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1. Introduction
In a discussion of an arbitrary topological space, an important axiom for a topology is that
a finite intersection of open sets must result in an open set. However, what if we discuss a
topology such that an arbitrary intersection of open sets is open? Examples of this kind of space
are often far from the well known topologies (the usual topology on the real line, the co-finite
topology). One can give examples of such space: finite spaces and the discrete space. We call
such spaces Alexandroff spaces.

According to [1], an Alexandroff space (or an space with the property of Alexandroff) is a
topological space such that every point has a minimal neighborhood, or equivalently, has unique
minimal base. This is also equivalent to the fact that the intersection of every family of open
sets is open.
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The interest in Alexandroff spaces was a consequence of the very important role of finite
spaces in digital topology and the fact that these spaces have all the properties of finite spaces
relevant for such theory (see [5], [2]).

In Section 2 we shall show that we can view each topological space as a preorder and that,
in fact, topological spaces and preorders are, essentially, the same. This correspondence permit
us to find a very interesting way to analyze topology: as a preorder. We can even use this
to find equivalences between ideas grounded in preorders and ideas in topology, and how an
ordering-based concept can imply a topological concept (and vice versa). We also give some
properties of Alexandroff spaces.

A graph G is an ordered pair (V ,E) consisting of a set V of vertices and a set E of edges.
Any graph G can be represented by a topological space in the following sense:

(i) V is represented by a collection of distinct point in R3;

(ii) E is represented by a collection of distinct, internally disjoint arcs, homeomorphic to the
closed interval [0,1] such that boundary points of the arcs represent the endpoints of the
corresponding edge.

In this paper we give new topologies on a graph and we show the correspondence between
Alexandroff spaces and graphs.

2. Separation Axioms, Quasi-Compact Subset and Irreducible Subset
• A topological space X is a T0-space (or Kolmogorov space) if for every pair of distinct

points x and y, there exists a neighborhood containing one of them but not the other;
which is equivalent to the following implication ({x}= {y}⇒ x = y).

• A topological space X is a T1-space (or accessible space) if for every pair of distinct points
x and y, there exists a neighborhood containing x (resp. y) and not containing y (resp. x);
which is equivalent to the fact that every singleton is a closed set of X .

A topological space X is said quasi-compact if it satisfies the property of Borel-Lebesgue
but it is not necessarily a Hausdorff space. A subset A of X is said quasi-compact if is a
quasi-compact space equipped with the induced topology of X . We have the following properties:

(i) The quasi-compactness is invariant under continuous map.

(ii) Each closed subset of a quasi-compact space is quasi-compact.

(iii) The union of finitely many quasi-compact subsets is quasi-compact.

The intersection of tow quasi-compact open subsets is not necessarily quasi-compact [3].
The following example confirm this result:

Example 2.1. In the two Euclidean space we consider the following points: C(0,1), A(−1,0),
B(1,0), An

(−1, −1
n

)
and Bn

(
1, −1

n
)
. Let X be the set {C, A,B, An,Bn : n ≥ 1} equipped with the

following topology: {;, X ,U = {A, An : n ≥ 1},V = {B,Bn : n ≥ 1},Un = {Ap : n ≥ p ≥ 1},Vn = {Bp :
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n ≥ p ≥ 1}}. U and V are two quasi-compact open subsets but U∩V is not quasi-compact because
U ∩V =⋃

n Un ∪Vn and Un ∪Vn is an increasing sequence of open subsets.

A closed subset C is irreducible if it is not the union of two proper closed subsets or if the
intersection of two nonempty open subsets is nonempty. An element x of C is called a generic
point if the closure of the singleton {x} is equal to C : {x}= C.

3. Alexandroff Spaces
3.1 Topology and Preorder
Topological spaces and preordered sets are basically the same objects considered from different
perspectives. The correspondence between spaces and preordered sets can be described as
follows. Given a topology τ on X . Associated to τ, there is a preorder structure on X (i.e.,
a reflexive and transitive relation), defined by x ≤ y if x ∈ {y}. Conversely, if a preorder ≤ on
the set X is given, we define for each x ∈ X the subset Ux = {y ∈ X | y≤ x}= ]←, x]. It is easy to
see that these subsets form a basis for a topology on X , which is the topology associated to the
preorder ≤ [4]. Note that, in [3] it was shown that an ordered set (X ,≤) is order-isomorphic to
the prime spectrum of a unitary commutative ring equipped with the inclusion.

