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Absolute Convergence of Multiple Series of Fourier-Haar
Coefficients of Functions of Bounded pth-Power Hardy

Type Variation

Boris Golubov

Abstract. For functions of two variables having bounded pth-power variation of
Hardy type on unit square the sufficient condition for absolute convergence of
double series of Fourier-Haar coefficients with power type weights is obtained.
From this condition we obtain two corollaries for absolute convergence of the
series of Fourier-Haar coefficients of functions of one variable of bounded Wiener
pth-power variation or belonging to the class Lipα. The main result and all
corollaries are sharp. N -dimensional analogs of main result and corollaries are
formulated.

1. Introduction

The Haar orthonormal system {χn}∞n=1 had been defined in 1909 (see [10],
[11]). By this system A. Haar gave positive answer on the question of D. Hilbert:
is there an orthogonal system such that Fourier series with respect to this system
of any continuous function converges uniformly to that function.

The functions of the system {χn}∞n=1 are step functions on the interval [0,1].
Therefore this system does not be a basis in the space C[0,1] of continuous
functions. But G. Faber [4] in 1910 proved that each continuous function on the
interval [0,1] can be uniquely represented by the series with respect to the system
{1,
∫ x

0
χn(t)d t}∞n=1. Consequently the last system is a basis in the space C[0,1].

Therefore G. Faber constructed a basis in the space C[0,1] on 17 years earlier
than J. Shauder [17]. In 1928 J. Shauder [18] proved that the Haar system is a
basis in the spaces Lp[0,1] for 1≤ p <∞.

After introducing the notion of the wavelet system it was observed that the
Haar system is the most simple wavelet system (see the book of I.Ya. Novikov,
V.Yu. Protasov and M.A. Skopina [16, p. 39]).

The Haar system is orthogonal basis in the space L2[0,1].

2000 Mathematics Subject Classification. 42C10.
Key words and phrases. Multiple Haar system; Fourier-Haar coefficients; Absolute convergence;
pth-power Hardy type variation.



244 Boris Golubov

We consider the absolute convergence of the series of Fourier-Haar coefficients.
For functions of several variables having bounded pth-power variation of Hardy
type on the unit N-dimensional cube [0, 1]N the sufficient condition for absolute
convergence of multiple series of Fourier-Haar coefficients with power type weights
is obtained. From this condition follow some corollaries on absolute convergence
of the series of Fourier-Haar coefficients of functions of one variable of bounded
Wiener pth-power variation or belonging to the class Lipα, 0< α≤ 1.

The main result and all corollaries are sharp.

2. Auxiliary results

We remind the definition of Haar system. Let us set χ1(x) ≡ 1 on [0,1]. We
introduce the open dyadic intervals I k

i =
�

i−1
2k , i

2k

�
, i = 1, . . . , 2k, k = 0,1, . . ..

Let us represent the natural number n ≥ 2 in the form n = 2k + i, i = 1, . . . , 2k,

k = 0,1, . . .. Then we set χn(x) =
p

2k for x ∈ I k+1
2i−1, χn(x) = −

p
2k for x ∈ I k+1

2i

and χn(x) = 0 for x ∈ [0,1]\ Ī k
i , where Ī k

i is closure of the interval I k
i . The Haar

functions χn(x) are step functions. If the function χn(x) has a jump in some point
x ∈ (0, 1), then we set

χn(x) =
1

2
[χn(x − 0) +χn(x + 0)].

At the end points of the interval [0,1] we set χn(0) = χn(+0) and χn(1) =
χn(1− 0).

The information on Fourier-Haar series one can find in the book of B.S. Kashin
and A.A. Sahakyan [14] and in the survey paper of the author [8].

We denote by V[0,1] the class of functions of bounded variation on the interval
[0, 1], and by Lipα the class of functions satisfying the Lipschitz condition of order
α ∈ (0, 1].

Absolute convergence of the series of Fourier-Haar coefficients for the first time
was studied by Z. Cisielski and J. Musielak [3]. They proved the following result.

Theorem 2.1. If f ∈ V[0,1]∩ Lipα (0< α≤ 1), then
∞∑

n=1
| f̂ (n)|<∞, where

f̂ (n) =

∫ 1
0

f (x)χn(x)d x

are the Fourier-Haar coefficients of f .

P.L. Ulyanov [21] proved the following sharp theorem.

