
Communications in Mathematics and Applications
Vol. 13, No. 2, pp. 775–782, 2022
ISSN 0975-8607 (online); 0976-5905 (print)
Published by RGN Publications http://www.rgnpublications.com

DOI: 10.26713/cma.v13i2.2033

Review Article

Facilitating Software Reuse Through Design
Characteristics in Object-Oriented Paradigm
Rihab Al-Mutawa and Wajdi Aljedebi*

Department of Computer Science, Faculty of Computing and Information Technology,
King Abdulaziz University, Jeddah, Saudi Arabia
*Corresponding author: waljedaibi@kau.edu.sa

Received: January 5, 2022 Accepted: February 24, 2022

Abstract. Software are used to increases quality as well as productivity that could be associated
with lower costs. Implementing software with capability for reuse is difficult without sufficient
support. This paper includes tutorial represents four important design characteristics in object-
oriented paradigm for facilitating the production of more reusable software. It reviews the concepts of
modularity, cohesion, coupling and information hiding and provides a discussion about their effect
on software reuse. Object-oriented approach is having wide attention both in research environments
and in industry. This tutorial is prepared for newbie developers of reusable software assets and for
everyone else interested in the subject.

Keywords. Software reuse, Object-oriented, Design characteristics, Modularity, Cohesion, Coupling,
Information hiding

Mathematics Subject Classification (2020). 68N19

Copyright © 2022 Rihab Al-Mutawa and Wajdi Aljedebi. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

1. Introduction
The demand for new software applications is nowadays increasing at exponential rate
accordingly the cost of developing them is increasing. A major problem is the number of qualified
and experienced professionals required for this growing demand is not increasing enough [4].
Effective software products reuse can help in increasing productivity and quality, saving time,
and decreasing the cost of software development [7, 22]. There are two approaches for code
reuse: development of reusable code from scratch or extraction and identification of reusable

http://doi.org/10.26713/cma.v13i2.2033
https://orcid.org/0000-0001-7711-4995
https://orcid.org/0000-0001-5002-2986


776 Facilitating Software Reuse through Design Characteristics. . . : R. Al-Mutawa and W. Aljedebi

code from already developed code [4]. This paper is concerned with development of reusable code
from scratch in object-orientation. One of the most outstanding goals of object-orientation is to
increase the reusability of software [24]. The paper provides a guide explains the four important
design principles in object-oriented software engineering: modularity, cohesion, coupling, and
information hiding, and it provides a discussion about their influence on software reuse. It
helps newbie object-oriented developers of software for reuse who need to know the important
design characteristics in object-oriented and their impact on reuse [26]. Measuring of these
characteristics will give a chance to predict the change needed to make the module reusable or
to predict its reusability [29]. This topic of measuring them is out of the scoop for this work.

The paper is organized as follows. Section 2 gives background information about software
reuse, object-oriented paradigm. Section 3 surveys the important design characteristics in object-
oriented paradigm and explain show they are related to software reuse. Section 4 discusses
the effect of these design characteristics on software reuse. Finally, Section 5 summarizes the
contributions of this work.

2. Background
Since programming began before 1940s, software reuse has been practiced ever since. Reuse as
a distinct area of study in software engineering is often traced to Doug Mcilroy’s paper, back
from 1968, which proposed basing the software industry on reusable components [10,15,25].
Software reusability is considered to be important for good software [29].

Object-orientation dates are back to the 1950’s but it is only got popular in 1989 [23].
Object-oriented programming is a special type of modularization prepared to ensure programs
quality [14]. A typical task in object-oriented approach is reusing software assets [6]. It makes
programming easier and faster also with higher quality because of the reuse of existing classes
from a library and those classes are previously tested. These promises of reuse and quality are
meant to separate object-oriented languages from the more traditional languages among other
promises such as easier maintenance [23]. Object-oriented programming is intended to be both
a superior development tool for programs and a partial effective solution to the software reuse
problems that include lack of tool support [8, 31], and it succeeded in achieving its goal and
became superior to other sorts of software [23].

3. Design Characteristics
In literature, there are many guidelines found to support the designer of object-oriented
paradigm. The important classic software engineering guidelines developed especially for
structured design are also important in object-oriented design. These software engineering
guidelines or characteristics are: modularity, low module coupling and high module cohesion,
data hiding [19].

