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1. Introduction
After long fifty years of introduction of the notion of statistical convergence [5,12,14] the idea
of I-convergence was given by Kostyrko et al. [10] in 2000 where I is an ideal of subsets of the
set of natural numbers. Then this idea of ideal convergence was studied by several authors in
many directions [1–4].

The notion of localized sequences was introduced by Krivonosov [9] in metric spaces in 1974
as a generalization of a Cauchy sequence. A sequence {xn}n∈N of points in a metric space (X ,d)
is said to be localized in some subset M ⊂ X if the number sequence αn = d(xn, x) converges for
x ∈ M. The maximal subset of X on which the sequence {xn}n∈N is localized is called the locator
of {xn}n∈N and it is denoted by loc(xn). If {xn}n∈N is localized on X then it is called localized
everywhere in X . If the locator of a sequence {xn}n∈N contains all elements of this sequence,
except for a finite number of elements of it then the sequence {xn}n∈N is called localized in itself.
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After long years, in 2020, Nabiev et al. [11] introduced the idea of I-localized and I∗-localized
sequences in metric spaces and investigated some basic properties of the I-localized sequences
related with I-Cauchy sequences. At the same time, Gürdal et al. [8] studied A-statistically
localized sequences in n-normed spaces, Yamanci et al. [15] have extended this idea of localized
sequences to statistically localized sequences in 2-normed spaces and interestingly this notion
has been generalized in ideal context in 2-normed spaces by Yamanci et al. [16]. In 2021,
Granados and Bermudez [7] studied on I2-localized double sequences and Granados [6] nurtured
this notion with the help of triple sequences using ideals in metric spaces.

In 2012, Sedghi et al. [13] introduced the interesting notion of S-metric spaces and proved
some basic properties in this space. For an admissible ideal I, I∗-convergence and I∗-Cauchy
criteria in X imply I-convergence and I-Cauchy criteria in X respectively. Moreover, for
admissible ideal with the property (AP), I and I∗-convergence (I and I∗-Cauchy criteria)
in X are equivalent [1]. In this paper we have studied the notion of I and I∗-localized sequences
and have investigated some results related to I-Cauchy sequences in S-metric spaces.

2. Preliminaries
Now we recall some basic definitions and notations from [10]. If X is a non-empty set then a
collection I of subsets of X is said to be an ideal of X if (i) A,B ∈ I⇒ A∪B ∈ I and (ii) A ∈ I,
B ⊂ A ⇒ B ∈ I. Clearly, {φ} and 2X , the power set of X , are the trivial ideals of X . A non-trivial
ideal I is said to be an admissible ideal if {x} ∈ I for each x ∈ X . If I is a non-trivial ideal of X
then the family of sets F(I)= {A ⊂ X : X \ A ∈ I} is clearly a filter on X . This filter is called the
filter associated with the ideal I. An admissible ideal I of N, the set of natural numbers, is said
to satisfy the condition (AP) if for every countable family {A1, A2, A3, . . .} of sets belonging to I

there exists a countable family of sets {B1,B2,B3, . . .} such that A i∆Bi is a finite set for each
i ∈N and B =⋃

i∈NBi ∈ I. Note that Bi ∈ I for all i ∈N.

Now, we recall some basic definitions and some properties from [13].

Definition 2.1. Let X be a non-empty set. The S-metric on X is a function S : X×X×X → [0,∞),
such that for each x, y, z,a ∈ X ,

(i) S(x, y, z)≥ 0;

(ii) S(x, y, z)= 0 if and only if x = y= z;

(iii) S(x, y, z)≤ S(x, x,a)+S(y, y,a)+S(z, z,a).