The applications described above define a one-to-one correspondence between topological
structures and preorders on X . Moreover, the T0 separation axiom is equivalent to the
antisymmetry of the associated preorder and therefore, T0-topologies on X correspond to
order relations. Having this equivalence, we will regard T0-spaces as posets and vice-versa.
We will use both structures according to convenience.

Let (X ,≤) be an ordered set and T be a topology on X . We say that T is compatible with ≤ if,
for each element x ∈ X , {x}= {y ∈ X : x ≤ y}= [x,→ [ ({x} is the closure of {x}) [6].

Proposition 3.1. Let (X ,≤) be an ordered set and T be a topology on X . If T is compatible with
≤, then (X ,T) is a T0-space.

Proof. Let x and y be two points of X .

• If x < y, then x ∈ X − [y,→ [ and so the open set X − [y,→ [ contains x and not contains y.

• If x and y are not comparable, then the open set X − [x,→ [ contains y and not
contains x.

Remark 3.2. If (X ,T) is a T0-space, then X is an ordered set by the order defined by x ≤T y if
and only if x ∈ {y}.

We have the following proposition:

Proposition 3.3. If (X ,T) and (X ′,T′) are two homeomorphic T0-spaces, then the ordered sets
(X ,≤T) and (X ′,≤T′) are isomorphic.
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Proof. Let h be a homeomorphism between (X ,T) and (X ′,T′). If x ≤T y, then x ∈ {y}
T

. Since h
is continuous, h(x) ∈ {h(y)}

T′
and so h(x)≤T′ h(y). If now h(x)≤T′ h(y), then, by the continuity of

h−1, x ≤T y. Therefore, h is an isomorphism.

The converse of Proposition 3.3 is false. Indeed, all the compatible topologies with an order ≤
induce the same order ≤ but are not necessarily homeomorphic. Note that, the (COP)-topology1

and the left topology2 of an ordered set (X ,≤) are compatible with ≤ but not homeomorphic.

3.2 Properties of Alexandroff Spaces
Proposition 3.4. Let (X ,τ) be an Alexandroff space and let V (x) be the intersection of all open
sets containing x. Let W(x)= {y ∈ X : x ∈V (y)}. Let F be the set of closed sets of τ. In the following
we give some properties of Alexandroff spaces.

(i) {V (x) : x ∈ X } is the only minimal base of τ;

(ii) The closure {x}=W(x);

(iii) (X ,F) is an Alexandroff space and {W(x) : x ∈ X } is the only minimal base of F. The closure
for F {x} is equal to V (x);

(iv) U is an open quasi-compact subset if and only if there exist a finitely many elements
x1, . . . , xn of U such that U =⋃n

i=1 V (xi);

(v) If (X ,τ) is a T0-space, then W(x)=W(y) if and only if x = y.

(vi) If (X ,τ) is a T1-space, then τ is the discrete topology.

Proof. (i) From [1];

(ii) Let y ∈ {x}. Then every open set V (y) of y contains x and so y ∈ W(x). Conversely, let
y ∈W(x), then x ∈V (y). Therefore, every open set containing y contains x. Thus y ∈ {x}.

(iii) By duality;

(iv) By the definition of quasi-compactness and item (i);

(v) From [1];

(vi) If (X ,τ) is a T1-space, then W(x)= {x}, therefore τ is the discrete topology.

By Proposition 3.4, we get immediately.

Proposition 3.5. Let (X ,τ) be an topological space. The following properties are equivalent:

(i) (X ,τ) is an Alexandroff space;

(ii) V (x) is an open set of τ, for all x ∈ X ;

(iii) (X ,F) is an Alexandroff space;

(iv) (X ,F) is a topological space.
1The (COP)-topology is generated by the family {X − [x,→ [: x ∈ X }.
2The left topology is generated by the family {[x,→ [: x ∈ X }.
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Proposition 3.6. Let (X ,τ) be an Alexandroff space and F be an irreducible closed subset. If F
is a quasi-compact subset of (X ,F), then there exits x ∈ F such that {x}= F (x is called a generic
point of F).