3.1 Modularity
Modularity is the degree to which a computer program or system is composed of discrete
components where a change to one component has minimal effect on other components [28]. It
is a conclusion of separation of concerns and module is a device to implement a concern [30].
The primary mechanism for reuse is module [23]. One of the purposes of a module is acting as
a unit of reuse and reusability is one of the most important benefits of modularization. This

Communications in Mathematics and Applications, Vol. 13, No. 2, pp. 775–782, 2022



Facilitating Software Reuse through Design Characteristics. . . : R. Al-Mutawa and W. Aljedebi 777

reusability means that the module can be copied from the project it was originally developed for
and used in other projects. Copying, reusing and adapting modules(such as functions, classes,
aspect or components) are a frequent activity in all development of software projects. Typically,
the need to adapt the module is minimal. Ideal techniques of modularization is support the
reuse of modules by giving clearly defined boundaries for the modules in the source file, or
requiring that each module be put into a file of its own [12].

Object-oriented programming is the best paradigm that divides up work. It is scalable and
makes large systems easier to build and maintain because subsystems can be developed and
tested autonomously [23]. When a system is divided into modules, it requires high cohesion
and low coupling [27]. The goal is to create modules with internal integrity i.e., having a high
cohesion and small, direct, visible, and flexible relations to other components i.e., having low
coupling [20]. Cohesion and coupling are attributes of quality and they are generally recognized
as being among the most probable quantifiable indicators for software maintainability [3].

3.2 Cohesion
Cohesion is the manner and degree to which the tasks performed by a single module in software
are related to one another. It is an indication to module strength and contrasts with coupling [28].
It falls into one of the following categories: functional, sequential, communicational, procedural,
temporal, logical and coincidental. These categories are ordered from highest (best) cohesion
type to lowest (worst) cohesion type [9]. A module must have well-defined responsibilities,
i.e. it has high cohesiveness. Cohesiveness of module means that it is carrying out only one
task. When the module is highly cohesive, i.e. all elements in the module directly deal with
the one basic task or a group of similar tasks the module carries out [17]. A high degree
of cohesion is an indicator of good design for module [13]. High cohesion leads to code that
is easier to understand. Understanding is predominantly cited as the most time consuming
component of the maintenance activity. Developers of object-oriented programming normally
assign responsibilities to classes to keep the level of cohesion high as the main objective [1], and
achieving a high degree of cohesion between the methods in a class can be yield by encapsulating
several methods in the class [23]. This increases the probability of reuse and creates modules
with keeping its complexity manageable. If the responsibilities of a class are unrelated then, the
level of cohesion decreases, i.e., they do a wide range of distinct actions or operate on various
types of data [1].

In the guideline literature, class cohesion has two different meanings. The first meaning
refers to the degree in which operations and values within a class are related to each other. The
second meaning indicates the number of major functions performed by a class. Class that has
more than one main function is not cohesive and should split into multiple classes. In object
oriented design, both meanings can be subsumed into a central idea that good design of object
requires steps of first identifying major responsibilities, second, dividing the responsibilities
among objects, and finally identifying the internal data needed by the object so that it performs
the services it is responsible for [13].

Documenting software architecture is an indication of cohesion. It facilitates communication
between several stakeholders, recordsearly decisions about high-level design, and allows reuse
of design components between projects. As stated above, cohesion is also represented through
modules. By breaking the project down into pieces, the isolation of the problems and fixing

Communications in Mathematics and Applications, Vol. 13, No. 2, pp. 775–782, 2022



778 Facilitating Software Reuse through Design Characteristics. . . : R. Al-Mutawa and W. Aljedebi

them become easier and these pieces could be reused. And to improve cohesion, reliability, and
maintainability throughout the software lifecycle; refactoring is used. Refactoring is a technique
for restructuring a code, altering its internal body structure without changing its external
behavior. It enhances code design and code quality. Also,it increases code reuse and developer
productivity. An example for increasing code reuse through refactoring is if multiple functions
use similar piece of code i.e. duplicated code, then, the common code can be refactored into new
function that the multiple functions can call [5].

High cohesion facilitates reuse because of well-defined modules, simplifies modification
because all relevant code in one place, and lowers coupling to other modules because it raises
coupling within the module.