Theorem 2.2. For functions f ∈ V[0,1] the series
∞∑

n=1

| f̂ (n)|β and
∞∑

n=1

nγ−1/2| f̂ (n)| (2.1)

converge, if β > 2/3 or γ < 1 accordingly. But this statement does not hold, if
β = 2/3 or γ= 1.
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It follows from this theorem that the condition f ∈ Lipα in Theorem 2.1 is
unnecessary. Moreover, the convergence of the first series in (2.1) for any β > 2/3

is more strong condition then convergence of the series
∞∑

n=1
| f̂ (n)|.

The author [9] generalized the Theorem 2.2 on the class Vp[0,1], 1 ≤ p <∞,
which was introduced by N. Wiener [23].

Definition 2.3. The function f is said to be a function of bounded pth-power
variation on the unit interval [0,1], if

V ( f )p = sup
τ

� n∑
i=1

| f (x i)− f (x i−1)|p
�1/p

<∞, 1≤ p <∞,

where τ= {0= x0 < x1 < . . .< xn = 1} is arbitrary partition of the interval [0,1].
The class of all such functions is denoted by Vp[0,1].

Let us note that the imbedding Lip(1/p) ⊂ Vp[0,1] holds, if 1 ≤ p < ∞, and
Vq[0,1]⊂ Vp[0, 1], if 1≤ q < p <∞.

Theorem 2.4 (see [9]). (i) For a function f ∈ Vp[0,1], 1 ≤ p < ∞, the series
(2.1) converge, if β > 2p/(p+ 2) or γ < 1/p respectively.

(ii) The statement of the item (i) does not hold, if β = 2p/(p + 2) or γ = 1/p
respectively.

Let us note that the second part of Theorem 2.4 is proved by means of a
function belonging to the class Lip(1/p) ⊂ Vp[0,1]. More exactly, we consider
the Weierstrass nondifferentiable function

fα(x) =
∞∑

m=0

2−αm cos2m+1πx , 0< α < 1,

on the interval [0,1]. G.H. Hardy [12] proved that fα ∈ Lipα. The statement of
the second part of Theorem 2.4 follows from

Lemma 2.5. For the functions f1/p(x), 1 < p < ∞, and f1(x) = 1− 2x, the first
series in (2.1) diverge if β = 2p/(p + 2) and the second one diverges if γ = 1/p,
where 1≤ p <∞.

Therefore from the Theorem 2.4 and Lemma 2.5 taking in account the
imbedding Lip(1/p)⊂ Vp[0,1], 1≤ p <∞, we obtain

Theorem 2.6 (see [9]). (i) Let f ∈ Lipα, 0 < α ≤ 1, and β > 2/(2α + 1) or
γ < α. Then both series in (2.1) converge.

(ii) The statement of the item (i) does not hold, if β = 2/(2α + 1) or γ = α
respectively.

The statement of Theorem 2.6 is an analog of a theorem of O. Szasz (see the
book [2, p. 647]) and of a theorem of G. Hardy [12] related to trigonometric
Fourier coefficients.
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We give sharp sufficient conditions on the parameters β > 0 and γ for
convergence of the series

∞∑
n=1

nγ| f̂ (n)|β

of functions f ∈ Vp[0,1], 1≤ p <∞, or f ∈ Lipα, 0< α≤ 1.
Similar results are given for functions of N variables having bounded pth-power

variation of Hardy type on the unit cube [0,1]N .

3. The results for functions of two variables

Let us define the class of functions of bounded pth-power variation of Hardy
type on the unit square ∆= [0,1]×[0,1]. For two partitions τ1 = {0= x0 < x1 <

. . . < x r = 1} and τ2 = {0 = y0 < y1 < . . . < yl = 1} of the interval [0,1] and for
a function f (x , y) defined on the unit square ∆ we set

V1,0( f )p = sup
0≤y≤1

sup
τ1

� r∑
i=1

| f (x i , y)− f (x i−1, y)|p
�1/p

, (3.1)

V0,1( f )p = sup
0≤x≤1

sup
τ2

� l∑
j=1

| f (x , y j)− f (x , y j−1)|p
�1/p

, (3.2)

V1,1( f )p = sup
τ1,τ2

� r∑
i=1

l∑
j=1

|∆1,1 f (x i , y j)|p
�1/p

(3.3)

where 1≤ p <∞ and

∆1,1 f (x i , y j) = f (x i, y j)− f (x i−1, y j)− f (x i , y j−1) + f (x i−1, y j−1) .

