Vertex k-Prime Labeling of Cyclic Snakes

S. Teresa Arockiamary ${ }^{1}$ © and G. Vijayalakshmi*2 ${ }^{\text {© }}$
Department of Mathematics, Stella Maris College (Autonomous) (affiliated to University of Madras), Chennai, India
*Corresponding author: viji.gsekar@gmail.com

Received: July 14, $2022 \quad$ Accepted: November 11, 2022

Abstract

For each positive integer k, a simple graph G of order p is said to be k-prime labeling if there exists an injective function f whose labels are from k to $k+p-1$ that induces a function $f^{+}: E(G) \rightarrow N$ of the edges of G defined by $f^{+}(u v)=\operatorname{gcd}(f(u), f(v)), \forall e=u v \in E(G)$ such that every pair of neighbouring vertices are relatively prime. This type of graph is known as a k-prime graph. In this paper, we redefine the labeling as vertex k-prime labeling for some k positive integers and study some cyclic snake graphs and corona graphs of the form $m C_{n} \odot K_{1}$ which admit vertex k-prime labeling.

Keywords. Vertex k-prime labeling, Triangular snakes, Pentagonal snakes, Cyclic snakes, Corona graphs
Mathematics Subject Classification (2020). 05C12, 05C78, 05C90
Copyright © 2023 S. Teresa Arockiamary and G. Vijayalakshmi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

A graph labeling consists of assigning integers to its vertices, edges, or both depending on certain constraints. To know more about the vast study of different graph labeling, one can refer to Gallian [4]. A prime labeling is when the integers from 1 to n are assigned to the vertices, edges, or both, with the condition that each labeled pair of adjacent vertices is comparatively prime. The k-prime labeling concept was proposed by Vaidya and Prajapathi [5] where they proved that all path graph P_{m} is k-prime for every k positive integers. We investigated the results on tree related graphs such as Y-tree, X-tree and extend to one point union of path graphs and proved that they admit k-prime labeling [1]. The term cyclic snakes was introduced by Barrientos [2] and showed that the $k C_{4}$-snakes, $k C_{8}$-snakes and $k C_{12}$-snakes are graceful.

This paper exhibits that $m C_{n}$-snake for $m>1$ and $n \geq 3$ is vertex k-prime. We also define a generalised $m C_{n}$-snake and prove that for even positive integer $n, m C_{n}$ is vertex k-prime. Further we prove that Corona graph $m C_{n} \odot K_{1}$ is also vertex k-prime.

2. Preliminaries

To begin with, we revise the k-prime labeling concept proposed by Vaidya and Prajapati [5], and redefine the labeling as vertex k-prime labeling.

Definition 2.1. A vertex k-prime labeling of a graph G is a bijective function $f: V \rightarrow\{k, k+1, k+2, \ldots, k+|V|-1\}$ for some positive integer k such that $\operatorname{gcd}(f(u), f(v))=1$ $\forall e=u v \in E(G)$. A graph G that admits vertex k-prime labeling is called a vertex k-prime graph.

Definition 2.2 ([2]). A $m C_{n}$-snake is a m-block connected graph, each of the blocks is isomorphic to the cycle C_{n}, such that the path is created by the block cut point graph. We call $m C_{n}$-snake as a cyclic snake.

Note. For $n=5, m C_{5}$-snake is called as Pentagonal snake and for $n=9, m C_{9}$-snake is called as nanogonal snake.

Definition 2.3 ([3]). The corona $G_{1} \odot G_{2}$ of two graphs G_{1} and G_{2} is defined as the graph G obtained by taking one copy of G_{1} and p_{1}-copies of G_{2} and then joining by a line the i th vertex of G_{1} to every vertex in the i th copy of G_{2}.