The pair (X ,S) is called a S-metric space. Several examples may be seen from [13]. In a
S-metric space, we have S(x, x, y)= S(y, y, x). A sequence {xn}n∈N in (X ,S) is said to converge
to x if and only if S(xn, xn, x) → 0 as n →∞. That is, for ε > 0, there exists n0 ∈ N such that
S(xn, xn, x)< ε for all n ≥ n0. The sequence {xn}n∈N in (X ,S) is called a Cauchy sequence if for
each ε> 0, there exists n0 ∈N such that S(xn, xn, xm)< ε for each n,m ≥ n0.

We recall the following definitions in an S-metric space from [1] which will be useful in the
sequel.
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A sequence {xn}n∈N of elements of X is said to be I-convergent to x ∈ X if for each ε > 0,
the set A(ε) = {n ∈N : S(xn, xn, x) ≥ ε} ∈ I. The sequence {xn}n∈N of elements of X is said to be
I∗-convergent to x ∈ X if and only if there exists a set M ∈F(I), M = {m1 < m2 < ·· · < mk < ·· · }⊂
N such that lim

k→∞
S(xmk , xmk , x)= 0.

A sequence {xn}n∈N of elements of X is called an I-Cauchy sequence if for every ε > 0,
there exists a positive integer n0 = n0(ε) such that the set A(ε) = {n ∈N : S(xn, xn, xn0) ≥ ε} ∈ I.
The sequence {xn}n∈N of elements of X is called an I∗-Cauchy sequence if there exists a
set M = {m1 < m2 < . . . < mk . . .} ⊂ N, M ∈ F(I), such that the subsequence {xmk } is an
ordinary Cauchy sequence in X i.e., for each preassigned ε > 0, there exists k0 ∈ N such
that S(xmk , xmk , xmr )< ε for all k, r ≥ k0.

3. Main Results
Throughout the discussion, N stands for the set of natural numbers, I for an admissible ideal of
N and X stands for a S-metric space unless otherwise stated. Now we introduce some definitions
and properties regarding localized sequences with respect to the ideal I in S-metric spaces.

Definition 3.1. A sequence {xn}n∈N in X is said to be localized in the subset M ⊂ X if for each
x ∈ M, the non-negative real sequence {S(xn, xn, x)}n∈N converges in R.

Definition 3.2. A sequence {xn}n∈N of elements of X is said to be I-localized in the subset M ⊂ X
if for each x ∈ M, I- lim

n→∞S(xn, xn, x) exists i.e., if the non-negative real sequence {S(xn, xn, x)}n∈N
is I-convergent.

The maximal subset of X on which a sequence {xn}n∈N in X is I-localized is called the
I-locator of {xn}n∈N and it is denoted by locI(xn). A sequence {xn}n∈N in X is said to be I-localized
everywhere if the I-locator of {xn}n∈N is the whole set X . The sequence {xn}n∈N is said to be
I-localized in itself if the set {n ∈N : xn ∈ locI(xn)} ∈F(I).

Now we introduce an important result in S-metric spaces which will be useful in the sequel.

Lemma 3.1. The inequality |S(x, x,ξ)−S(ξ,ξ, y)| ≤ 2S(x, x, y) holds good for any x, y,ξ ∈ X .

Proof. Now for x, y,ξ ∈ X , we have

S(x, x,ξ)≤ S(x, x, y)+S(x, x, y)+S(ξ,ξ, y)
= 2S(x, x, y)+S(ξ,ξ, y) .

Therefore

S(x, x,ξ)−S(ξ,ξ, y)≤ 2S(x, x, y) . (3.1)

Again, we have

S(ξ,ξ, y)−S(x, x,ξ)= S(y, y,ξ)−S(x, x,ξ)
≤ S(y, y, x)+S(y, y, x)+S(ξ,ξ, x)−S(x, x,ξ)
= S(x, x, y)+S(x, x, y)+S(x, x,ξ)−S(x, x,ξ)
= 2S(x, x, y) .
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Therefore

S(ξ,ξ, y)−S(x, x,ξ)≤ 2S(x, x, y) . (3.2)

From eqs. (3.1) and (3.2) we have |S(x, x,ξ)−S(ξ,ξ, y)| ≤ 2S(x, x, y). This completes the proof.