Definition 3.1. The function f (x , y) is said to be a function of bounded pth-power
variation of Hardy type on the unit square ∆, if the values (3.1)-(3.3) are finite for
a given p ∈ [1,∞). The class of all such functions is denoted by Hp(∆).

The class H1(∆) had been defined by G.H. Hardy [13]. Let us remark that in
the case 1≤ p′ < p′′ <∞ the imbedding Hp′(∆)⊂ Hp′′(∆) is valid.

For a function f ∈ L(∆) we set

f̂ (m, n) =

∫∫
∆

f (x , y)χm(x)χn(y)d xd y,

i.e. f̂ (m, n) are Fourier coefficients of the function f with respect to double Haar
system {χm(x)χn(y)}∞m,n=1.

Theorem 3.2. (i) Let us assume f ∈ Hp(∆), 1 ≤ p < ∞, and γ+ 1 < β(1/p +

1/2), β > 0. Then the series
∞∑

m=1

∞∑
n=1
(mn)γ| f̂ (m, n)|β converges.

(ii) The statement of the item (i) does not hold, if γ+ 1 = β(1/p + 1/2), β > 0,
1≤ p <∞.
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Taking γ= 0 or β = 1 we obtain from Theorem 3.2 two corollaries.

Corollary 3.3. (i) Let f ∈ Hp(∆), p ∈ [1,∞). Then
∞∑

m=1

∞∑
n=1
| f̂ (m, n)|β < ∞, if

β >
2p

p+2
.

(ii) The statement of the item (i) does not hold, if β = 2p
p+2

.

Corollary 3.4. (i) Let f ∈ Hp(∆), p ∈ [1,∞). Then
∞∑

m=1

∞∑
n=1
(mn)γ| f̂ (m, n)| <∞,

if γ < 1/p− 1/2.
(ii) The statement of the item (i) does not hold, if γ= 1/p− 1/2.

The Corollaries 3.3 and 3.4 are two dimensional analogs of one dimensional
result of the author [9] (see Theorem 2.4 above).

If ∥ f (·+ h, ·+ η)− f (·, ·)∥C = O((h2 + η2)α/2), (h,η) ∈ ∆, then we shall write
f ∈ Lip(α,∆), 0< α≤ 1.

It is easy to prove the imbedding Lip(α,∆) ⊂ H2/α(∆), 0 < α ≤ 1. Therefore it
follows from the Theorem 3.2

Corollary 3.5. Let f ∈ Lip(α,∆), 0 < α ≤ 1. Then
∞∑

m=1

∞∑
n=1
(mn)γ| f̂ (m, n)|β <∞, if

γ+ 1< β(α+ 1)/2, β > 0.

The statement of this corollary is known (see [19], where also it is proved that
in the case γ+1= β(α+1)/2, β > 0, 0< α < 1, the statement of the Corollary 3.5
does not hold). In the case γ= 0 Corollary 3.5 was proved earlier in the paper [20].
Moreover, in this paper it is proved that the statement of the Corollary 3.5 is not
true, if γ= 0 and β(α+ 1)/2= 1.

Let us observe that in the papers of U. Goginava [5] (for p = 1) and [6] (for
1 < p < ∞) the classes PBVp(∆), 1 ≤ p < ∞, of functions of bounded partial
pth-power variation on the unit square ∆= [0,1]× [0,1] were considered.

Definition 3.6. A function f is said to be of bounded partial pth-power variation
on the unit square ∆= [0,1]× [0, 1], if the values (3.1) and (3.2) are finite.

It is obvious that the imbedding Hp(∆) ⊂ PBVp(∆), 1 ≤ p < ∞, holds. This
imbedding is sharp.

In the paper [1] the following result is proved.

Theorem 3.7. If f ∈ PBVp(∆), p ∈ [1,∞), and γ+ 1 < β(1/2p + 1/2), β > 0,

then
∞∑

m=1

∞∑
n=1
(mn)γ| f̂ (m, n)|β <∞.

From this theorem we obtain the following corollaries.

