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1. Introduction
R. A. Beeler et al. [2] stated that Lagarias and Saks suggested the concept of graph pebbling
to solve a number theoretic conjecture. Then, Chung [5] introduced graph pebbling into the
literature. The researchers can get details of graph pebbling by reading the paper “Survey on
graph pebbling” by Hurlbert [6].

The detour pebbling was introduced by Lourdusamy et al. [7] using detour path in any
connected graph and they determined the detour pebbling number for complete graphs, path
graphs, wheel graphs, star graphs, middle graph of path and square of some graphs [3, 8].
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Detour pebbling number guarantees the reachable of a pebble even though if there are any
blocks in the movement of supply.

Throughout the paper, G stands for a simple connected graph. Let us now explain the detour
pebbling number of a vertex v in a graph G. It is the least positive integer f ∗(G,v) with the
following property: With every possible configuration of f ∗(G,v) pebbles there is a possibility to
move a pebble to v by a sequence of pebbling moves using detour path where pebbling move is
defined as removal of two pebbles from a vertex throwing one pebble away and placing another
pebble on the adjacent vertex.

In this paper, we discuss the detour pebbling concept for some zero-divisor graphs, sum
and product of zero divisor graphs. In Section 2, we have given preliminaries which are used
for the subsequent sections. In Section 3, we find the detour pebbling number for some zero-
divisor graphs. In Section 4, we find the detour pebbling number for sum of zero-divisor graphs.
In Section 5, we find the detour pebbling number for the product of two zero-divisor graphs.

2. Preliminaries
For graph theoretic terminologies, the reader can refer to [7].

Definition 2.1. In [1], the definition of the zero-divisor graph of a ring R is given as follows:
The zero-divisor graph of a ring R is a simple graph whose set of vertices consists of all (non-
zero) zero-divisors, with an edge defined between x and y if and only if xy= 0. It will be denoted
by Γ(Z).

Note that 2,3,4 in Z6 are zero-divisors. For the element 2 in Z6 we use y2, for the element 3
in Z6 we use y3 and for the element 4 in Z6 we use y4. In general, for the element i in Zn we
use yi .

Definition 2.2. In [3], we find the definition of sum of two graphs as follows: Let G1(V1,E1) and
G2(V2,E2) be the simple connected graphs. Then G1∪G2 is the graph G(V ,E) where V =V1∪V2

and E = E1 ∪E2 and G1 +G2 is G1 ∪G2 together with the edges joining elements of V1 to
elements of V2.

Definition 2.3. In [8], the detour pebbling number of a vertex is defined as follows: The detour
pebbling number of a vertex v in a graph G is the smallest number f ∗(G,v) such that for any
placement of f ∗(G,v) pebbles on the vertices of G it is possible to move a pebble to v using a
detour path by a sequence of pebbling moves. The detour pebbling number of a graph is denoted
by f ∗(G), is the maximum f ∗(G,v) over all the vertices of G.

Definition 2.4. In [4], we find the definition of product of two graphs as follows: If G = (VG ,EG)
and H = (VH ,EH) are two graphs, the direct product of G and H is the graph, G ×H, whose
vertex set is the Cartesian product V (G×H)=VG ×VH = {(x, y) : x ∈VG , y ∈VH} and whose edge
set is given by EG×H = {{(x, y), (x′, y′)} : x = x′ and (y, y′) ∈ EH or (x, x′) ∈ EG and y= y′}.
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Theorem 2.1 ([7]). For any path Pn with n vertices, the detour pebbling number is f ∗(Pn)= 2n−1.

Theorem 2.2 ([7]). Let K1,n be an n-star where n > 1. The detour pebbling number for the n-star
graph is f ∗(K1,n)= n+2.

Note 2.1. Let p(v) denotes the number of pebbles at the vertex v and v ∈V (Γ(Zn)).

3. Detour Pebbling Number for Zero-Divisor Graphs
In this section, we compute the detour pebbling number of zero-divisor graphs

Theorem 3.1. For Γ(Z6), f ∗(Γ(Z6))= 4.

Proof. Let V (Γ(Z6)) be {y2, y3, y4} and E(Γ(Z6)) be {(y2, y3), (y3, y4)}. Since Γ(Z6) ∼= K1,2, by
Theorem 2.2 the result follows.