3.3 Coupling
Coupling is the manner and degree of interdependence between modules in software [28].
It is the complement of cohesion [20]. It falls into one of the following categories: no direct
coupling, data, stamp, control, external, common and content. These categories are ordered
from lowest (best) coupling type to highest (worst) coupling type [9]. Two classes are coupled,
when a function in one class makes calls to a function in another class, or accesses attributes
of the other class, and when two objects send messages to each other then they are coupled.
Low degrees of coupling between classes can lead to more comprehensible code, less testing
required, more reusable code, more modular code, and more maintainable code. If classes are
highly coupled then the effect of change or error in one class may propagate to a large number
of other classes [13]. More faults might be introduced due to activities of inter-class. Also, too
much coupling points to a weakness in class encapsulation and may prevent reuse [2]. Degree
of interdependence between classes should be lowered to a certain degree. There is a necessary
certain amount of coupling so that the software is useful. Classes that are related through
inheritance are of necessity highly related to each other [13]. Code reuse supported in object-
oriented approach through inheritance, polymorphism and aggregation [18]. But, inheritance
breaks encapsulation as it is often said because inheritance reveals a subclass to details of its
parent’s implementation [11].

In software reuse procedure, the most serious problem with the component extraction step
is an overly high degree of dependency i.e., coupling throughout the whole software product. It
is therefore hard to reuse required packages or subsystems without making numerous changes.
If one package is picked up for reusing, then almost the whole system is gotten because of
dependencies. An indication to the effect of dependency between the different subsystems is the
recompilation of large parts of the system for only minor modifications in any of its subsystems.
Subsequently, it is difficult to extract a single subsystem as a reusable component out of the
whole system [29].

Object-oriented design and programming reduces coupling [23]. Data and its functionality
are incorporated into objects thereby reducing the coupling between objects [29], and to improve
coupling, software reuse and maintainability; refactoring is used [3].

3.4 Information Hiding
Information hiding is a development technique in software such that each module’s interfaces
uncover as little as possible about the module’s inner workings and using information about the
module that is not in the module’s interface specification by other modules is prevented [28].

Communications in Mathematics and Applications, Vol. 13, No. 2, pp. 775–782, 2022



Facilitating Software Reuse through Design Characteristics. . . : R. Al-Mutawa and W. Aljedebi 779

The best approach in protecting data is the object-oriented [23]. It hides data from the
public by encapsulation that is the technique used to accomplish the goal of information
hiding [16] Encapsulation in object-oriented languages gave rise by information hiding [21]. It
is a development technique in software that consists of isolating a function or a set of data and
operations in system, on those data within a module and providing precise specifications for the
module [28].

Information hiding is a key concept in object-oriented programming. Data that is probably
is going to change should be separated and hidden from the public interface. The internal data
structure and implementation of the public interface should not be exposed in the interface,
so that these internals can be modified without affecting applications using the interface,then
the result is interface that is simpler to understand, and so that reuse of the class takes less
effort [13].

4. Discussion
The important design characteristics which are modularity, strong cohesion, weak coupling and
information hiding in object-oriented paradigm are all an indication for good design because they
positively effects on understanding, facilitating software reuse and maintenance of software
products. Accordingly lack of these characteristics when they are suited to be done would lead
to opposite results including obstructing software reusability. Developing software with highly
reusability in object-oriented software engineering requires implementing the four concepts
mentioned earlier, and combining object-oriented software engineering’s concepts with reuse-
based software engineering’s development for reuse process can create a reusable software
assets (such as patterns, components, frameworks, application systems, etc) with highest
reusability.

Reusability of software considered effective on software quality. There is a direct relationship
between software reusability and software quality. Software quality grows as reuse of software
modules increases because of the reuse of existing modules that are previously tested, and
quality of software cannot be known and improved unless if it can be measured. There are
papers such as [2] present approaches to measure the software reusability for attributes of
software quality in object-orientation that are modules, encapsulation, cohesion and coupling.
When the characteristics get measured and enhanced as possible -such by refactoring for
module’s cohesion - then they will have the best positive influence on software reuse. Measuring
these characteristics will give a chance to evaluate them. i.e., predict module’s reusability and
accordingly, predict the required change to make to the module to make it reusable for when
needed.

The mentioned design concepts do not exist only on object-oriented paradigm but what
makes them special in software reuse in this paradigm are as following. First, Object-oriented
programming is the best approach implements module because of its feature of scalability and
it makes large systems easier in building and maintenance because its subsystems can be
developed and tested independently. Second, assigning responsibilities to classes is keeping the
level of cohesion high and it is normally is a main objective by developers. Third, data and its
functionality are integrated into objects thereby reducing the coupling between objects. Finally,
the best approach in protecting data is the object-oriented because it hides data from the public
by encapsulation which used in achieving the information hiding.