Corollary 3.8. If f ∈ PBVp(∆), p ∈ [1,∞), then
∞∑

m=1

∞∑
n=1
| f̂ (m, n)|β < ∞ for

β >
2p

p+1
.
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Corollary 3.9. If f ∈ PBVp(∆), p ∈ [1,∞), then
∞∑

m=1

∞∑
n=1
(mn)γ| f̂ (m, n)| < ∞ for

γ < 1/2p− 1/2.

From the papers [19] and [20] it follows that the statement of the Theorem 3.7
does not hold, if γ+ 1= β(1/2p+ 1/2), β > 0, 1< p <∞.

Let us observe that each function f (x) of one variable we may consider as
a function f (x , y) of two variables. In this case we have obviously V0,1( f )p =
V1,1( f )p = 0 (see (3.2) and (3.3)). Therefore, each function f (x) of one variable
belonging to the Wiener class Vp[0,1], p ∈ [1,∞), also belongs to the class Hp(∆).

In this case the series
∞∑

m=1

∞∑
n=1
(mn)γ| f̂ (m, n)|β has the form

∞∑
m=1
(m)γ| f̂ (m)|β since

f̂ (m, n) = 0 if n≥ 2 and f̂ (m, 1) = f̂ (m), m≥ 1.

Therefore, from the Theorem 3.2 it follows

Theorem 3.10. (i) Let f ∈ Vp[0,1], 1 ≤ p < ∞, and γ + 1 < β(1/p + 1/2),

β > 0. Then
∞∑

n=1
nγ| f̂ (n)|β <∞.

(ii) The statement of the item (i) does not hold, if γ+ 1 = β(1/p + 1/2), β > 0,
1≤ p <∞.

In the cases p = 1, γ = 0 and p = 1, β = 1 Theorem 3.10 was proved by
P.L. Ulyanov [21] (see Theorem 2.2 above) and in the cases γ = 0 or β = 1 it was
proved by the author [9] (see Theorem 2.4 above).

Taking in account the imbedding Lipα⊂ V1/α[0,1], 0< α≤ 1, and the fact that
the second statement of Theorem 3.10 is proved by means of functions from the
class Lip(1/p), we can obtain from Theorem 3.10 as a corollary the following

Theorem 3.11. (i) Let f ∈ Lipα, 0 < α ≤ 1, and γ+ 1 < β(α+ 1/2), β > 0.

Then
∞∑

n=1
nγ| f̂ (n)|β <∞.

(ii) The statement of the item (i) does not hold, if γ + 1 = β(α + 1/2), β > 0,
0< α≤ 1.

Let us observe that Theorem 3.11 in the cases γ= 0 or β = 1 was proved in our
paper [9]. In the case γ = 0 Theorem 3.11 is an analog of a theorem of O. Szasz
(see [2, p. 647]), and in the case β = 1 it is an analog of a theorem of G. Hardy
[12] related to trigonometric Fourier coefficients.

4. Multidimensional results

In this section we shall formulate the multidimensional analog of the Theorem
3.2. To this aim we introduce the class Vp([0,1]N ), 1 ≤ p < ∞, of functions of
N variables having bounded pth-power Vitali type variation on the N -dimensional
unit cube [0,1]N . Let us consider the partitionΠ of the cube [0,1]N by hyperplanes
xs = x (rs)

s , where x (rs)
s < x (rs+1)

s , rs = 0, . . . , ls, x (0)s = 0, x (ls)s = 1, s = 1, . . . , N .
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For a function f (x) ≡ f (x1, . . . , xN ), which is defined on the cube [0,1]N , we
introduce the difference

∆(rs)
s ( f , x) = f (x1, . . . , x (rs+1)

s , . . . , xN )− f (x1, . . . , x (rs)
s , . . . , xN )

with respect to the variable xs, s = 1, . . . , N . After that we consider the iterated
difference ∆(rN )

N . . .∆(r1)
1 ( f ,◦) of order N . This difference in fact does not depend

on the point x .

Definition 4.1. The function f (x) ≡ f (x1, . . . , xN ) is said to be of bounded
pth-power Vitali type variation on the N -dimensional unit cube [0,1]N , if

V (N)( f )p ≡ sup
Π

� l1−1∑
r1=0

. . .
lN−1∑
rN=0

|∆(rN )
N . . . ∆(r1)

1 ( f ,◦)|p
�1/p

<∞,

for some p ∈ [1,∞). The class of all such functions we denote by Vp([0,1]N ).

