear and nonlinear analysis,
and it is observed that the prediction parameter not only reduces the unstable region but is also
helpful in reducing energy consumption. Moreover, it is also remarked that the driver’s prediction
effect will become more effective in the case BFL model. Furthermore, the numerical simulation
demonstrates that the new model effectively enhances stable regions and it should be considered
during the modeling of traffic flow.
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1. Introduction
Traffic congestion has emerged as one of the major social and economic issues relating
to transportation in developed nations as a result of the expansion of urbanisation
and motorization. Today’s traffic congestion is increasingly complicated and is creating
environmental pollution, noise pollution, energy waste, and other problems due to the quick
growth of automobiles and the worldwide economy. Understanding traffic flow operations is
essential for managing these issues and reducing congestion. Various mathematical models,
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including macroscopic [3, 18, 20, 23, 29, 36], microscopic [4, 6, 12, 25, 35, 43] and mesoscopic
[5,13,39] have been studied in this direction.

One of them is the car-following model which comes under the category of a microscopic
approach that is used to characterize individual vehicles and driver’s behavior. Among the
car-following models, the optimal velocity model [2] has auspiciously disclosed the gradual
development of traffic congestion in an easy way. Numerous modified models [8,11,16,34,41]
have been developed with the effects of various traffic components and these extended models
were successfully able to illustrate the nature of traffic congestion in a more precise way upto
some extent.

As we know the neighboring vehicles significantly affect the traffic flow. To illustrate the real
traffic situation, some investigations on the influence of backward-looking have been conducted
in recent year [7,14,21,22,32,33,40], as the majority of car-following models focused on the
forwarding vehicle. By introducing the effect of backward-looking, Sun et al. [32] proposed the
Backward Looking Velocity Difference (BLVD) model in which the driver assumed the car’s
rear-view mirror to monitor the situation of the back vehicle in order to ensure safe driving.

As many complex aspects influence real-time traffic, including pedestrians, competency,
driver attention, and so on and such external influences are represented as disturbances in
the uniform flow leading to changes in operating speed. In comparison to the situation of no
disturbance, these variations in speed result in increased energy consumption [24]. Wei and
Yu [37] investigated the relationship between traffic flow stability and energy consumption
estimated by many common car-following models and discovered that reducing energy usage is
dependent on traffic flow stability. Also, sudden deceleration and acceleration may waste a lot
of energy in various traffic scenarios [17,19,31].

In real-world traffic, drivers frequently anticipate their speed based on the traffic conditions
[10,26,28,30]. In this direction, Zheng et al. [42] demonstrated an anticipatory driving model
based on FVD model. Peng and Cheng [27] included the expectation optimal velocity in the
driver’s behavior to investigate the consequences of the anticipation optimal speed. Yi-Rong
et al. [38] estimated the reaction delay and predict behavior of the driver in the car-following
model which has a significant impact on whether the traffic system is stable or not. Also,
Jafaripournimchahi et al. [15] examined the impact of driver memory with the anticipation
effect on traffic flow. However, to achieve a more effective description of traffic congestion, we
investigate the impact of driver’s prediction effect under the environment of backward-forward-
looking and analyze how these factors affect traffic flow stability and energy consumption at
the same time in our proposed model.

The following is a description of the paper’s structure. In Section 2, we review the basic
models and introduce a new car-following model. Linear and nonlinear stability are examined in
Sections 3 and 4, respectively. Section 5 carried out numerical simulation, furthermore, energy
consumption is a widely discussed issue, and we seek to identify the energy consumption in
Section 6 and finally, in Section 7, there is a conclusion.
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2. Model Formulation
To characterize car-following behavior on a one-lane road, Bando et al. [1] developed the Optimal
Velocity (OV) model. The model equation is

dvk(t̃)
dt̃

= ã[V (∆xk(t̃))−vk(t̃)]. (2.1)

Here xk(t̃) and vk(t̃) are the position and velocity of car k at time t̃, ∆xk(t̃) = xk+1(t̃)− xk(t̃)
shows the distance travelled by two vehicles in succession, ã