Lemma 3.2. If {xn}n∈N is an I-Cauchy sequence in X then it is I-localized everywhere.

Proof. By the condition, for every ε > 0, there exists a positive integer n0 = n0(ε) such
that the set A(ε) = {n ∈ N : S(xn, xn, xn0) ≥ ε

2 } ∈ I. Let ξ ∈ X . Using Lemma 3.1, we have
|S(xn, xn,ξ)−S(ξ,ξ, xn0)| ≤ 2S(xn, xn, xn0). Therefore {n ∈N : |S(xn, xn,ξ)−S(ξ,ξ, xn0)| ≥ ε} ⊂ {n ∈
N : S(xn, xn, xn0)≥ ε

2 } ∈ I. This shows that the number sequence {S(xn, xn,ξ)}n∈N is I-convergent
for each ξ ∈ X . Hence the sequence {xn}n∈N is I-localized everywhere.

Corollary 3.1. By Lemma 3.2, it follows that every I-convergent sequence in X is I-localized
everywhere.

Also, if I is an admissible ideal then every localized sequence in X is I-localized sequence
in X .

Definition 3.3. A sequence {xn}n∈N is said to be I∗-localized in X if the real sequence
{S(xn, xn, x)}n∈N is I∗-convergent for each x ∈ X .

Theorem 3.1. Let I be an admissible ideal. If a sequence {xn}n∈N in X is I∗-localized on the
subset M ⊂ X then {xn}n∈N is I-localized on the set M and locI∗(xn)⊂ locI(xn).

Proof. Let {xn}n∈N be I∗-localized on the subset M ⊂ X . Then, by Definition 3.3, the real
sequence {S(xn, xn, x)}n∈N is I∗-convergent for each x ∈ M. Now since I is an admissible ideal,
the number sequence {S(xn, xn, x)}n∈N is I-convergent for each x ∈ M which implies that {xn}n∈N
is I-localized on the set M.

But the converse of Theorem 3.1 does not hold in general. It can be shown by the following
example.

Example 3.1. First, we define the S-metric on R by S(x, y, z) = d(x, z)+ d(y, z), ∀ x, y, z ∈ R
where d is the usual metric on R. Let N=⋃∞

j=1∆ j be a decomposition of N such that each ∆ j

is infinite and ∆i ∩∆ j =φ for i ̸= j. Let I be the class of all those subsets of N which intersects
only a finite number of ∆ j ’s. Then I is an admissible ideal on N. Let {xn}n∈N be a sequence in
(R,S) defined by xn = 1

j , for n ∈∆ j . Let ε> 0 be given. Now since the sequence
{

1
j

}
j∈N in (R,d)

converges to zero, so there exists p ∈N such that d
(

1
j ,0

)
< ε

4 for all j ≥ p. Now

S(xn, xn,0)= d(xn,0)+d(xn,0)= d
(
1
j
,0

)
+d

(
1
j
,0

)
< ε

4
+ ε

4
= ε

2
, for all j ≥ p. (3.3)

Let x ∈R. Now using Lemma 3.1 and eq. (3.3), we have

|S(xn, xn, x)−S(x, x,0)| ≤ 2S(xn, xn,0)< ε, for all j ≥ p.
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Hence {n ∈N : |S(xn, xn, x)−S(x, x,0)| ≥ ε}⊆∆1∪∆2∪·· ·∪∆p ∈ I. Therefore, {n ∈N : |S(xn, xn, x)−
S(x, x,0)| ≥ ε} ∈ I. Hence for each x ∈ R, the number sequence {S(xn, xn, x)}n∈N is I-convergent.
Therefore, the sequence {xn}n∈N is I-localized in (R,S)