The class V1([0,1]N ) for the case N ≥ 2 had been introduced by Vitali [22] in
1908, and later in 1910 this class was also introduced by Lebesgue [15].

Now we define the class Hp([0,1]N ), N ≥ 2, of functions of bounded pth-power
Hardy type variation on the unit cube [0,1]N . Let α= (α1, . . . ,αs) be s-dimensional
integer-valued vector whose coordinates satisfy the inequalities 1 ≤ α1 < α2 <

. . .< αs ≤ N , where 1≤ s < N . By ᾱ= (ᾱ1, . . . , ᾱN−s)we denote the integer-valued
vector, whose coordinates consist of those integers 1, 2, . . . , N which do not belong
to the sequence α1,α2, . . . ,αs and ᾱ1 < . . . < ᾱN−s. After that each point x ∈ RN

can be written by convention in the form x = (xα, x ᾱ), where xα = (xα1
, . . . , xαs

),
x ᾱ = (xᾱ1

, . . . , xᾱN−s
). If the point x ᾱ is fixed then the function f (xα, x ᾱ) be a

function of s variables xα1
, . . . , xαs

.

Definition 4.2. The function f ∈ Vp([0,1]N ) is said to be of bounded pth-power
Hardy type variation on the unit cube [0,1]N , if

H(N)( f )p ≡ sup
ᾱ,dim ᾱ<N

sup
x ᾱ∈[0,1]N−s

V (s)( f (◦, x ᾱ))p <∞

for some p ∈ [1,∞). The class of all such functions we denote by Hp([0,1]N ).

In the case N = 2, p = 1 this definition was introduced by Hardy [13].
In order to formulate the N -dimensional analog of the Theorem 3.2 let us

consider N -multiple Haar system {χn(x)}. Each function χn(x) of this system is
defined by the N -dimensional integer-valued vector n = (n1, . . . , nN ) and χn(x) =
χn1
(x1) · · · χnN

(xN ). For a function f ∈ L([0,1]N ) its Fourier-Haar coefficients are
defined by the equality

f̂ (n) =

∫
[0,1]N

f (x)χn(x)d x .
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Theorem 4.3. Let f ∈ Hp([0,1]N ), 1≤ p <∞. Then
∞∑

n1=1

. . .
∞∑

nN=1

(n1 · · · nN )
γ| f̂ (n)|β <∞, if γ+ 1< β(1/p+ 1/2), β > 0.

This statement does not hold, if γ+ 1= β(1/p+ 1/2), where β > 0, 1≤ p <∞.

Theorem 4.3 is proved by induction based on the Theorem 3.2. From this

theorem by setting γ= 0 or β = 1, we obtain the following corollaries.

Corollary 4.4. If f ∈ Hp([0,1]N ) for some p ∈ [1,∞), then
∞∑

n1=1

. . .
∞∑

nN=1

| f̂ (n1, . . . , nN )|β <∞ for β >
2p

p+ 2
.

This statement does not hold, if β = 2p
p+2

.

Corollary 4.5. If f ∈ Hp([0,1]N ) for some p ∈ [1,∞), then
∞∑

n1=1

. . .
∞∑

nN=1

(n1 · · · nN )
γ| f̂ (1, . . . , nN )|<∞ for γ < 1/p− 1/2.

This statement does not hold, if γ= 1/p− 1/2.

Let us formulate the N -dimensional analog of the Corollary 3.5. By definition

f ∈ Lip(α, [0, 1]N ), 0< α≤ 1, if sup
|x−y|≤δ,x ,y∈[0,1]N

| f (x)− f (y)|= O(δα).

It is easy to prove the imbedding Lip(α, [0,1]N ) ⊂ VN/α([0,1]N ), 0 < α ≤ 1.

Taking in account this imbedding we obtain the N -dimensional analog of the

Corollary 3.5.

Corollary 4.6. Let f ∈ Lip(α, [0,1]N ), 0< α≤ 1 and γ+1< β(α/N+1/2), β > 0.
Then

∞∑
n1=1

. . .
∞∑

nN=1

(n1 · · · nN )
γ| f̂ (n)|β <∞.

In the case γ = 0 the statement of this Corollary is known (see [7], where

also it is proved, that in this case the statement of this Corollary does not hold, if

β (α/N + 1/2) = 1).