(= 1
τ

)
is the sensitivity of a driver,

and V (∆xk(t̃)) is the optimal velocity function. In the above model, high acceleration and
unreasonable deceleration appeared. To resolve these problems, Jiang et al. [16] proposed the
Full Velocity Difference (FVD) model by adding the positive relative velocity. The dynamical
equation is

dvk(t̃)
dt̃

= ã[V (∆xk(t̃))−vk(t̃)]+λ∆vk(t̃) , (2.2)

where λ is coefficient of velocity difference, ∆vk(t̃)= vk+1(t̃)−vk(t̃) represents the difference in
velocity between the following car k+1 and the pursing car k. To study the effect of preceding
vehicles, Hossain et al. [14] presented the improved car-following model considering modified
velocity difference and backward optimal velocity as

dvk(t̃)
dt̃

= ã[ωVF (∆xk(t̃))+ (1−ω)VB(∆x(k−1)(t̃))−vk(t̃)]+λ∆vk(t̃) , (2.3)

where ω is the forward driver weight parameter and (1−ω) represents the backward driver
weight parameter. The optimal velocity functions are VF(∆xk(t̃)) and VB(∆xk(t̃)) for forward
and backward observations, respectively. It is found that the region of stability enhances by
considering the role of preceding vehicles.

In order to investigate the delay due to driver or vehicle, Peng and Cheng [27] observed
that the anticipation parameter in optimal velocity has a substantial impact on traffic flow
and proposed a model named as Anticipation Optimal Velocity Model (AOVM), with the model
equation is given as

dvk(t̃)
dt̃

= ã[V (∆xk(t̃+ατ))−vk(t̃)]+λ∆vk(t̃) , (2.4)

where α≥ 0 denotes the prediction effect, V (∆xk(t̃+ατ)) is the expected optimal velocity, which
means the expected optimal speed is adjusted by the driver at time t̃+ατ.

The previously-mentioned models can explain some complex traffic patterns (e.g. congestion
and instability in traffic flow). To keep away from the rear-end collision and maintain safe
driving, in effective traffic flow, the driver should use the rear-view mirror to simultaneously
detect the running conditions of the car in the rear. In addition, based on the current traffic
scenario, the driver frequently calibrates his velocity after a time delay and evaluates his
individual driving behavior. Therefore, we presented a novel car-following model that takes into
account the driver’s predictive behavior as well as the BFL effect. The proposed model is

dvk(t̃)
dt̃

= ã[ωVF (∆xk(t̃+ατ))+ (1−ω)VB(∆xk−1(t̃+ατ))−vk(t̃)]+λ∆vk(t̃+ατ) , (2.5)

where ∆xk(t̃+ατ) and ∆vk(t̃+ατ) is the driver’s prediction information of the difference in
position and velocity between the following car k+1 and the pursuing car k at time t̃+ατ,
respectively.

Communications in Mathematics and Applications, Vol. 14, No. 2, pp. 727–744, 2023



730 Driver Predictions and Energy Consumption in Car-following Model with BFL Effect: Sunita et al.

Depending on the sign of the prediction coefficient α, the new model can explain two different
aspects of the driver’s individual expectation behavior during motion. Firstly, α> 0 stands for
the driver’s predicted effect in driving behavior, and secondly, α< 0 corresponds to the response
lag tendency of drivers. In actual traffic, the driver generally requires time to feel and respond
to the stimuli of the road, for instance, relative velocity, and variation of headway, and then
make a decision to adjust the acceleration of their vehicle.

Expanding eq. (2.5) by using the Taylor expansion of the variables ∆xk(t̃+ατ) and ∆vk(t̃+ατ)
while ignoring the nonlinear terms, result in the equation as given below:

∆xk(t̃+ατ)=∆xk(t̃)+ατ∆x′k(t̃)=∆xk(t̃)+ατ∆vk(t̃) , (2.6)

∆xk−1(t̃+ατ)=∆xk−1(t̃)+ατ∆x′k−1(t̃)=∆xk−1(t̃)+ατ∆vk(t̃) , (2.7)

∆vk(t̃+ατ)=∆vk(t̃)+ατ∆v′k(t̃)=∆vk(t̃)+ατ∆ak(t̃) , (2.8)

where ∆ak(t̃)= ak+1(t̃)−ak(t̃) represents the acceleration difference into the leading car k+1
and the following car k. Using eqs. (2.6) and (2.7), we can calculate the optimal velocities
VF (∆xk(t̃+ατ)) and VB(∆xk−1(t̃+ατ)) as follow:

VF (∆xk(t̃+ατ))=VF [∆xk(t̃)]+V ′
F [∆xk(t̃)]∆vk(t̃)ατ , (2.9)