3. Main Results

Theorem 3.1. Triangular Snake T_{n} is vertex k-prime for $n>1$ and odd k.
Proof. We represent the point set and line set of T_{n} as

$$
\begin{aligned}
& V\left(T_{n}\right)=\left\{y_{z}: 1 \leq z \leq n\right\} \cup\left\{x_{z}: 1 \leq z \leq n-1\right\} ; \\
& E\left(T_{n}\right)=\left\{y_{z} y_{z+1}, x_{z} y_{z}, x_{z} y_{z+1}: 1 \leq z \leq n-1\right\} .
\end{aligned}
$$

Hence the number of points in T_{n} is $2 n-1$ and the number of lines in T_{n} is $3 n-3$.
Now define a function f from points of $T(n)$ to $k, k+1, \ldots, k+2 n-2$ as given below:

$$
\begin{aligned}
& f\left(y_{1}\right)=k, \\
& f\left(x_{1}\right)=k+1, \\
& f\left(y_{z}\right)=f\left(y_{z-1}\right)+2, \quad 2 \leq z \leq n, \\
& f\left(x_{z}\right)=f\left(x_{z-1}\right)+2, \quad 2 \leq z \leq n-1 .
\end{aligned}
$$

For any $y_{z} y_{z+1} \in E\left(T_{n}\right), \operatorname{gcd}\left(f\left(y_{z}\right), f\left(y_{z+1}\right)=\operatorname{gcd}\left(f\left(y_{z-1}\right)+2, f\left(y_{z}\right)+2\right)=1\right.$ since $f\left(y_{z-1}\right)+2$ and $f\left(y_{z}\right)+2$ are consecutive odd positive integers. For any $\left.x_{z} y_{z} \in E\left(T_{n}\right)\right)=\operatorname{gcd}\left(f\left(x_{z}\right), f\left(y_{z}\right)\right)=$ $\operatorname{gcd}\left(f\left(x_{z-1}\right)+2, f\left(y_{z-1}\right)+2\right)=1$ since $f\left(x_{z-1}\right)+2$ and $f\left(y_{z-1}\right)+2$ are consecutive positive integers. For any $x_{z} y_{z+1} \in E\left(T_{n}\right)=\operatorname{gcd}\left(f\left(x_{z}\right), f\left(y_{z+1}\right)\right)=\operatorname{gcd}\left(f\left(x_{z-1}\right)+2, f\left(y_{z}\right)+2\right)=1$ since $f\left(x_{z-1}\right)+2$ and $f\left(y_{z}\right)+2$ are consecutive positive integers.
Hence T_{n} admits vertex k-prime labeling.

Theorem 3.2. Pentagonal Snake $m C_{5}$ is vertex k-prime for $m \geq 2$ and odd k.
Proof. Let m blocks of C_{5} form a pentagonal snake $m C_{5}$. We represent the point set and line set of $m C_{5}$ as

$$
\begin{aligned}
& V\left(m C_{5}\right)=\left\{x_{a, b}: 1 \leq b \leq 5,1 \leq a \leq m\right\}, \\
& E\left(m C_{5}\right)=\left\{\begin{array}{l}
\left\{x_{a, b} x_{a, b+1}: 1 \leq b \leq 4,1 \leq a \leq m\right\}, \\
\left\{x_{a, 5} x_{a, 1}: 1 \leq a \leq m\right\} .
\end{array}\right.
\end{aligned}
$$

We refer the vertex $x_{a+1,1}$ as $x_{a, 5}$ for $1 \leq a \leq m-1$ to facilitate defining of lines. The number of points and lines for $m C_{5}$ is $\left|V\left(m C_{5}\right)\right|=4 m+1$ and $\left|E\left(m C_{5}\right)\right|=5 m$.
Now define a function f from points of $m C_{5}$ to $k, k+1, \ldots, k+4 m$ as given below:

$$
\begin{array}{ll}
f\left(x_{a, b}\right)=k+4 a+b-5, & 1 \leq b \leq 5,1 \leq a \leq m, \\
f\left(x_{a, 5}\right)=f\left(x_{a+1,1}\right)=k+4 a, & 1 \leq a \leq m .
\end{array}
$$