Now we show that the sequence {xn}n∈N is not I∗-localized in (R,S). If possible, let
the sequence {xn}n∈N be I∗-localized in (R,S). So the number sequence {S(xn, xn, x)}n∈N is
I∗-convergent for each x ∈ R. So there exists A ∈ I such that, for M = N\ A = {m1 < m2 <
·· · < mk < ·· · } ∈F(I), the subsequence {S(xn, xn, x)}n∈M is convergent. Now, by the definition of
I, there is a positive integer t such that A ⊆∆1 ∪∆2 ∪ . . .∪∆t. But then ∆i ⊂N\ A = M for all
i ≥ t+1. In particular ∆t+1, ∆t+2 ⊂ M. Since ∆′

js are infinite, there are infinitely many k′s for
which xmk = 1

t+1 when mk ∈∆t+1 and xmk = 1
t+2 when mk ∈∆t+2. So

S(xmk , xmk ,0)=


d

(
1

t+1
,0

)
+d

(
1

t+1
,0

)
= 2

t+1
, when mk ∈∆t+1,

d
(

1
t+2

,0
)
+d

(
1

t+2
,0

)
= 2

t+2
, when mk ∈∆t+2 .

So for 0 ∈ R there are infinitely many terms of the form 2
t+1 and 2

t+2 . So {S(xmk , xmk ,0)}k∈N
can not be convergent which leads to a contradiction. Hence the sequence {xn}n∈N can not be
I∗-localized.

Remark 3.1. If X has no limit point then I-convergence and I∗-convergence coincide. Therefore,
by Definitions 3.2 and 3.3 and by Theorem 3.1, we have locI(xn) = locI∗(xn). Also, if X has a
limit point ξ then there is an admissible ideal I for which there exists an I-localized sequence
{yn}n∈N in X but {yn}n∈N is not I∗-localized.

Now we shall formulate the necessary and sufficient condition for the ideal I under which I

and I∗-localized sequences are equivalent.

Theorem 3.2. (i) If I satisfies the condition (AP) and {xn}n∈N is an I-localized on the set
M ⊂ X then it is I∗-localized on M.

(ii) If X has a limit point and every I-localized sequence implies I∗-localized then I will have
the property (AP).

Proof. (i): Suppose that I satisfies the condition (AP) and {xn}n∈N is an I-localized on the
set L ⊂ X . Then, by the definition, the number sequence {S(xn, xn, x)}n∈N is I-convergent
for x ∈ L. Let {S(xn, xn, x)}n∈N be I-convergent to β = β(x) ∈ R. Then for each ε > 0 the set
A(ε) = {n ∈ N : |S(xn, xn, x)−β| ≥ ε} ∈ I. Now suppose A1 = {

n ∈ N : |S(xn, xn, x)−β| ≥ 1
}

and
Ak = {

n ∈N : 1
k ≤ |S(xn, xn, x)−β| < 1

k−1

}
for k ≥ 2,k ∈ N. Obviously, A1, Ak ∈ I for k ≥ 2, k ∈ N

and A i ∩ A j = φ, for i ̸= j. Since I satisfies the condition (AP), there exists a countable
family of sets {B1,B2, · · · } such that A j∆B j is finite for j ∈ N and B = ⋃∞

j=1 B j ∈ I. Now we
shall show that the sequence {xn}n∈N is I∗-localized. By the definition, it is enough to prove
that the number sequence {S(xn, xn, x)}n∈N is I∗-convergent for every x ∈ L. We show, for
N\ B = M = {m1 < m2 < ·· · < mk < ·· · } ∈ F(I), lim

n→∞,n∈M
S(xn, xn, x) = β. Let θ > 0 and k ∈ N
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be such that 1
k+1 < θ. Then {n ∈N : |S(xn, xn, x)−β| ≥ θ}⊂⋃k+1

j=1 A j . Since A j∆B j , j = 1,2, · · ·k+1,

is finite, we have an n0 ∈N such that
(⋃k+1

j=1 B j

)
∩ {n ∈N : n > n0}=

(⋃k+1
j=1 A j

)
∩ {n ∈N : n > n0}. If

n > n0 and n ∉ B, then n ∉⋃k+1
j=1 B j and so n ∉⋃k+1

j=1 A j . But then |S(xn, xn, x)−β| < 1
k+1 < θ. Thus

the number sequence {S(xn, xn, x)}n∈N, x ∈ L, is I∗-convergent. Therefore the sequence {xn}n∈N
is I∗-localized.