Communications in Mathematics and Applications, Vol. 13, No. 2, pp. 775–782, 2022



780 Facilitating Software Reuse through Design Characteristics. . . : R. Al-Mutawa and W. Aljedebi

High cohesion of modules leads to low coupling between modules and low cohesion of modules
leads to high coupling between modules. The divided system into modules is requiring high
cohesion and low coupling and achieving a high degree of cohesion between the methods in a
class and low coupling between classes can be yield by encapsulating several methods in the
class. This raises the likelihood of reuse and creates modules with keeping its complexity under
control. This can explain how all the four design characteristics are related to each other in the
subject of software reuse.

5. Conclusion
The field of software reuse has got much attention over the last two decades and continued until
now, particularly with the common use of object technology. The increasing high requests for new
software application is reinforced and encouraged software reuse especially that the increasing
demand is associated with increasing cost in developing them and the number of qualified and
experienced professionals required for this growing demand is not growing enough.

Efficient reuse for software products can be helpful in increasing productivity and quality,
saving time,and decreasing the cost of software development. This paper as presented is
concerned with development of reusable code from scratch in object-oriented paradigm.
Increasing the reusability of software is a prominent goal in object-orientation. This goal
is achieved through four important design concepts in object-oriented programming: modularity,
cohesion- and it has to be high-, coupling-and it has to be low- and information hiding by
encapsulation. All of these concepts have positive influence on software reuse as discussed
above.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
All the authors contributed significantly in writing this article. The authors read and approved
the final manuscript.

References
[1] N. Barnes, D.P. Hale and J.E. Hale, The cohesion-based requirements set model for improved

information system maintainability, Proceedings of the 2006 Southern Association for Information
Systems Conference (2006).

[2] P.K. Bhatia and R. Mann, An approach to measure software reusability of OO design, in:
Proceedings of 2nd National Conference on Challenges & Opportunities in Information Technology
(COIT-2008), RIMT-IET, Mandi Gobindgarh, March 29, 2008, pp. 26 – 30.

[3] B.D. Bois, S. Demeyer and J. Verelst, Refactoring - improving coupling and cohesion of existing code,
11th Working Conference on Reverse Engineering, 2004, pp. 144 – 151, DOI: 10.1109/WCRE.2004.33.

[4] N. Budhija and S.P. Ahuja, Review of software reusability, in: International Conference on Computer
Science and Information Technology (ICCSIT’2011), Pattaya, Thailand (December 2011).

[5] S.M. Chandrika, E.S. Babu and N. Srikanth, Conceptual cohesion of classes in object oriented
systems, International Journal of Computer Science and Telecommunications 2(4) (2011), 38 – 44,
URL: https://www.ijcst.org/Volume2/Issue4/p8_2_4.pdf.

Communications in Mathematics and Applications, Vol. 13, No. 2, pp. 775–782, 2022

http://doi.org/10.1109/WCRE.2004.33
https://www.ijcst.org/Volume2/Issue4/p8_2_4.pdf


Facilitating Software Reuse through Design Characteristics. . . : R. Al-Mutawa and W. Aljedebi 781

[6] B. Childs and J. Sametinger, Literate programming and documentation reuse, in: Proceedings
of Fourth IEEE International Conference on Software Reuse, pp. 205 – 214, (1996),
DOI: 10.1109/ICSR.1996.496128.

[7] J.L. Cybulski, Introduction to Software Reuse, Technical Report TR 96/4, The University of
Melbourne, Australia (1996).

[8] D.J. Eck, Objects and object-oriented programming, Section 1.5, in: Introduction to Programming
Using Java, Version 9.0, JavaFX Edition, (2022), http://math.hws.edu/javanotes/c1/s5.html.

[9] J. Eder, G. Kappel and M. Schrefl, Coupling and cohesion in object-oriented systems, Technical
Report, University of Klagenfurt, Austria (1994).

[10] W.B. Frakes and K. Kang, Software reuse research: status and future, IEEE Transactions on
Software Engineering 31(7) (2005), 529 – 536, DOI: 10.1109/TSE.2005.85.