VB(∆xk−1(t̃+ατ))=VB[∆xk−1(t̃)]+V ′
B[∆xk−1(t̃)]∆vk−1(t̃)ατ . (2.10)

Using eqs. (2.8), (2.9) and (2.10) into eq. (2.5), we get
dvk(t̃)

dt̃
= ã[ωVF (∆xk(t̃))+ (1−ω)VB(∆xk−1(t̃))−vk(t̃)]+αωV ′

F (∆xk(t̃))

∗∆vk(t̃)+α(1−ω)V ′
B(∆xk−1(t̃))∆vk−1(t̃)+λ∆vk(t̃)+λατ∆ak(t̃) . (2.11)

where V ′
F (∆xk(t̃)) and V ′

B(∆xk−1(t̃)) are the derivatives of forward and backward optimal velocity
functions in form of headway respectively. The following are the optimal velocity functions:

VF (∆xk(t̃))= vF
max

2
[tanh(∆xk(t̃)−hc)+ tanh(hc)],

VB(∆xk−1(t̃))=−vB
max

2
[tanh(∆xk−1(t̃)−hc)+ tanh(hc)] , (2.12)

where vF
max is the forward maximum velocity, vB

max is the backward maximum velocity and hc

is the safe distance. We take the value of ω from 0.5 to 1.0, as in driving, the value of forward
concentration must be larger than backward concentration, vF

max = vB
max = 2 and hc = 4.

3. Linear Stability Analysis
In this part, we investigate the effect of individual expectations and the BFL effect through
linear stability analysis to understand the pattern of traffic congestion. Assume that traffic flow
is stable at the beginning and that all cars N travel on a route of length L with a headway h
and constant velocity ωVF(h)+ (1−ω)VB(h). As a result, the position of the car in the steady
traffic flow is

x0
k(t̃)= hk+ (ωVF (h)+ (1−ω)VB(h))t̃, h = L

N
. (3.1)
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From the traffic steady state x0
k(t̃), a small deviation yk(t̃)= e(i jk+zt̃) is made as

xk(t̃)= x0
k(t̃)+ yk(t̃) . (3.2)

Figure 1. Phase diagram in parameter space (h,a) between OVM, FVDM and new model for fixed
α= 0.2, ω= 0.9

Put eq. (3.2) into (2.11) and linearizing the derived equation, we get
d2 yk(t̃)

dt̃2 = a
[
ωV ′

F (h)∆yk(t̃)+ (1−ω)V ′
B(h)∆y(k−1)(t̃)−

d yk(t̃)
dt̃

]
+αωV ′

F (h)
(

d yk+1(t̃)
dt̃

− d yk(t̃)
dt̃

)
+α(1−ω)V ′

B(h)
(

dyk(t̃)
dt̃

− d yk−1(t̃)
dt̃

)
+λ

(
d yk+1(t̃)

dt̃
− d yk(t̃)

dt̃

)
+λατ

(
d2 yk+1(t̃)

dt̃2 − d2 yk(t̃)
dt̃2

)
. (3.3)

Expanding yk(t̃) in eq. (3.3) by using Fourier series, we get

z2 = a[ωV ′
F (h)(ei j −1)+ (1−ω)V ′

B(h)(1− e−i j)− z]+αωV ′
F (h)[z(ei j −1)]

+α(1−ω)V ′
B(h)[z(1− e−i j)]+λz(ei j −1)+λατz2(ei j −1) . (3.4)

Put z = z1(i j)+ z2(i j)2+ . . . and ei j = 1+ i j+ 1
2 (i j)2+ . . ., and ignoring term of order greater than

2 into eq. (3.4), we get

[z1(i j)+ z2(i j)2 + . . .]2

= ã
[
ωV ′

F (h)
(
i j+ (i j)2

2
+ . . .

)
+ (1−ω)V ′

B(h)
(
i j− (i j)2

2
+ . . .

)
− (z1(i j)+ z2(i j2)+ . . .)

]
+αωV ′

F (h)
[
(z1(i j)+ z2(i j2)+ . . .)

(
i j+ (i j)2

2
+ . . .

)]
+α(1−ω)V ′

B(h)
[
(z1(i j)+ z2(i j2)+ . . .)

(
i j− (i j)2

2
+ . . .

)]
+λ(z1(i j)+ z2(i j2)+ . . .)