(ii): The proof is parallel to [10, Theorem 3.2]. Therefore, it is omitted.

Definition 3.4. Let {xn}n∈N be a sequence in X . Then {xn}n∈N is said to be I-bounded if there
exists x ∈ X and G > 0 such that the set {n ∈N : S(xn, xn, x)>G} ∈ I.

Proposition 3.1. Every I-localized sequence is I-bounded.

Proof. Let {xn}n∈N be I-localized on a subset M ⊂ X . Then the number sequence {S(xn, xn,ξ)}n∈N
is I-convergent for every ξ ∈ M. Let {S(xn, xn,ξ)}n∈N converge to α = α(ξ) ∈ R. Let G > 0 be
given. Then {n ∈N : |S(xn, xn,ξ)−α| >G} ∈ I. This implies that {n ∈N : S(xn, xn,ξ)−α>G}∪ {n ∈
N : S(xn, xn,ξ)−α < −G} ∈ I. Therefore, {n ∈ N : S(xn, xn,ξ) > α+G} ∈ I, which shows that the
sequence {xn}n∈N is I-bounded.

Theorem 3.3. Let I be an admissible ideal with the condition (AP) and L = locI(xn) and let
z ∈ X be a point such that for any ε> 0 there exists x ∈ L satisfying

{n ∈N : |S(xn, xn, x)−S(xn, xn, z)| ≥ ε} ∈ I. (3.4)

Then z ∈ L.

Proof. Let ε > 0 be given and x ∈ L = locI(xn) be a point satisfying the condition (3.4). Let
A = {n ∈ N : |S(xn, xn, x)− S(xn, xn, z)| ≥ ε} ∈ I. Then M = N\ A ∈ F(I). Therefore, for n ∈ M,
we have |S(xn, xn, x) − S(xn, xn, z)| < ε. Now since x ∈ L = locI(xn), the number sequence
{S(xn, xn, x)}n∈N is I-convergent. So the number sequence {S(xn, xn, x)}n∈N is I-Cauchy. Again
since I satisfies the condition (AP), the number sequence {S(xn, xn, x)}n∈N is I∗-Cauchy. Then
there exists B ⊂N, B ∈F(I) such that the subsequence {S(xn, xn, x)}n∈B is an ordinary Cauchy
sequence i.e., there exists n0 ∈N such that |S(xn, xn, x)−S(xm, xm, x)| < ε for all n,m > n0 and
n,m ∈ B. Let K = M∩B. Then K ∈F(I). Now, for p, q ∈ K and p, q > n0, we have

|S(xp, xp, z)−S(xq, xq, z)| ≤ |S(xp, xp, z)−S(xp, xp, x)|+ |S(xp, xp, x)−S(xq, xq, x)|
+ |S(xq, xq, x)−S(xq, xq, z)|

< ε+ε+ε
= 3ε.

Therefore, we have the subsequence {S(xn, xn, z)}n∈K is a Cauchy Sequence. So the number
sequence {S(xn, xn, z)}n∈K is convergent. Therefore, the number sequence {S(xn, xn, z)}n∈N is I∗-
convergent. Since I is an admissible ideal, the number sequence {S(xn, xn, z)}n∈N is I-convergent.
Therefore, the sequence {xn}n∈N is I-localized and z ∈ L. This proves the theorem.