[11] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison Wesley, Reading, MA, USA (1995), URL: http://www.javier8a.com/itc/
bd1/articulo.pdf.

[12] A. Garcia, P. Greenwood, G. Heineman, R. Walker, Y. Cai, H.Y. Yang, E. Baniassad, C.V. Lopes,
C. Schwanninger and J. Zhao, ACM SIGSOFT Software Engineering Notes 32(5) (2007), 31 – 37,
DOI: 10.1145/1290993.1291005.

[13] A. Goethals, Use of 3d Program Visualization to Show Visibility, Cohesion, and Quality of Java
Class Elements, Doctoral dissertation, University of Florida, Florida, USA (2002).

[14] S. Gosch, A Short History of Programming Languages, YUMPU (2007), URL: https:
//www.yumpu.com/en/document/view/5443927/a-short-history-of-programming-languages-
1-how-computers-and-.

[15] L. Hardesty, Automatic code reuse: System makes modifications necessary to transplant code
from one program into another, MIT New on Campus and Around the world, MIT News Office
(September 19, 2017), URL: https://news.mit.edu/2017/automatic-code-reuse-0920.

[16] R. Harmes and D. Diaz, Pro JavaScript Design Patterns, Apress, (2008), URL: https://pepa.holla.cz/
wp-content/uploads/2016/08/Pro-JavaScript-Design-Patterns.pdf.

[17] S. Harris, CISSP All-in-One Exam Guide, 5th edition, McGraw-Hill, Inc., New York, USA, 1008
pages, URL: https://dl.acm.org/doi/10.5555/1594805.

[18] Y. Hassoun, Coupling, Code Reuse and Open Implementation in Reflective Systems, Doctoral
dissertation, School of Computer Science and Information Systems, Birkbeck College, University of
London, US (2005), URL: https://www.dcs.bbk.ac.uk/site/assets/files/1025/yhassoun.pdf.

[19] I.M. Holland and K.J. Lieberherr, Object-Oriented Design, ACM Computing Surveys 28(1) (1996),
273 – 275, URL: https://dl.acm.org/doi/pdf/10.1145/234313.234421.

[20] T. Husted, C. Dumoulin, G. Franciscus, D. Winterfeldt and C.R. McClanahan, Struts in Action:
Building Web Applications With the Leading Java Framework, Manning Publications, 664 pages
(2003), URL: https://ur.sa1lib.org/book/461946/506b86.

[21] I. Jacobson, M. Christerson, P. Jonsson and G. Overgaard, Object-Oriented Software
Engineering: A Use Case Driven Approach, Addison-Wesley, Wokingham, England (1992),
URL: https://search.library.uq.edu.au/primo-explore/fulldisplay?vid=61UQ&tab=61uq_all&
docid=61UQ_ALMA21113243750003131&lang=en_US&context=L&query=sub,exact,Image%
20processing%20--%20Periodicals,AND&mode=advanced.

Communications in Mathematics and Applications, Vol. 13, No. 2, pp. 775–782, 2022

http://doi.org/10.1109/ICSR.1996.496128
http://math.hws.edu/javanotes/c1/s5.html
http://doi.org/10.1109/TSE.2005.85
http://www.javier8a.com/itc/bd1/articulo.pdf
http://www.javier8a.com/itc/bd1/articulo.pdf
http://doi.org/10.1145/1290993.1291005
https://www.yumpu.com/en/document/view/5443927/a-short-history-of-programming-languages-1-how-computers-and-
https://www.yumpu.com/en/document/view/5443927/a-short-history-of-programming-languages-1-how-computers-and-
https://www.yumpu.com/en/document/view/5443927/a-short-history-of-programming-languages-1-how-computers-and-
https://news.mit.edu/2017/automatic-code-reuse-0920
https://pepa.holla.cz/wp-content/uploads/2016/08/Pro-JavaScript-Design-Patterns.pdf
https://pepa.holla.cz/wp-content/uploads/2016/08/Pro-JavaScript-Design-Patterns.pdf
https://dl.acm.org/doi/10.5555/1594805
https://www.dcs.bbk.ac.uk/site/assets/files/1025/yhassoun.pdf
https://dl.acm.org/doi/pdf/10.1145/234313.234421
https://ur.sa1lib.org/book/461946/506b86
https://search.library.uq.edu.au/primo-explore/fulldisplay?vid=61UQ&tab=61uq_all&docid=61UQ_ALMA21113243750003131&lang=en_US&context=L&query=sub,exact,Image%20processing%20--%20Periodicals,AND&mode=advanced
https://search.library.uq.edu.au/primo-explore/fulldisplay?vid=61UQ&tab=61uq_all&docid=61UQ_ALMA21113243750003131&lang=en_US&context=L&query=sub,exact,Image%20processing%20--%20Periodicals,AND&mode=advanced
https://search.library.uq.edu.au/primo-explore/fulldisplay?vid=61UQ&tab=61uq_all&docid=61UQ_ALMA21113243750003131&lang=en_US&context=L&query=sub,exact,Image%20processing%20--%20Periodicals,AND&mode=advanced