For any $x_{a, b} x_{a, b+1} \in E\left(m C_{5}\right), \operatorname{gcd}\left(f\left(x_{a, b}\right), f\left(x_{a, b+1}\right)\right)=\operatorname{gcd}(k+4 a+b-5, k+4 a+b-4)=1$ since $k+4 a+b-5$ and $k+4 a+b-4$ are consecutive positive integers. For any $x_{a, 5} x_{a, 1} \in E\left(m C_{5}\right)$, $\operatorname{gcd}\left(f\left(x_{a, 5}\right), f\left(x_{a, 1}\right)\right)=\operatorname{gcd}(k+4 a, k+4 a-4)=1$ since k is odd.
Hence $m C_{5}$ admits vertex k-prime labeling.
Theorem 3.3. Nanogonal snake $m C_{9}$ is vertex k-prime for $m \geq 2$ and odd k.
Proof. Let m blocks of C_{9} form a nanogonal snake $m C_{9}$. We represent the point set and line set of $m C_{9}$ as

$$
\begin{aligned}
& V\left(m C_{9}\right)=\left\{x_{a, b}: 1 \leq b \leq 9,1 \leq a \leq m\right\} \\
& E\left(m C_{9}\right)=\left\{\begin{array}{l}
\left\{x_{a, b} x_{a, b+1}: 1 \leq b \leq 8,1 \leq a \leq m\right\}, \\
\left\{x_{a, 9} x_{a, 1}: 1 \leq a \leq m\right\}
\end{array}\right.
\end{aligned}
$$

We refer the point $x_{a+1,1}$ as $x_{a, 9}$ for $1 \leq a \leq m-1$ to facilitate defining of lines. The number of points and lines for $m C_{9}$ is $\left|V\left(m C_{9}\right)\right|=8 m+1$ and $\left|E\left(m C_{9}\right)\right|=9 m$.
Now define a function f from points of $m C_{9}$ to $k, k+1, \ldots, k+8 m$ as given below:

$$
\begin{array}{ll}
f\left(x_{a, b}\right)=k+8 a+b-9, & 1 \leq b \leq 9,1 \leq a \leq m \\
f\left(x_{a, 9}\right)=f\left(x_{a+1,1}\right)=k+8 a, & 1 \leq a \leq m
\end{array}
$$

For any $x_{a, b} x_{a, b+1} \in E\left(m C_{9}\right), \operatorname{gcd}\left(f\left(x_{a, b}\right), f\left(x_{a, b+1}\right)\right)=\operatorname{gcd}(k+8 a+b-9, k+8 a+b-8)=1$ since $k+8 a+b-9$ and $k+8 a+b-8$ are consecutive positive integers. For any $x_{a, 9} x_{a, 1} \in E\left(m C_{9}\right)$, $\operatorname{gcd}\left(f\left(x_{a, 9}\right), f\left(x_{a, 1}\right)\right)=\operatorname{gcd}(k+8 a, k+8 a-8)=1$ since k is odd.
Hence $m C_{9}$ admits vertex k-prime labeling.
Theorem 3.4. $m C_{n}$ is vertex k-prime for even positive integer $n \geq 4$ and $k \not \equiv 0(\bmod (n-1))$, where $n-1$ is prime.

Proof. Let m blocks of C_{n} form a cyclic snake $m C_{n}$. We represent the point set and line set of $m C_{n}$ as

$$
V\left(m C_{n}\right)=\left\{x_{a, b}: 1 \leq b \leq n, 1 \leq a \leq m\right\},
$$

$$
E\left(m C_{n}\right)=\left\{\begin{array}{l}
\left\{x_{a, b} x_{a, b+1}: 1 \leq b \leq n-1,1 \leq a \leq m\right\} \\
\left\{x_{a, n} x_{a, 1}: 1 \leq a \leq m\right\}
\end{array}\right.
$$

We refer the point $x_{a+1,1}$ as $x_{a, n}$ for $1 \leq a \leq m-1$ to facilitate defining of lines. The number of points and lines for $m C_{n}$ is $\left|V\left(m C_{n}\right)\right|=(n-1) m+1$ and $\left|E\left(m C_{n}\right)\right|=n m$ (see Figure 1).