Theorem 3.2. For Γ(Z8), f ∗(Γ(Z8))= 4.

Proof. Let V (Γ(Z8)) = {y2, y4, y6} and E(Γ(Z8)) = {(y2, y4), (y4, y6)}. Since Γ(Z8) ∼= K1,2, then by
Theorem 2.2 the result follows.

Theorem 3.3. For Γ(Z9), f ∗(Γ(Z9))= 2.

Proof. Let V (Γ(Z9)) be {y3, y6} and E(Γ(Z9)) be {(y3, y6)}. This is isomorphic to P2. Hence, by
Theorem 2.1 we are done.

Theorem 3.4. For Γ(Z10), f ∗(Γ(Z10))= 6.

Proof. Let V (Γ(Z10)) be {y2, y4, y5, y6, y8} and E(Γ(Z10)) be {(y2, y5), (y4, y5), (y6, y5), (y8, y5)}. Since
Γ(Z10)∼= K1,4, by Theorem 2.2 f ∗(Γ(Z10))= 6.

Theorem 3.5. For Γ(Z12), f ∗(Γ(Z12))= 33.

Proof. Let V (Γ(Z12)) = {y2, y3, y4, y6, y8, y9, y10}, E(Γ(Z12)) = {(y2, y6), (y6, y8), (y6, y4), (y6, y10),
(y8, y9), (y4, y9), (y4, y3), (y8, y3)}. Place one pebble on y2 and 31 pebbles on y9. Then, we cannot
move a pebble to y10 using the detour path. Hence, f ∗(Γ(Z12))≥ 33.

Let us consider the distribution of 33 pebbles on Γ(Z12).

Case 1: Let the target be y2.
The detour distance from the vertex y2 to any other vertex is d∗(y2, yi) ≤ 5 where i =
{3,4,6,8,9,10}. Without loss of generality, let us consider the detour path P1 : y2, y6, y4, y3, y8, y9.
Path P1 covers all the vertices except y10. By Theorem 2.1, if we distribute 32 pebbles on path
P1, we are able to pebble the target. If p(y10)= 0, then by placing 32 pebbles on P1 we are done.
If p(y10) = 1 then by placing 32 pebbles on P1 we are done. if 31 ≤ p(y10) ≤ 2, then by placing
33− p(y10) pebbles on P1 we are done. If p(y10)≥ 32 then by Theorem 2.1, we pebble the target.
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Similarly, we can prove for the vertices y2, y3, y9 and y10.

Case 2: Let the target vertex be y6.
The detour distance from y6 to any other vertex is d∗(y6, yj) ≤ 4 where j = {2,3,4,8,9,10}.
Without loss of generality, let us consider the detour path P2 : y6, y4, y3, y8, y9. By Theorem 2.1,
using 16 pebbles on P2 we can reach the target. If y2 = 1 and y10 = 1 then we need to place 16
pebbles on P2 to reach the target. If y2 ≥ 2 and y10 ≥ 2 then directly we are done.

Case 3: Let y4 to be the target.
The detour distance from y4 to any other vertex is d∗(y4, yl)≤ 4 where l = {2,3,6,8,9,10}. Let us
consider the detour path P3 : y4, y3, y8, y6, y2 or P4 : y4, y3, y8, y6, y10. Without loss of generality,
let us consider the detour path P3. This path does not contain 2 vertices of Γ(Z12). By using
Case 2 we are done. Similarly, we can prove for the vertex y8.
Hence, the detour pebbling number of Γ(Z12) is f ∗(Γ(Z12))= 33.

Theorem 3.6. For Γ(Z14), f ∗(Γ(Z14))= 8.

Proof. The V (Γ(Z14)) be {y2, y4, y6, y7, y8, y10, y12} and E(Γ(Z14)) be {(y2, y7), (y4, y7), (y6, y7),
(y8, y7), (y10, y7), (y12, y7)}. Since Γ(Z14)∼= K1,6, then by Theorem 2.2, f ∗(Γ(Z14))= 8.

Theorem 3.7. For Γ(Z15), f ∗(Γ(Z15))= 16.