(
i j+ (i j)2

2
+ . . .

)
+λατ(z1(i j)+ z2(i j2)+ . . .)2

(
i j+ (i j)2

2
+ . . .

)
.

(3.5)
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Equating, the first and second-order terms of i j, we obtain

z1 =ωV ′
F (h)+ (1−ω)V ′

B(h) , (3.6)

z2 =
ã(ωV ′

F (h)+ (1−ω)V ′
B(h))+2(α(ωV ′

F (h)+ (1−ω)V ′
B(h))+λ)z1 −2z2

1

2ã
. (3.7)

(a) (b)

(c) (d)

Figure 2. Phase diagram for the different α with fixed λ= 0.2 (a) ω= 1, (b) ω= 0.9, (c) ω= 0.8, (d) ω= 0.7

The condition of neutral stability is written as

ã = 2(1−α)(ωV ′
F + (1−ω)V ′

B)2 −2λ(ωV ′
F + (1−ω)V ′

B)
(ωV ′

F + (1−ω)V ′
B)

. (3.8)

When a small perturbation with long wavelengths is applied to the uniform traffic flow, it
becomes unstable.

ã < 2(1−α)(ωV ′
F + (1−ω)V ′

B)2 −2λ(ωV ′
F + (1−ω)V ′

B)
(ωV ′

F + (1−ω)V ′
B)

. (3.9)

For α= 0, the stability condition of the Forward-Backward Velocity Difference Model (FBVD) is
obtained [14] as

ã < 2(ωV ′
F + (1−ω)V ′

B)2 −2λ(ωV ′
F + (1−ω)V ′

B)
(ωV ′

F + (1−ω)V ′
B)

. (3.10)

When α= 0 and ω= 1, the stability constraint of the Full Velocity Difference Model (FVDM) [16]
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is as follows

ã < 2V ′(h)−2λ . (3.11)

From eq. (3.9), we can conclude that the prediction parameter α and driver weight parameter
ω, both have a substantial impact on traffic flow stabilization. Figure 1 shows the key similarity
of the new, FVD, and OV models for fixed α= 0.2 and ω= 0.9 with λ= 0.2. On comparing the
results of the OV and FVD models with a new model, it is obvious that the new model represents
a more stable zone, revealing that the proposed model is an improvement over the existing
literature.

In the parameter space (hc, ãc), we replicate the neutral stability curves (solid lines) with
coexisting curves (dotted lines) as depicted in Figure 2. The apex of the neutral stability line is
denoted by the critical point and the zone of stability is located above the neutral curve, whereas
traffic remains uniform when a small perturbation is added. The area below the neutral stability
curve represents that the traffic is unstable, which means that it is affected by perturbation
which converts into congestion with time. The amplitude of these curves diminishes as the value
of the parameter α rises for fixed ω= 0.7,0.8,0.9,1.0 with fixed λ, as seen in Figures 2(a-d). The
higher the value of α, the more stable the traffic flow is, effectively suppresses the traffic jam.
For α< 0 value, there is a physical delay in the vehicle motion, which induce traffic congestion,
which can also be seen from Figuer 2.

Also seen in Figure 2, the stable region improves when the influence of previous sites
is taken into account, and this effect becomes more effective when the effect of the driver’s
prediction parameter is taken into account. Consequently, the effect of the prediction parameter
α and the BFL effect play an essential role in stabilizing traffic congestion.

4. Nonlinear Analysis
As we know that the nature of traffic systems is very complex, so linear analysis is not enough
to accurately describe the real traffic state. Therefore, a nonlinear analysis is accomplished, to
understand the nonlinear behavior of traffic flow in terms of the “kink-antikink” wave.

Equation (2.11) in form of headway can be rewritten as
d2∆xk(t̃)

dt̃2 = ã
[
ω(VF (∆xk+1(t̃))−VF (∆xk(t̃)))+ (1−ω)(VB(∆xk(t̃))−VB(∆xk−1(t̃)))− d∆xk(t̃)

dt̃

]
+αω(V ′

F (∆xk+1(t̃))−V ′
F (∆xk(t̃)))

(
d∆xk(t̃)

dt̃

)
+αω(V ′

F (∆xk(t̃)))
(

d∆xk+1(t̃)
dt̃

− d∆xk(t̃)
dt̃

)
+α(1−ω)(V ′

B(∆xk(t̃))−V ′
B(∆xk−1(t̃)))