Figure 1. $m C_{n}$-snake
Now define a function f from points of $m C_{n}$ to $k, k+1, \ldots, k+(n-1) m$ as given below:

$$
\begin{array}{ll}
f\left(x_{a, b}\right)=k+(n-1) a+b-n, & 1 \leq b \leq n, 1 \leq a \leq m, \\
f\left(x_{a+1,1}\right)=f\left(x_{a, n}\right)=k+(n-1) a, & 1 \leq a \leq m .
\end{array}
$$

From the labeling pattern defined, $m C_{n}$ satisfies the conditions of vertex k-prime labeling as $f\left(x_{a, b} x_{a, b+1}\right)=\operatorname{gcd}\left(f\left(x_{a, b}\right), f\left(x_{a, b+1}\right)\right)=\operatorname{gcd}(k+(n-1) a+b-n, k+(n-1) a+b-n+1)=1$ since $k+(n-1) a+b-n$ and $k+(n-1) a+b-n+1$ are consecutive positive integers; $f\left(x_{a, n} x_{a, 1}\right)=$ $\operatorname{gcd}\left(f\left(x_{a, n}\right), f\left(x_{a, 1}\right)\right)=\operatorname{gcd}(k+(n-1) a, k+(n-1) a+1-n)=1$ since $k \neq 0(\bmod (n-1))$, where $n-1$ is prime.
Hence $m C_{n}$ admits vertex k-prime labeling.
Theorem 3.5. $m C_{n}$ is vertex k-prime for even positive integer $n \geq 10$ and k not multiple factor of ($n-1$), where $n-1$ is not prime.

Proof. Let m blocks of C_{n} form a cyclic snake $m C_{n}$. We represent the point set and line set of $m C_{n}$ as

$$
\begin{aligned}
& V\left(m C_{n}\right)=\left\{x_{a, b}: 1 \leq b \leq n, 1 \leq a \leq m\right\}, \\
& E\left(m C_{n}\right)=\left\{\begin{array}{l}
\left\{x_{a, b} x_{a, b+1}: 1 \leq b \leq n-1,1 \leq a \leq m\right\}, \\
\left\{x_{a, n} x_{a, 1}: 1 \leq a \leq m\right\} .
\end{array}\right.
\end{aligned}
$$

We refer the point $x_{a+1,1}$ as $x_{a, n}$ for $1 \leq a \leq m-1$ to facilitate defining of lines. The number of points and lines for $m C_{n}$ is $\left|V\left(m C_{n}\right)\right|=(n-1) m+1$ and $\left|E\left(m C_{n}\right)\right|=n m$.
Now define a function f from points of $m C_{n}$ to $k, k+1, \ldots, k+(n-1) m$ as given below:

$$
\begin{array}{ll}
f\left(x_{a, b}\right)=k+(n-1) a+b-n, & \\
f\left(x_{a, n}\right)=f\left(x_{a+1,1}\right), & 1 \leq b \leq n, 1 \leq a \leq m, \\
& 1 \leq m .
\end{array}
$$

From the labeling pattern defined, $m C_{n}$ satisfies the conditions of vertex k-prime labeling as $f\left(x_{a, b} x_{a, b+1}\right)=\operatorname{gcd}\left(f\left(x_{a, b}\right), f\left(x_{a, b+1}\right)\right)=\operatorname{gcd}(k+(n-1) a+b-n, k+(n-1) a+b-n+1)=1$ since $k+(n-1) a+b-n$ and $k+(n-1) a+b-n+1$ are consecutive positive integers; $f\left(x_{a, n} x_{a, 1}\right)=$
$\operatorname{gcd}\left(f\left(x_{a, n}\right), f\left(x_{a, 1}\right)\right)=\operatorname{gcd}(k+(n-1) a, k+(n-1) a+1-n)=1$ since k not multiple factor of $(n-1)$, where $n-1$ is not prime.
Hence $m C_{n}$ admits vertex k-prime labeling when $n-1$ is not prime.
An illustration is given in Figure 2 .