Proof. Let V (Γ(Z15)) be {y3, y5, y6, y9, y10, y12} and V (Γ(Z15)) be {(y3, y5), (y6, y5), (y6, y10), (y9, y5),
(y12, y5), (y10, y3), (y10, y9), (y10, y12)}. Let y3 be the target vertex. The detour path of Γ(Z15)
is P : y3, y5, y9, y10, y12. If we place 15 pebbles on y12, we cannot reach the target. Hence,
f ∗(Γ(Z15))≥ 16.

Case 1: Let us assume the target is y9.
The detour distance from y9 to any other vertex is d∗(y9, yi) ≤ 4 where i = {10,12,5,3,6}. Let
the detour path be P = y3, y5, y6, y10, y9. Let p(y12) = 0 then by Theorem 2.1 we are done by
using 16 pebbles. If p(y12)= 1, then by placing 14 or 15 pebbles on P we are done. If p(y12)≥ 2,
then by placing 16− p(y12) on P and we are done. By symmetry, we can prove for y3, y12, y6.

Case 2: Let the target vertex be y5.
The detour distance from y5 to any other vertex is d∗(y5, yj)≤ 3 where j = {3,9,6,10,12}. Without
loss of generality, let us consider the path P1 : y5, y3, y10, y12. Let X = {y9, y6} be the vertex set
which is not on P1. If p(X )= 0, then to pebble the target p(P1)= 8 is sufficient. If 1≤ p(X )≤ 2,
then by using 4 ≤ p(P1) ≤ 6 and we are done. If p(X ) ≥ 3, then with 2 ≤ p(P1) ≤ 3 and we are
done. By symmetry, we can prove for y10.
Hence, the detour pebbling number of f ∗(Γ(Z15))= 16.

Theorem 3.8. For Γ(Z16), f ∗(Γ(Z16))= 11.
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Proof. Let V (Γ(Z16)) = {y2, y4, y6, y8, y10, y12, y14} and E(Γ(Z16)) = {(y8, y2), (y8, y4), (y8, y6),
(y8, y10), (y8, y12), (y8, y14), (y4, y12)}. Let us distribute 10 pebbles on the graph Γ(Z16). If we
place 7 pebbles on y2 and 1 pebble each on the vertices y6, y10 and y14, then we cannot reach
the vertex y12 by using the detour path. Hence, f ∗(Γ(Z16)) ≥ 11. Now we prove the sufficient
part.

Case 1: Let y4 to be the target.
The detour distance from y4 to any other vertex is d∗(y4, yj) ≤ 3, where j = {2,6,10,12,14}.
Without loss of generality, let us consider the path P : y4, y12, y8, y2. The detour path P does
not contain 3 vertices of V (Γ(Z16)). Therefore, by placing one pebble each on those vertices and
distributing 8 pebbles on the detour path P , we are done. By symmetry, we can prove for y12.

Case 2: Let y8 to be the target.
The detour distance from y8 to any other vertex is d∗(y8, yk) ≤ 2, where k = {2,4,6,10,12,14}.
Let us consider the path P1 : y8, y4, y12. This particular path does not contain the rest of the
vertices of Γ(Z16). Let us consider p(< y2, y6, y10, y14 >)≤ 1. Distributing 4 pebbles on the detour
path P1 and placing 0 pebbles on the remaining vertices, we can reach the target. If we place
one pebble each on the uncovered vertices of the detour path P1 and 4 pebbles on the path P1,
we are done.

Case 3: Let y2 to be the target vertex.
The detour distance from y2 to any other vertex is d∗(y2, yk) ≤ 3, where k = {8,4,6,10,12,14}.
Let us consider the detour path P2 : y2, y8, y4, y12 which does not contain the vertices {x6, x10, x14}
of Γ(Z16). By Theorem 2.1, Distributing 8 pebbles on P2 we are done. If p(y6, y10, y14)≤ 3, then
placing 8 pebbles on P2 we are done. Similarly, we can prove for the vertices y6, y10 and y14.
Therefore, the detour pebbling number of f ∗(Γ(Z16))= 11.

Theorem 3.9. For Γ(Z18), f ∗(Γ(Z18))= 37.