(
d∆xk−1(t̃)

dt̃

)
+α(1−ω)(V ′

B(∆xk−1(t̃)))
(

d∆xk(t̃)
dt̃

− d∆xk−1(t̃)
dt̃

)
+λ

(
d∆xk+1(t̃)

dt̃
− d∆xk(t̃)

dt̃

)
+λατ

(
d2∆xk+1(t̃)

dt̃2 − d2∆xk(t̃)
dt̃2

)
. (4.1)
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Using the reductive perturbation method, we solve the eq. (4.1) by introducing a small-scale
positive parameter ϵ near the critical point (hc, ãc). The variables t̃ and k have small scales,
and are defined as

X = ϵ(k+bt̃), T = ϵ3 t̃, 0< ϵ≤ 1 , (4.2)

where the unspecified constant is b. The headway ∆xk(t̃) is defined as

∆xk(t̃)= hc +ϵR(X ,T) . (4.3)

From eqs. (4.1), (4.2) and (4.3) and expanding using Taylor’s series expansion up to the fifth
power of ϵ, we get the following nonlinear evolution problem:

ϵ2(b− (ωV ′
F + (1−ω)V ′

B)∂X R+ϵ3
(
τb2 − 1

2

(
ω(V ′

F +V ′
B)−V ′

B

)
−ταb(ωV ′

F + (1−ω)V ′
B)−λτb

)
∂2

X R

+ϵ4
[
∂TR−

(
ωV ′

F

6
− (1−ω)V ′

B

6
+ ταb

2
(ωV ′

F − (1−ω)V ′
B)+ λαb

2
+λατ2b2

)
∂3

X R

−
(
ωV ′′′

F

6
+ (1−ω)V ′′′

B

6

)
∂X R3

]
+ϵ5

[
−

(
ωV ′

F

24
− (1−ω)V ′

B

24
+ ταb

6
(ωV ′

F − (1−ω)V ′
B)+ λαb

6
+ λατ2b2

2

)
∂4

X R
]

+ϵ5
[
(2bτ−λτ−ατ(ωV ′

F + (1−ω)V ′
B))∂X∂TR−

(
ωV ′′′

F

12
− (1−ω)V ′′′

B

12

)
∂2

X R3
]
= 0 , (4.4)

where

V ′
F =V ′

F (hc)= dVF (∆xk)
d∆xk

|∆xk=hc , V ′
B =V ′

B(hc)= dVB(∆xk−1)
d∆xk−1

|∆xk−1=hc ,

V ′′′
F =V ′′′

F (hc)= d3VF (∆xk)
d∆x3

k

|∆xk=hc , V ′′′
B =V ′′′

B (hc)= d3VB(∆xk−1)
d∆x3

k−1

|∆xk−1=hc .

The traffic flow near the critical point τ= (1−ϵ2)τc , τc = ωV ′
F−(1−ω)V ′

B
2b2(1−α)−2λb and b =ωV ′

F + (1−ω)V ′
B is

introducing into eq. (4.4) and neglecting the terms of second and third orders of ϵ, we get

ϵ3(∂TR− q1∂
3
X R+ q2∂X R3)+ϵ5(q3∂

2
X R+ q4∂

4
X R+ q5∂

2
X R3)= 0 , (4.5)

where

q1 = 1
6

b+ 1
2
λτcb+ 1

2
τcαb(ωV ′

F − (1−ω)V ′
B)+λατ2

cb2,

q2 =−1
6

(ωV ′′′
F + (1−ω)V ′′′

B ),

q3 =−b2τc +λτcb+ατcb2,

q4 = (2τcb−λτc −ατcb)
(

b
6
+ τcαb

2
(ωV ′

F − (1−ω)V ′
B)+ λτcb

2
+λατ2

cb2
)

−
(
ωV ′

F

24
− (1−ω)V ′

B

24
+ ταb2

6
+ λτb

6
+ λατ2b2

2

)
,

q5 = (2τcb−λτc −ατcb)
(
ωV ′′

F

6
+ (1−ω)V ′′

B

6

)
− 1

12
(ωV ′′′

F − (1−ω)V ′′′
B ). (4.6)
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To obtained mKdV equation, the transformation (change of scale variable) is applied to eq. (4.5)
as follows

T = 1
q1

T ′, R =
√

q1

q2
R′ . (4.7)