Figure 2. Vertex k-prime labeling of $3 C_{22}$ for $k=16$
Theorem 3.6. The corona $T_{n} \odot K_{1}$ is vertex k-prime for $n>1$.
Proof. We represent the point set and line set of $T_{n} \odot K_{1}$ as

$$
\begin{aligned}
& V\left(T_{n} \odot K_{1}\right)=\left\{u_{a}: 1 \leq a \leq n-1\right\} \cup\left\{v_{a}: 1 \leq a \leq n\right\} \cup\left\{x_{a}: 1 \leq a \leq n-1\right\} \cup\left\{y_{a}: 1 \leq a \leq n\right\} \\
& E\left(T_{n} \odot K_{1}\right)=\left\{\begin{array}{l}
\left\{v_{a} v_{a+1}, v_{a} u_{a}, u_{a} v_{a+1}: 1 \leq a \leq n-1\right\} \\
\left\{u_{a} x_{a}: 1 \leq a \leq n-1\right\} \\
\left\{v_{a} y_{a}: 1 \leq a \leq n\right\}
\end{array}\right.
\end{aligned}
$$

The number of points and lines of $T_{n} \odot K_{1}$ is $\left|V\left(T_{n} \odot K_{1}\right)\right|=4 n-2$ and $\left|E\left(T_{n} \odot K_{1}\right)\right|=5 n-4$.
Case 1. k is odd
Now define a function f from points of $T_{n} \odot K_{1}$ to $k, k+1, \ldots, k+4 n-3$ as given below:

$$
\begin{array}{ll}
f\left(v_{1}\right)=k \\
f\left(v_{a}\right)=k+4 a-4, & 2 \leq a \leq n \\
f\left(u_{a}\right)=k+4 a-2, & 1 \leq a \leq n-1 \\
f\left(x_{a}\right)=k+4 a-1, & 1 \leq a \leq n-1 \\
f\left(y_{a}\right)=k+4 a-3, & 1 \leq a \leq n
\end{array}
$$

For any $v_{a} v_{a+1} \in E\left(T_{n} \odot K_{1}\right), \operatorname{gcd}\left(f\left(v_{a}\right), f\left(v_{a+1}\right)\right)=\operatorname{gcd}(k+4 a-4, k+4 a)=1$ since k is odd. For any $v_{a} u_{a} \in E\left(T_{n} \odot K_{1}\right), \operatorname{gcd}\left(f\left(v_{a}\right), f\left(u_{a}\right)\right)=\operatorname{gcd}(k+4 a-4, k+4 a-2)=1$ since $k+4 a-4$ and $k+4 a-2$ are consecutive odd positive integers. For any $u_{a} v_{a+1} \in E\left(T_{n} \odot K_{1}\right), \operatorname{gcd}\left(f\left(u_{a}\right), f\left(v_{a+1}\right)\right)=$ $\operatorname{gcd}(k+4 a-2, k+4 a)=1$ since $k+4 a-2$ and $k+4 a$ are consecutive odd positive integers. For any $u_{a} x_{a} \in E\left(T_{n} \odot K_{1}\right), \operatorname{gcd}\left(f\left(u_{a}\right), f\left(x_{a}\right)\right)=\operatorname{gcd}(k+4 a-2, k+4 a-1)=1$ since $k+4 a-2$ and $k+4 a$ are consecutive positive integers. For any $v_{a} y_{a} \in E\left(T_{n} \odot K_{1}\right), \operatorname{gcd}\left(f\left(v_{a}\right), f\left(y_{a}\right)\right)=$ $\operatorname{gcd}(k+4 a-4, k+4 a-3)=1$ since $k+4 a-4$ and $k+4 a-3$ are consecutive positive integers.
Case 2. k is even
Now define a function f from points of $T_{n} \odot K_{1}$ to $k, k+1, \ldots, k+4 n-3$ as given below:

$$
\begin{array}{ll}
f\left(y_{1}\right)=k, & \\
f\left(y_{a}\right)=k+4 a-4, & 2 \leq a \leq n, \\
f\left(v_{a}\right)=k+4 a-3, & 1 \leq a \leq n, \\
f\left(u_{a}\right)=k+4 a-1, & 1 \leq a \leq n-1, \\
f\left(x_{a}\right)=k+4 a-2, & 1 \leq a \leq n-1 .
\end{array}
$$

For any $v_{a} v_{a+1} \in E\left(T_{n} \odot K_{1}\right), \operatorname{gcd}\left(f\left(v_{a}\right), f\left(v_{a+1}\right)\right)=\operatorname{gcd}(k+4 a-3, k+4 a+1)=1$ since $k+1$ is odd. For any $v_{a} u_{a} \in E\left(T_{n} \odot K_{1}\right), \operatorname{gcd}\left(f\left(v_{a}\right), f\left(u_{a}\right)\right)=\operatorname{gcd}(k+4 a-3, k+4 a-1)=1$ since $k+4 a-3$ and $k+4 a-1$ are consecutive odd positive integers. For any $u_{a} v_{a+1} \in E\left(T_{n} \odot K_{1}\right)$, $\operatorname{gcd}\left(f\left(u_{a}\right), f\left(v_{a+1}\right)\right)=\operatorname{gcd}(k+4 a-1, k+4 a+1)=1$ since $k+4 a-1$ and $k+4 a+1$ are consecutive odd positive integers. For any $u_{a} x_{a} \in E\left(T_{n} \odot K_{1}\right), \operatorname{gcd}\left(f\left(u_{a}\right), f\left(x_{a}\right)\right)=\operatorname{gcd}(k+4 a-1, k+4 a-2)=1$ since $k+4 a-1$ and $k+4 a-2$ are consecutive positive integers. For any $v_{a} y_{a} \in E\left(T_{n} \odot K_{1}\right)$, $\operatorname{gcd}\left(f\left(v_{a}\right), f\left(y_{a}\right)\right)=\operatorname{gcd}(k+4 a-3, k+4 a-4)=1$ since $k+4 a-3$ and $k+4 a-4$ are consecutive positive integers.
Hence $T_{n} \odot K_{1}$ admits vertex k-prime labeling.
Theorem 3.7. The corona $m C_{5} \odot K_{1}$ is vertex k-prime for $m \geq 1$.
Proof. Let m blocks of C_{5} form a pentagonal snake $m C_{5}$. We represent the point set and line set of $m C_{5} \odot K_{1}$ as

$$
\begin{aligned}
& V\left(m C_{5} \odot K_{1}\right)=\left\{\begin{array}{l}
\left\{x_{a, b}: 1 \leq b \leq 5,1 \leq a \leq m\right\} \cup\left\{y_{r}^{s}: 1 \leq r \leq 5,1 \leq s \leq m\right\}, \\
E\left(m C_{5} \odot K_{1}\right)=\left\{\begin{array}{l}
\left\{x_{a, b} x_{a, b+1}: 1 \leq b \leq 4,1 \leq a \leq m\right\}, \\
\left\{x_{a, 5} x_{a, 1}: 1 \leq a \leq m\right\}, \\
\left\{x_{a, b} y_{r}^{s}: 1 \leq b \leq 5,1 \leq a \leq m, 1 \leq r \leq 5,1 \leq s \leq m\right\}
\end{array}\right.
\end{array} .\left\{\begin{array}{l}
s, 1 \leq 2
\end{array}\right)\right.
\end{aligned}
$$

We refer the point $x_{a+1,1}$ as $x_{a, 5}$ for $1 \leq a \leq m-1$ and y_{1}^{s+1} as y_{5}^{s} for $1 \leq s \leq m-1$ to facilitate defining of lines. The number of points and lines of $\left.m C_{5} \odot K_{1}\right)$ is $\left|V\left(m C_{5} \odot K_{1}\right)\right|=8 m+2$ and $\left|E\left(m C_{5} \odot K_{1}\right)\right|=9 m+1$.