Proof. Let V (Γ(Z18)) be {y2, y3, y4, y6, y8, y10, y12, y14, y16, y9, y15} and E(Γ(Z18)) be {(y9, yi),
(y6, yj), (y12, y15), (y12, y3)} where i = 2,4,6,8,10,12,14,16 and j = 3,12,15. To prove the necessary
part, let us consider the target vertex to be y3. Without loss of generality, consider the detour
path P : y2, y9, y12, y15, y6, y3. If we place 31 pebbles on y2 and one pebble each on y4, y8, y10, y14

and y16, then we cannot reach the target. Hence, f ∗(Γ(Z18))≥ 37.

For the sufficient part, let us consider the following cases.

Case 1: Let y3 to be the target.
The detour distance from y3 to any other vertex is ≤ 5. Consider the same detour path P
as defined in necessary part. By Theorem 2.1, if we distribute 32 pebbles on P , then we
can reach the target. If we place one pebble each on yi : i = 4,8,10,14,16 and 32 pebbles on
P we can reach the target. Let A = {4,8,10.14.16}. If

∑
i∈A⌊ p(yi)

2 ⌋+ ⌊ p(y2)
2 ⌋+ p(y9) ≥ 16, then

we can reach the target. Otherwise, if
∑

i∈A⌊ p(yi)
2 ⌋ + ⌊ p(y2)

2 ⌋ + p(y9) ≤ 15, then there will be
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37− [∑
i∈A p(yi)+ p(y2)+ p(y9)

]
pebbles on P excluding y2 and y9. In this configuration, we can

easily reach target. Similarly, we can prove for all the vertices of the graph except for y6, y9 and
y12.

Case 2: Let y9 to be the target.
The length of the detour path from y9 to any other vertex is ≤ 4. Consider the detour path
P1 : y9, y12, y15, y6, y3. By Theorem 2.1, if we distribute 16 pebbles on P1, then we can reach
the target. If we place one pebble on each vertex yk where k = {2,4,8,10,14,16} and distributing
16 pebbles on P1, then we are done. If p(yk)≥ 2, then we are done. Similarly we can prove for
y6 and y12.
Therefore, the detour pebbling number of Γ(Z18) is f ∗(Γ(Z18))= 37.

4. Detour Pebbling Number for the Union of Two Zero-Divisor Graphs
In this section, we are going to find the detour pebbling number for the union of any two
zero-divisor graphs.

Theorem 4.1. For Γ(Z6)+Γ(Z4), f ∗(Γ(Z6)+Γ(Z4))= 8.

Proof. Let V (Γ(Z6)) be {y2, y3, y4}. The graph Γ(Z6) is isomorphic to Z6. Let the vertex
set of Γ(Z4) ia a singleton set and denoted as x1. Let the edge set of (Γ(Z6) + Γ(Z4)) be
{(y2, y3), (y3, y4), (yi, x1)} where i = 2,3,4. Let the target vertex be x1. The detour distance from
x1 to any other vertex is d∗(x1, yi)≤ 3. Let us consider the path P : x1, y4, y3, y2. Since it contains
all the vertices of the graph (Γ(Z6)+Γ(Z4)), then by Theorem 2.1, the detour pebbling number
of f ∗(Γ(Z6)+Γ(Z4))= 8.

Theorem 4.2. For Γ(Z10)+Γ(Z4), f ∗(Γ(Z10)+Γ(Z4))= 16.

Proof. Let V (Γ(Z10)) be {y2, y4, y6, y8, y5}. The graph Γ(Z10) is isomorphic to Z10. The vertex
set of Γ(Z4) is a singleton set {x1}. The edge set of (Γ(Z10)+Γ(Z4)) is {(y5, yj), (yi, x1)} where
i = 2,4,5,6,8 and j = 2,4,6,8. Let the target vertex be y2. The detour distance from y2 to any
other vertex of Γ(Z10)+Γ(Z4) is ≤ 4. Let us choose the detour path P = y8, x1, y6, y5, y2. If we
place 15 pebbles on y8, then we fail to reach the target. Thus, f ∗(Γ(Z10)+Γ(Z4))≥ 16. Now, let
us prove f ∗(Γ(Z10)+Γ(Z4))≤ 16.

Case 1: Let y2 to be the target.
If p(y4)= 0, then by Theorem 2.1 we can pebble the target by using 16 pebbles. If p(y4)≥ 1, then
using the remaining pebbles on P we can reach the target by using the detour path through y4.
By symmetry we can prove for y4, y6, y8.