Therefore, with such a O(ϵ) correction term, the conventional mKdV equation is given as:

∂T ′R′ = ∂3
X R′−∂X R′3 −ϵ

(
q3

q1
∂2

X R′+ q4

q1
∂4

X R′+ q5

q1
∂2

X R′3
)
. (4.8)

The “kink-antikink” soliton is defined as in eq. (4.9), if the term O(ϵ) is neglected

R′
0(X ,T ′)=p

c tanh
[√

c
2

(X − cT ′)
]
. (4.9)

The kink solution must meet the solvability requirement by R′
0(X ,T ′) and finding propagation

velocity c:

(R′
0, M[R′

0])≡
∫ ∞

−∞
R′

0M[R′
0]dX = 0 , (4.10)

where M[R′
0]=

(
q3
q1
∂2

X R′+ q4
q1
∂4

X R′+ q5
q1
∂2

X R′3
)
.

With the help of the method described in [9], we get propagation velocity c as

c = 5q2q3

2q2q4 −3q1q5
. (4.11)

As a result, the generic kink-antikink solution is as follows:

∆xk(t)= hc ±
√

q1c
q2

(
τ

τc
−1

)
×

[
(1− cq1)

(
τ

τc
−1

)
t̃+k

]
. (4.12)

The amplitude is

A =
√

q1c
q2

(
τ

τc
−1

)
, (4.13)

where V ′′′
F < 0, V ′′′

B < 0. The coexisting phase is defined by the general “kink-antikink” solution.
The coexisting curves for the jammed and the free flow phase can be described by ∆xk = hc ± A.
As a result, the mKdV equation can be used to characterize the jamming transition.

5. Numerical Simulation
To check the findings of the new model, the numerical simulation is performed with the closed
boundary condition. We assume N = 100 is the total number of vehicles, L = 400 is the length of
the road, h = L

N , λ= 0.3, A = 1 and the initial disturbances are chosen as follow:

∆xk(0)=∆xk(1)=∆xk(2)= 4.0, (k ̸= 50,51),

∆xk(0)=∆xk(1)=∆xk(2)= 4.0+ A, (k = 50),

∆xk(0)=∆xk(1)=∆xk(2)= 4.0− A, (k = 51).

In the simulation, we will investigate whether the initial disturbance increases or it is
suppressed with time by the model’s intrinsic stable dynamics in a deeper sense. For this,
initially, we assumed that all vehicles are expected to have the same characteristics. In this
study, we divide our results into two cases.

Communications in Mathematics and Applications, Vol. 14, No. 2, pp. 727–744, 2023



736 Driver Predictions and Energy Consumption in Car-following Model with BFL Effect: Sunita et al.

Case 1: No “Backward Looking” Effect
Here, we examine the impact of the prediction parameter on the traffic stability for ω = 1,
a = 1.7s−1. Figure 3 represents the space-time evolution of the headway with different values of
α between time 10000-10300s. For negative values of α, the initial perturbation evolves into a
“kink-antikink” wave, which oscillates near the critical headway as shown in Figures 3(a-b).

(a) (b)

(c) (d)

(e)

Figure 3. Space-time evolution of the headway with different parameter α at ω = 1, (a) α = −0.2,
(b) α=−0.1, (c) α= 0.0, (d) α= 0.1, (e) α= 0.2

As we go from a negative to a positive value of α means delay to advance effect, the results
corresponding to the decision of drivers can be easily seen from Figuers 3(c-e) that the number
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of stop-and-go waves as well as their amplitude decreases with the increment in the value of
α. Further, increase in the value of α, the disturbance dies out, and flow becomes stable for
α= 0.2. Figure 4 displays the headway profile for different values of prediction parameter α, for
fixed ω= 1 at t̃ = 10300 in respective of Figure 3 which indicates that amplitude of headway
profile diminishes with α and flow become uniform for α= 0.2. Therefore, the driver prediction
parameter has a crucial role in alleviating congestion, as shown in Figures 3 and 4.

(a) (b)

(c) (d)

(e)

Figure 4. Snapshot of the headway at different values of α and fixed ω= 1, (a) α=−0.2, (b) α=−0.1,
(c) α= 0.0, (d) α= 0.1, (e) α= 0.2
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Case 2: With “Backward Looking” effect
Figure 5 shows that the space-time evolution of the headway with different values of α after
t̃ = 10000, with fixed ω = 0.9. As the stability condition is not satisfied for −0.2 ≤ α ≤ 0.1,
the initial perturbation evolves into congested flow in the form of kink waves which propagates
in the backward direction and oscillates near the critical headway as shown in Figures 5(a-d).
As we enter into the stable region for α= 0.2, it is clear from Figure 5(e) that the congested flow
converts into the uniform flow.