Acknowledgements

The work was supported by the Russian Foundation for Basic Research under

Grant N 11-01-00321 and by the Grant “Contemporary problems of analysis

and mathematical physics” of the Ministry of Education and Science of Russian

Federation.



Absolute Convergence of Multiple Series of Fourier-Haar Coefficients 251

References

[1] A. Aplakov, Absolute convergence of the double series of Fourier-Haar coefficients,
Acta Math. Acad. Paedag. Nyiregyhaz. 22 (2006), 33–39.

[2] N.K. Bari, Trigonometric Series (in Russian), Fizmatgiz Publisher, Moscow, 1961.

[3] Z. Ciesielski and J. Musielak, On absolute convergence of Haar series, Colloq. Math.
7(1) (1959), 61–65.

[4] G. Faber, Über die Orthogonalfunktionen des Herrn Haar, Jahresberichte Deutsch.
Math. Verein. 19 (1910), 104–112.

[5] U. Goginava, On the uniform summability of multiple Walsh-Fourier series, Anal.
Math. 26(3) (2000), 209–226.

[6] U. Goginava, Uniform convergence of N-dimensional trigonometric Fourier series,
Georgian Math. J. 7(4) (2000), 665–676.

[7] L. Gogoladze and V. Tsagareishvili, Absolute convergence of multiple Fourier series,
Georgian Mathematical Union, First Intern. Conf., Batumi, September 12-19, Book of
Abstracts, pp. 24–25 (2010).

[8] B.I. Golubov, Series with respect to Haar system (in Russian), Mathematical Analysis,
1970, pp. 109–146. Acad. Sci. USSR, Allunion Inst. Sci. and Techn. Information,
Moscow, 1971.

[9] B.I. Golubov, On Fourier series of continuous functions with respect to Haar system
(in Russian), Izv. Akad. Nauk SSSR. Ser. Math. 28(6) (1964), 1271–1296.

[10] A. Haar, Zur Theorie der orthogonalen Funktionensysteme, Inauguraldissertation
(Göttingen Univ., 1909).

[11] A. Haar, Zur Theorie der orthogonalen Funktionensysteme, Math. Annalen 69 (1910),
331–371.

[12] G.H. Hardy, Weierstrass nondifferentiable function, Trans. Amer. Math. Soc. 17 (1916),
301–325.

[13] G.H. Hardy, On double Fourier series and especially those which represent the double
zeta-function with real and incommensurable parameters, Quart. J. Math. 37(1)
(1905), 57–79.

[14] B.S. Kashin and A.A. Sahakyan, Orthogonal series (in Russian), Fizmatlit Publisher,
Moscow, 1984.

[15] A. Lebesgue, Sur l‘integration des functions discontinue, Ann. Ecol. Normal Super., Ser.
3, 27 (1910), 361–450.

[16] I.Ya. Novikov, V.Yu. Protasov and M.A. Skopina, Theory of wavelets (in Russian),
Fizmatlit Publisher, Moscow, 2005.

[17] J. Schauder, Zur Theorie stetiger Abbildungen in Funktionalräumen, Math. Zeit. 26
(1927), 47–65.

[18] J. Schauder, Eine Eigenschaft des Haarschen Orthogonalsystems, Math. Zeit. 28
(1928), 317–320.

[19] G.Z. Tabatadze, On absolute convergence of Fourier-Haar series (in Russian), Proc.
Georg. Acad. Sci. 103(3) (1981), 541–543.

[20] V.Sh. Tsagareishvili, On Fourier-Haar coefficients (in Russian), Proc. Georg. Acad. Sci.
81(1) (1976), 29–31.

[21] P.L. Ulyanov, On the series with respect to Haar system (in Russian), Mat. Sb. 63 (3)
(1964), 356–391.



252 Boris Golubov

[22] G. Vitali, Sui gruppi di punti e sulle funzioni di variable, Atti Accad. Sci. Torino 43
(1908), 75–92.

[23] N. Wiener, The quadratic variation of a function and its Fourier coefficients,
Massachusetts J. Math. 3 (1924), 72–94.

Boris Golubov, Department of Higher Mathematics, Moscow Institute of Physics and
Technologies, Institute lane 9, 141700, Dolgoproudny, Moscow region, Russia.
E-mail: golubov@mail.mipt.ru