Case 2: Let x1 to be the target.
The detour distance from x1 to any other vertex is d∗(x1, yi) ≤ 3. Let us consider the path
P1 : y2, y5, y4, x1. Let Q be the set of vertices which are not on P1. By Theorem 2.1, if we
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distribute 8 pebbles on P1, then we are done. If 1≤ p(Q)≤ 7, then using 8− p(Q) pebbles on P1

we can reach the target by using the detour path through Q. If p(Q)≥ 8 by Theorem 2.1 we are
done. By symmetry we can prove for y5.
Hence, the detour pebbling number of f ∗(Γ(Z10)+Γ(Z4))= 16.

Theorem 4.3. Let s be any prime number. Then for Γ(Z2s)+Γ(Z4), f ∗(Γ(Z2s)+Γ(Z4)) = s+9
where s ≥ 7.

Proof. Let V (Γ(Z2s)+Γ(Z4)) be {y2, y4, . . . , y2s−2, ys, x1} and the edge set be {yi ys, x1 yi, x1 ys} where
i = 2,4, . . . ,2s−2. The graph Γ(Z2s)+Γ(Z4) is isomorphic to K1,n×{x1}. Let the target vertex be y2.
The detour distance from y2 to any other vertex is ≤ 4. Without loss of generality, let us consider
the path P : y2, ys, y4, x1, y6. This particular path P contains 5 vertices of Γ(Z2s)+Γ(Z4). Let W
be the set of vertices which are not on the detour path P . Note that |W | = s−4. Suppose, we
distribute 11 pebbles on y6 and one pebble each on the vertices of Γ(Z2s)+Γ(Z4) except x1, ys and
the target. In this configuration, we cannot reach the target. Hence, f ∗(Γ(Z2s)+Γ(Z4))≥ s+9.
To prove f ∗(Γ(Z2s)+Γ(Z4))≤ s+9, let us consider the distribution of s+9 pebbles on the graph.

Case 1: Let x1 to be the target.
The detour distance from x1 to any other vertex is ≤ 3. Choose the detour path P1 = {x1, y2, ys, y4}.
P1 covers 4 vertices of the graph. Let Q be the set vertices which are not on P1. Note that
|Q| = s−3. With 1≤ p(Q)≤ s−1 and (s+9)− p(Q) pebbles on the detour path P1 we can reach
the target by using an alternate detour path different from P1. If p(Q) ≥ s, then we can find
an alternate detour path different from P1 to reach the target. Similarly, we can prove for the
vertex ys.

Case 2: Let the target vertex be y4.
The length of the detour path from y4 to any other vertex is ≤ 4. Consider a detour path P2 be
{y4, x1, y2, ys, y6}. By Theorem 2.1 we can reach the target using 16 pebbles on P2. Let W be the
set of vertices which are not on P2. Clearly W = s−4. If we place one pebble each on the vertices
of W and p(s+9)− p(W) pebbles on P2, then we can transfer a pebble to y4 with an alternating
the detour path through one of the vertices of W . If 1≤ p(W)≤ s−2 and (s+9)− p(Q) pebbles
on the detour path P2 we can reach the target by using an alternate detour path different from
P2. If p(Q)≥ s, then we can find an alternate detour path different from P2 to reach the target.
Similarly, we can prove for yi where i = {2,6,8, . . . ,2s−2}. Hence, the detour pebbling number of
Γ(Z2s)+Γ(Z4) is f ∗(Γ(Z2s)+Γ(Z4))= s+9.

Corollary 4.1. Let s be any prime number. Then for Γ(Z2s) + Γ(Zs), f ∗(Γ(Z2s) + Γ(Zs)) ∼=
f ∗(Γ(Z2s)+Γ(Z4))= s+9, where s ≥ 7.