(a) (b)

(c) (d)

(e)

Figure 5. Space-time evolution of the headway with different parameter α at ω = 0.9, (a) α = −0.2,
(b) α=−0.1, (c) α= 0.0, (d) α= 0.1, (e) α= 0.2
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Figure 6 illustrates the headway profile for different values of prediction parameter α at
t̃ = 10300 in respective of Figure 5. From Figure 6, it is concluded that the stable region is
getting better with an increase in the value of α.

(a) (b)

(c) (d)

(e)

Figure 6. Snapshot of the headway at different values of α and fixed ω= 0.9, (a) α=−0.2, (b) α=−0.1,
(c) α= 0.0, (d) α= 0.1, (e) α= 0.2

From Figures 4 and 6, it is clear that for positive values of α, the amplitude of these waves
decreases with an increase in the value of α. On the other hand, for negative values of α, the
amount of stop-and-go waves and also their amplitude increases with a decrease in the value of
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the prediction effect. Therefore, it is obvious to say that the stable zone enhances with a rise
in the value of α. This is because the significant delay introduced by human responses and
mechanical control units ultimately generates external distractions in the whole dynamical
system of traffic flow. On comparing the results of Cases 1 and 2, it is reasonable to conclude
that the “backward-looking” effect further enhances the stability of traffic flow which is helpful
in reducing external distractions.

6. Energy Consumption Control
As economic development and human consumption abilities grow, the energy usage of motorized
vehicles has increased significantly for the general public. As a result, it is critical to figure out
how to eliminate wasteful energy use in the transportation system. The energy consumption of
the new model will be examined in this section. The kinetic energy theory states that vehicles
use energy in order to work. According to the theorem, the velocity change of each vehicle at
successive moments is investigated. The change in energy consumption is described as

∆E = 1
2

[v2
k(t̃)−v2

k(t̃−1)] , (6.1)

where v2
k(t̃) and v2

k(t̃−1) is the velocity of vehicle k at two moments (t̃−1) and t̃. In Figures 7
and 8, there are two zones with ∆E > 0 indicates energy usage during movement, whereas
∆E < 0 indicates energy usage during relaxation.

The fluctuation of energy consumption for different prediction parameters with fixed λ= 0.3
and ω = 1 is shown in Figure 7. When the prediction parameter is increased, the amplitude
variation of energy consumption decreases, indicating that the prediction effect can minimize
kinetic transmission loss and hence reduce extra traffic energy usage.

Figure 7. Energy consumption between the successive period of time for different values of α

The change in energy consumption for various parameters ω with fixed prediction parameter
is depicted in Figuer 8. Figures 8(a) and 8(b) show that when the “backward-looking” impact is
increased with a fixed prediction value, the energy consumption is reduced. It means that the
by increasing the effect of the driver’s prediction with the “backward-looking” effect reduces
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energy consumption effectively. The results of the energy consumption are consistent with the
headway of space-time evolution.

(a) (b)

Figure 8. Energy consumption successive period of time for different value of ω, (a) α=−0.2, (b) α= 0.2

Therefore, we noticed that the congestion may be reduced by including the contribution of
preceding vehicles, and further, it can also be minimized if drivers make sensible decisions.

7. Conclusions
The effect of the driver’s prediction is taken into consideration in a novel car-following model
based on the BFL effect. Using linear and nonlinear analysis, the stability condition is derived
near the critical point and nonlinear behavior is analyzed through the mKdV equation. From
theoretical analysis, it is found that the stable region enhances with an increase in the value of
the prediction parameter, and further enhances with an increase in the value of the backward
effect. Furthermore, simulation findings are also confirmed with the theoretical analysis,
demonstrating that the prediction parameter and BFL have a significant impact on traffic flow
stability, which may be used to alleviate traffic congestion.

Through the study of energy consumption, it reveals that the proposed model can effectively
fulfill the goals of reducing traffic instability and lowering energy consumption. As a result, it
is appropriate to consider the driver prediction in traffic flow and its effect become prominent
when the role of preceding sites is also considered.
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