782 Facilitating Software Reuse through Design Characteristics. . . : R. Al-Mutawa and W. Aljedebi

[22] M. Jha and L. O’Brien, A comparison of software reuse in software development
communities, 2011 Malaysian Conference in Software Engineering, 2011, pp. 313 – 318,
DOI: 10.1109/MySEC.2011.6140690.

[23] P. Jorgensen, D. Fernandez, A. Fischer, M. Greco, B. Hussey, S. Kuchta, H. Li, S. Overkamp,
D. Rodenberger and R. VanderWal, Has the Object-Oriented Paradigm Kept Its Promise?, Report,
Grand Valley State University, Allendale, USA (2002), URL: http://ddi.cs.uni-potsdam.de/HyFISCH/
Informieren/Programmiersprachen/OOPromisesAndReality.pdf.

[24] T. Lindner and A. Rüping, How Formal Object-Oriented Design Supports Reuse?, Report,
Forschungszentrum Informatik (FZI), Karlsruhe, Germany (1995).

[25] K.C. Louden, Programming Languages: Principles and Practice, 2nd edition, Cengage Learning
(2003), UR: http://www.cs.sjsu.edu/~louden/pltext/plpp_ch01.pdf.

[26] S. Parker, Building reusable software, in Proceedings of TOOLS Europe’99: Technology of Object
Oriented Languages and Systems. 29th International Conference, Nancy, France (1999), pp. 409,
DOI: 10.1109/TOOLS.1999.10002.

[27] S.L. Pfleeger and J. Atlee, Software Engineering Theory and Practice, Prentice Hall (2001).

[28] J. Radatz, IEEE Standard Glossary of Software Engineering Terminology, The Insitute of Electrical
and Electronics Engineers, New York, USA (1990), URL: http://www.mit.jyu.fi/ope/kurssit/TIES462/
Materiaalit/IEEE_SoftwareEngGlossary.pdf.

[29] H. Ramakrishnan, Analysis of Complexity and Coupling Metrics of Subsystems in Large Scale
Software Systems, Doctoral dissertation, University of Central Florida, Orlando, Florida (2006),
URL: https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1745&context=etd.

[30] N. Singh and N.S. Gill, Aspect-oriented requirements engineering for advanced separation of
concerns: a review, International Journal of Computer Science Issues 8(5) (2011), 288 – 297,
URL: https://ijcsi.org/papers/IJCSI-8-5-2-288-297.pdf.

[31] I. Sommerville, Software Reuse, Software Engineering, 9th edition, Addison-Wesley, Boston, 773
pages (2011).

Communications in Mathematics and Applications, Vol. 13, No. 2, pp. 775–782, 2022

http://doi.org/10.1109/MySEC.2011.6140690
http://ddi.cs.uni-potsdam.de/HyFISCH/Informieren/Programmiersprachen/OOPromisesAndReality.pdf
http://ddi.cs.uni-potsdam.de/HyFISCH/Informieren/Programmiersprachen/OOPromisesAndReality.pdf
http://www.cs.sjsu.edu/~louden/pltext/plpp_ch01.pdf
http://doi.org/10.1109/TOOLS.1999.10002
http://www.mit.jyu.fi/ope/kurssit/TIES462/Materiaalit/IEEE_SoftwareEngGlossary.pdf
http://www.mit.jyu.fi/ope/kurssit/TIES462/Materiaalit/IEEE_SoftwareEngGlossary.pdf
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1745&context=etd
https://ijcsi.org/papers/IJCSI-8-5-2-288-297.pdf

	Introduction
	Background
	Design Characteristics
	Modularity
	Cohesion
	Coupling
	Information Hiding

	Discussion
	Conclusion
	References