Communications in Mathematics and Applications, Vol. 14, No. 1, pp. 49–58, 2023



A Study on I-localized Sequences in S-metric Spaces: A. K. Banerjee and N. Hossain 55

Definition 3.5 (cf. [11]). Let (X ,S) be a S-metric space and ξ ∈ X . Then ξ is said to be an I-limit
point of the sequence {xn}n∈N ∈ X if there is a set M = {m1 < m2 < ·· · } such that M ∉ I and
lim
k→∞

S(xmk , xmk ,ξ)= 0, and the point ξ is said to be an I-cluster point of the sequence {xn}n∈N ∈ X

if and only if for each ε> 0 we have {n ∈N : S(xn, xn,ξ)< ε} ∉ I.

Definition 3.6 (cf. [11]). Let {xn}n∈N be a sequence in X and M = {m1 < m2 < ·· · }⊂N. If M ∈ I,
then the subsequence {xn}n∈M of {xn}n∈N is called I-thin subsequence of {xn}n∈N. On the other
hand, if M ∉ I, then the subsequence {xn}n∈M of {xn}n∈N is called I-nonthin subsequence of
{xn}n∈N.

Proposition 3.2. If z ∈ X is an I-limit point (respectively I-cluster point) of a sequence
{xn}n∈N ∈ X , then for each y ∈ X the number S(z, z, y) is an I-limit point (respectively I-cluster
point) of the number sequence {S(xn, xn, y)}n∈N .

Proof. Let z ∈ X be an I-limit point of {xn}n∈N ∈ X . Then there is a set M = {m1 < m2 < ·· · <
mk < ·· · } ∉ I such that lim

k→∞
S(xmk , xmk , z) = 0. Then for each ε > 0 there exists n0 ∈ N such

that S(xmk , xmk , z) < ε
2 for all k > n0. Let y ∈ X . Now, by Lemma 3.1, we have |S(xmk , xmk , y)−

S(y, y, z)| ≤ 2S(xmk , xmk , z) < ε, ∀ k > n0. Therefore, lim
k→∞

S(xmk , xmk , y) = S(y, y, z) = S(z, z, y).

Hence, according to the definition of I-limit point of a real sequence, S(z, z, y) is an I-limit point
of the number sequence {S(xn, xn, y)}n∈N.

Next, let z ∈ X be an I-cluster point of {xn}n∈N ∈ X . Then for each ε > 0 we have
{n ∈N : S(xn, xn, z) < ε

2 } ∉ I. Let y ∈ X . Now using Lemma 3.1, we get |S(xn, xn, y)−S(y, y, z)| ≤
2S(xn, xn, z). Therefore,

{
n ∈N : S(xn, xn, z)< ε

2

} ⊂ {n ∈ N : |S(xn, xn, y)− S(y, y, z)| < ε}. Hence
{n ∈N : |S(xn, xn, y)−S(y, y, z)| < ε} ∉ I. Therefore, the number S(y, y, z)= S(z, z, y) is an I-cluster
point of the number sequence {S(xn, xn, y)}n∈N.

Now we prove the following theorem in S-metric spaces which will be needed to prove some
results.

Theorem 3.4. Let x = {xn}n∈N be a sequence in a S-metric space (X ,S) such that I- lim xn = ξ.
If Λx(I)S and Γx(I)S are the sets of all I-limit points and I-cluster points of x respectively, then
we have Λx(I)S =Γx(I)S = {ξ}.

Proof. If possible, let α ∈Λx(I)S where ξ ̸=α. Then there exist two sets K1 = {s1 < s2 < ·· · < si <
·· · }⊂N and K2 = {t1 < t2 < ·· · < t j < ·· · }⊂N such that K1 ∉ I and lim

i→∞
S(xsi , xsi ,ξ)= 0, K2 ∉ I and

lim
j→∞

S(xt j , xt j ,α)= 0. Let ε> 0 be given. Then, there exists j0 ∈N such that S(xt j , xt j ,α)< ε for all