Theorem 4.4. For Γ(Z2s)+Γ(Z2s), f ∗(Γ(Z2s)+Γ(Z2s))= 22s−1, where s is any prime number.
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Proof. Let Γ(Z2s) and Γ(Z2s) are the two copies of zero-divisor graph Γ(Z2s). Let V (Γ(Z2s)+
Γ(Z2s)) = {v2,v4, . . . ,v2s−2,vs,u2,u4, . . . ,u2s−2,us} and E(Γ(Z2s)+Γ(Z2s)) = {vivs,u jus,viu j} where
i, j = 2,4, . . . ,2s−2. The length of the detour path of the graph Γ(Z2s)+Γ(Z2s) is 2s−1 for any
vertex. The detour path covers all the vertices of the graph. Thus, by Theorem 2.1, the detour
pebbling number of Γ(Z2s)+Γ(Z2s) is f ∗(Γ(Z2s)+Γ(Z2s))= 22s−1.

Result 4.1. For Γ(Zs)+Γ(Zs), f ∗(Γ(Zs)+Γ(Zs))= 2.

5. Detour Pebbling Number for the Product of Two Zero-Divisor Graphs
In this section, we find the detour pebbling number for the product of two zero-divisor graphs.

We now give the following trivial results on the detour pebbling number for the product of
two zero-divisor graphs:

Result 5.1. (i) For Γ(Z2s)×Γ(Zs), f ∗(Γ(Z2s)×Γ(Zs))= s+1.

(ii) For Γ(Zs)×Γ(Zs), f ∗(Γ(Zs)×Γ(Zs))= 1.

Theorem 5.1. For Γ(Z2s)×Γ(Z2s), f ∗(Γ(Z2s)×Γ(Z2s))= 24s−4, where s be any prime number.

Proof. Let us consider two copies of zero-divisor graphs Γ(Z2s). Let the vertex set of the
first copy be {v2,v4, . . . ,v2s−2,vs} and that of the second copy be {u2,u4, . . . ,u2s−2,us}. The
total number of vertices in Γ(Z2s)×Γ(Z2s) is s2. The detour distance from (vs,us) to any
other vertex of the given graph is ≤ 4s− 4. Let us choose the path P = {(vs,us), (vs,u2s− j),
(vs,us−i), (vs−i,us), (v2s− j,us), (vl ,ul), (vl ,ul+2), (v(2s−2),u(2s−4))} where i = 1,3, . . . , s − 2, j =
2,4, . . . , s−1 and l = 2,4, . . . ,2s−2. Note that the detour path P has (4s−3)) vertices. The number
of vertices on Γ(Z2s)×Γ(Z2s) which are not on P is (s2 − (4s−3)) and let Q be the set of those
(s2 − (4s−3)) vertices. If we place 24s−4 −1 pebbles on the vertex (v2s−2,u2s−2), we cannot reach
the target (vs,us). Hence, f ∗(Γ(Z2s)×Γ(Z2s))≥ 24s−4.
Now let us prove the sufficient condition.

Case 1: Let the target be (vs,us).
The detour distance from (vs,us) to any other vertex is ≤ 4s−4. Consider the same detour path
of P as in necessary part. By Theorem 2.1, distributing 24s−4 pebbles on P we can reach the
target. If p(Q) ≥ 1 and there are 24s−4 − p(Q) pebble on P , then we can reach the target by
having an alternate detour path passing through at least any one of the vertices of Q which has
a pebble on it. By symmetry, we can prove for (vi,u j) where i, j = 2,4, . . . ,2s−2.

Case 2: Let the target be (vs,u j), j = 2,4, . . . ,2s−2.
Without loss of generality, let it be (vs,u4). The length of the detour path from (vs,u4) to any
other vertex is ≤ 4s−5. Choose a detour path P1 : {(vs,us), (vs,u2s− j), (vs,us−i), (vs−i,us), (v2s− j,us),
(vl ,ul), (vl ,ul+2)} where i = 1,3, . . . , s−2, j = 2,4, . . . , s−1 and l = 2,4, . . . ,2s−2. Note that W be
set of vertices which are not on P1. Let |W | = (s2 − (4s−4)). By Theorem 2.1, distributing 24s−5
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pebbles on P1 we can reach the target. If 1≤ p(W)≤ 24s−5 and there are 24s−5 − p(W) pebbles
on the vertices of P1, then we can reach the target by travelling through another detour path
having at least a vertex of W which has a pebble on it. By symmetry, we can prove for (vi,us)
where i = 2,4, . . . ,2s−2.
Thus, the detour pebbling number of Γ(Z2s)×Γ(Z2s) is f ∗(Γ(Z2s)×Γ(Z2s))= 24s−4.
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