Case 1. k is odd
Now define a function f from points of $m C_{5} \odot K_{1}$ to $k, k+1, \ldots, k+8 m+1$ as given below:

$$
\begin{array}{ll}
f\left(x_{1,1}\right)=k, & \\
f\left(x_{a, b}\right)=k+8 a+2 b-10, & 2 \leq b \leq 5,1 \leq a \leq m, \\
f\left(y_{r}^{s}\right)=k+2 r+8 s-9, & 1 \leq r \leq 5,1 \leq s \leq m, \\
f\left(x_{a, 5}\right)=f\left(x_{a+1,1}\right), & 1 \leq a \leq m .
\end{array}
$$

For any $x_{a, b} x_{a, b+1} \in E\left(m C_{5} \odot K_{1}\right), \operatorname{gcd}\left(f\left(x_{a, b}\right), f\left(x_{a, b+1}\right)\right)=\operatorname{gcd}(k+8 a+2 b-10, k+8 a+2 b-8)=1$ since $k+8 a+2 b-10$ and $k+8 a+2 b-8$ are consecutive odd positive integers. For any $x_{a, 5} x_{a, 1} \in E\left(m C_{5} \odot K_{1}\right)=\operatorname{gcd}\left(f\left(x_{a, 5}\right), f\left(x_{a, 1}\right)\right)=\operatorname{gcd}(k+8 a, k+8 a-8)$ since k is odd. For any $x_{a, b} y_{r}^{s} \in$ $E\left(m C_{5} \odot K_{1}\right)=\operatorname{gcd}\left(f\left(x_{a, b}\right), f\left(y_{r}^{s}\right)\right)=\operatorname{gcd}(k+8 a+2 b-10, k+2 r+8 s-9)=1$ since $k+8 a+2 b-10$ and $k+2 r+8 s-9$ are consecutive positive integers.

Case 2. k is even
Now define a function f from points of $m C_{5} \odot K_{1}$ to $k, k+1, \ldots, k+8 m+1$ as given below:

$$
\begin{array}{ll}
f\left(y_{1}^{1}\right)=k, & \\
f\left(y_{r}^{s}\right)=k+2 r+8 s-10, & 2 \leq r \leq 5,1 \leq s \leq m, \\
f\left(x_{a, b}\right)=k+8 a+2 b-9, & 1 \leq b \leq 5,1 \leq a \leq m, \\
f\left(x_{a, 5}\right)=f\left(x_{a+1,1}\right), & 1 \leq a \leq m
\end{array}
$$

For any $x_{a, b} x_{a, b+1} \in E\left(m C_{5} \odot K_{1}\right), \operatorname{gcd}\left(f\left(x_{a, b}\right), f\left(x_{a, b+1}\right)\right)=\operatorname{gcd}(k+8 a+2 b-9, k+8 a+2 b-7)=1$ since $k+8 a+2 b-9$ and $k+8 a+2 b-7$ are consecutive odd positive integers. For any $x_{a, 5} x_{a, 1} \in E\left(m C_{5} \odot K_{1}\right)=\operatorname{gcd}\left(f\left(x_{a, 5}\right), f\left(x_{a, 1}\right)\right)=\operatorname{gcd}(k+8 a+1, k+8 a-7)$ since k is odd. For any $x_{a, b} y_{r}^{s} \in E\left(m C_{5} \odot K_{1}\right)=\operatorname{gcd}\left(f\left(x_{a, b}\right), f\left(y_{r}^{s}\right)\right)=\operatorname{gcd}(k+8 a+2 b-9, k+2 r+8 s-10)=1$ since $k+8 a+2 b-9$ and $k+2 r+8 s-10$ are consecutive positive integers.
Hence $m C_{5} \odot K_{1}$ admits vertex k-prime labeling.
Theorem 3.8. The corona graphs $m C_{9} \odot K_{1}$ is vertex k-prime for $m \geq 1$.
Proof. Let m blocks of C_{9} form a nanogonal snake $m C_{9}$. We represent the point set and line set of $m C_{9} \odot K_{1}$ as