j > j0. Therefore, the set A = {t j ∈ K2 : S(xt j , xt j ,α)≥ ε}⊂ {t1, t2, . . . , t j0}. Since I is an admissible
ideal, A ∈ I. Choose B = {t j ∈ K2 : S(xt j , xt j ,α)< ε}. Clearly, B ∉ I. For, if B ∈ I then K2 = A∪B ∈ I
which is a contradiction. Now since I- lim xn = ξ, we have M = {n ∈ N : S(xn, xn,ξ) ≥ ε} ∈ I.
Consequently, Mc = {n ∈N : S(xn, xn,ξ) < ε} ∈F(I). Since ξ ̸= α, we have B∩Mc = φ. So B ⊂ M.
Since M ∈ I therefore B ∈ I. But this contradicts the fact B ∉ I. Therefore Λx(I)S = {ξ}.
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Next, we assume that η ∈ Γx(I)S where ξ ̸= η. Let ε > 0 be given. Then E1 = {n ∈ N :
S(xn, xn,ξ)< ε

4 } ∉ I and E2 = {n ∈N : S(xn, xn,η)< ε
2 } ∉ I. Since ξ ̸= η, we have E1 ∩E2 =φ. If not,

let m ∈ E1∩E2. Then S(ξ,ξ,η)≤ S(ξ,ξ, xm)+S(ξ,ξ, xm)+S(η,η, xm)= 2S(xm, xm,ξ)+S(xm, xm,η)<
ε
2+ ε

2 = ε. Since ε> 0 be arbitrary therefore S(ξ,ξ,η)= 0. This gives ξ= η. But it is a contradiction.
So we have E2 ⊂ Ec

1. Since I- lim xn = ξ, the set Ec
1 = {

n ∈N : S(xn, xn,ξ)≥ ε
4

} ∈ I. Hence E2 ∈ I,
which contradicts the fact that E2 ∉ I. Therefore, Γx(I)S = {ξ}. This completes the proof of the
theorem.

Lemma 3.3. If α,β ∈ X are I-limit points (respectively I-cluster points) of an I-localized sequence
{xn}n∈N then S(α,α, x)= S(β,β, x) for each x ∈ locI(xn).

Proof. Let x ∈ locI(xn) and y = {yn} = {S(xn, xn, x)}n∈N. Let α,β be any two I-limit points
(respectively I-cluster points) of {xn}n∈N. Then by Proposition 3.2, S(α,α, x), S(β,β, x) are
the I-limit points (respectively I-cluster points) of the number sequence {S(xn, xn, x)}n∈N
i.e., S(α,α, x), S(β,β, x) ∈ Λy(I) (respectively Γy(I)). Since {xn}n∈N is an I-localized sequence

and x ∈ locI(xn), the number sequence {S(xn, xn, x)}n∈N is I-convergent. Let yn
I−→ ξ. Then by

Theorem 3.4, Λy(I) = Γy(I) = {ξ}. Therefore, S(α,α, x) = S(β,β, x) for each x ∈ locI(xn). This
completes the proof.

Lemma 3.4. locI(xn) does not contain more than one I-limit point (respectively I-cluster point)
of the sequence {xn}n∈N in X .

Proof. If possible, let z1, z2 ∈ locI(xn) be two distinct I-limit points (respectively I-cluster
points) of the sequence {xn}n∈N. Then, by Lemma 3.3, we have S(z1, z1, z1) = S(z2, z2, z1). But
S(z1, z1, z1)= 0. Consequently, S(z2, z2, z1)= 0. This gives z1 = z2 which leads to a contradiction.
This proves the lemma.

Remark 3.2. We know from Theorem 3.4 that if {xn}n∈N is I-convergent to x then I-limit point
is unique. But converse result holds if the I-limit point belongs to I-locator of {xn}n∈N which is
shown in the following proposition.

Proposition 3.3. If the sequence {xn}n∈N has an I-limit point y ∈ locI(xn), then I- lim
n→∞xn = y.