Proof. Since F is a closed subset, F = ⋃
x∈F {x}. According to the facts that {x} is open and

F is quasi-compact in (X ,F), there exist a finitely many elements x1, . . . , xn of U such that
F =⋃n

i=1 {xi}. Since F is irreducible, there exits 1≤ i ≤ n such that F = {xi}.

4. Correspondence Between Alexandroff Spaces and Graphs
Let G = (V ,E) be a graph (finite or infinite) and let u,v ∈ V . A path from u to v in G is a
sequence of edges e1, . . . , en of E for which there exists a sequence x0 = u, x1, . . . , xn−1, xn = v of
vertices such that e i has, for i = 1, . . . ,n, the endpoints xi−1 and xi . We denote by

R(u)= {u}∪ {v : if there exists a path from u to v},

L(u)= {u}∪ {v : if there exists a path from v to u}.

The family {R(u) : u ∈G} (respectively {L(u) : u ∈G}) forms a base of a topology on G called
the G-right τ(GR) (respectively, G-left τ(GL)) topology.

Two vertices a and b in a graph G are called adjacent in G if a and b are endpoints of
an edge e of G. The graphs G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if there exists a
one-to-one and onto function f from V1 to V2 with the property that a and b are adjacent in G1

if and only if f (a) and f (b) are adjacent in G2, for all a and b in V1. Such a function f is called
an isomorphism.

Definition 4.1. The graphs G1 = (V1,E1) and G2 = (V2,E2) are homeomorphic if (G1,τ(GR
1 ))

and (G2,τ(GR
2 )) are homeomorphic.

Immediately, we obtain the following proposition.

Proposition 4.2. Two isomorphic graphs are homeomorphic.

Note that the converse of Proposition 4.2 is not true in general; indeed, one can see [7,
Example 10, p. 673].

Proposition 4.3. Suppose that the graphs G1 = (V1,E1) and G2 = (V2,E2) are reflexive. If G1

and G2 are homeomorphic, then they are isomorphic.

Proof. Let f : (G1,τ(GR
1 )) → (G2,τ(GR

2 )) be a homeomorphism. Let a and b be two adjacent
vertices of G1. Then b ∈ R(a). Since f is continuous, f (b) ∈ R( f (a)). Since G2 is transitive, f (a)
and f (b) are two adjacent vertices of G2. Since f −1 is continuous and G1 is transitive, if f (a)
and f (b) are two adjacent vertices of G2, then a and b are adjacent vertices of G1. Therefore,
G1 and G2 are isomorphic.
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We can now state and prove the main result of this paper.

Theorem 4.4. Let (X ,τ) be a topological space. (X ,τ) is an Alexandroff space if and only if X
has the structure of a graph and τ is the right topology τ(X R).

Proof. Sufficiency. Let U be an open set of (X ,τ(X R)) containing a point x. Then there exists
yinX such that x ∈ R(y)⊂U . Thus R(x)⊂U . Since R(x) is an open set of (X ,τ(X R)) containing
x, R(x) is the intersection of all open sets of (X ,τ(X R)) containing x. Consequently, (X ,τ(X R))
is an Alexandroff space (Proposition 3.5 (ii)).

Necessity. Let (X ,τ) be an Alexandroff space. If x ∈ X , we denote by V (x) be the intersection
of all open sets containing x. We define on X the following graph structure: the vertices set
V = X and a and b are endpoints of an edge e ∈ E (the set of edges) if b ∈ R(a). Note that
R(a)= {a}∪ {b : if there exists a path from a to b} which is equal to V (a). Therefore, the family
(V (a))a∈X is a base of open sets of (X ,τ) and the family (R(a))a∈X is a base of open sets of
(X ,τ(X R)). Consequently, τ= τ(X R).

5. Conclusion
We studied the correspondence between graphs and Alexandroff spaces. It is shown that a
topological space X is Alexandroff if and only if X is a graph equipped with the X -right topology.
In a future work, these correspondences permit us to find some applications of Alexandroff
space in information retrieval theory.
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