Proof. Since y ∈ locI(xn) is an I-limit point of {xn}n∈N, then by Proposition 3.2, S(y, y, y) is
an I-limit point of the number sequence {S(xn, xn, y)}n∈N. By the condition y ∈ locI(xn), so
the number sequence t = {tn}n∈N = {S(xn, xn, y)}n∈N is I-convergent. Let I- lim

n→∞S(xn, xn, y) = ξ.
Now since S(y, y, y) ∈ Λt(I) and, by Theorem 3.4, we have Λt(I) = {ξ}, therefore S(y, y, y) = ξ.
So I- lim

n→∞S(xn, xn, y) = ξ = S(y, y, y) = 0 i.e., I- lim
n→∞S(xn, xn, y) = 0. So for each ε > 0 the set

{n ∈N : S(xn, xn, y)≥ ε} ∈ I which gives I- lim
n→∞xn = y. This completes the proof.

Definition 3.7 (cf. [11]). Let {xn}n∈N be an I-localized sequence with the I-locator L = locI(xn).
Then the number σ= inf

x∈L

(
I- lim

n→∞S(xn, xn, x)
)

is called the I-barrier of {xn}n∈N.
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Theorem 3.5. Let I satisfies the condition (AP). Then, an I-localized sequence is an I-Cauchy
sequence if and only if σ= 0.

Proof. Let {xn}n∈N be an I-Cauchy sequence in X . So it is I∗-Cauchy sequence, since I

satisfies the condition (AP). Therefore, there exists a set K = (kn) such that K ∈ F(I) and
lim

n,m→∞S(xkn , xkn , xkm)= 0. So for each ε> 0, there exists n0 ∈N such that S(xkn , xkn , xkn0
)< ε for

all n ≥ n0. Since {xn}n∈N is I-localized sequence, I- lim
n→∞S(xn, xn, xkn0

) exists. Therefore, we have
I- lim

n→∞S(xkn , xkn , xkn0
)≤ ε. Hence σ≤ ε. As, ε> 0, σ= 0.

Conversely assume that σ = 0. Then by definition of σ, for each ε > 0 there is an
x ∈ locI(xn) such that β(x)= I- lim

n→∞S(xn, xn, x)< ε. So {n ∈N : |S(xn, xn, x)−β(x)| ≥ ε−β(x)} ∈ I, as
ε−β(x)> 0. Now, since S(xn, xn, x)= |S(xn, xn, x)−β(x)+β(x)| ≤ |S(xn, xn, x)−β(x)|+β(x), therefore
{n ∈N : S(xn, xn, x)≥ ε} ∈ I i.e. the sequence {xn}n∈N is I-convergent. Consequently, {xn}n∈N is an
I-Cauchy sequence. This proves the theorem.

Remark 3.3. From the proof of the above theorem we can conclude that converse part holds
without the condition (AP).

Theorem 3.6. If the sequence {xn}n∈N is I-localized in itself and {xn}n∈N contains an I-nonthin
Cauchy subsequence, then {xn}n∈N is an I-Cauchy sequence.

Proof. Let {yn}n∈N be an I-nonthin Cauchy subsequence of {xn}n∈N. Without any loss of
generality we suppose that all the members of {yn}n∈N are in locI(xn). Since {yn}n∈N is a
Cauchy sequence, then, by Theorem 3.5, we have inf

yn∈locI(xn)
I- lim

m→∞S(ym, ym, yn)= 0. Now since

{xn}n∈N is I-localized in itself, then the number sequence {S(xm, xm, yn)}m∈N, yn ∈ locI(xn), is
I-convergent. Therefore, we have I- lim

m→∞S(xm, xm, yn) = I- lim
m→∞S(ym, ym, yn) = 0. This shows

that σ= 0. Therefore, by Theorem 3.5, we have {xn}n∈N is an I-Cauchy sequence. This completes
the proof.
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