$$
\begin{aligned}
& V\left(m C_{9} \odot K_{1}\right)=\left\{x_{a, b}: 1 \leq b \leq 9,1 \leq a \leq m\right\} \cup\left\{y_{r}^{s}: 1 \leq r \leq 9,1 \leq s \leq m\right\}, \\
& E\left(m C_{9} \odot K_{1}\right)=\left\{\begin{array}{l}
\left\{x_{a, b} x_{a, b+1}: 1 \leq b \leq 8,1 \leq a \leq m\right\}, \\
\left\{x_{a, 9} x_{a, 1}: 1 \leq a \leq m\right\}, \\
\left\{x_{a, b} y_{r}^{s}: 1 \leq b \leq 9,1 \leq a \leq m, 1 \leq r \leq 9,1 \leq s \leq m\right\} .
\end{array}\right.
\end{aligned}
$$

We refer the point $x_{a+1,1}$ as $x_{a, 9}$ for $1 \leq a \leq m-1$ and y_{1}^{s+1} as y_{9}^{s} for $1 \leq s \leq m-1$ to facilitate defining of lines. The number of points and lines of $m C_{9} \odot K_{1}$ is $\left|V\left(m C_{9} \odot K_{1}\right)\right|=16 m+2$ and $\left|E\left(m C_{9} \odot K_{1}\right)\right|=17 m+1$.

Case 1. k is odd
Now define a function f from points of $m C_{9} \odot K_{1}$ to $k, k+1, \ldots, k+16 m+1$ as given below:

$$
\begin{array}{ll}
f\left(x_{1,1}\right)=k, & \\
f\left(x_{a, b}\right)=k+16 a+2 b-18, & 2 \leq b \leq 9,1 \leq a \leq m, \\
f\left(y_{r}^{s}\right)=k+2 r+16 s-17, & 1 \leq r \leq 9,1 \leq s \leq m, \\
f\left(x_{a, 9}\right)=f\left(x_{a+1,1}\right), & 1 \leq a \leq m .
\end{array}
$$

For any $x_{a, b} x_{a, b+1} \in E\left(m C_{9} \odot K_{1}\right), \operatorname{gcd}\left(f\left(x_{a, b}\right), f\left(x_{a, b+1}\right)\right)=\operatorname{gcd}(k+16 a+2 b-18, k+16 a+2 b-16)=1$ since $k+16 a+2 b-18$ and $k+16 a+2 b-16$ are consecutive odd positive integers. For any $x_{a, 9} x_{a, 1} \in E\left(m C_{9} \odot K_{1}\right)=\operatorname{gcd}\left(f\left(x_{a, 9}\right), f\left(x_{a, 1}\right)\right)=\operatorname{gcd}(k+16 a, k+16 a-16)$ since k is odd. For any $x_{a, b} y_{r}^{s} \in E\left(m C_{9} \odot K_{1}\right)=\operatorname{gcd}\left(f\left(x_{a, b}\right), f\left(y_{r}^{s}\right)\right)=\operatorname{gcd}(k+16 a+2 b-18, k+2 r+16 s-17)=1$ since $k+16 a+2 b-18$ and $k+2 r+16 s-17$ are consecutive positive integers.

Case 2. k is even
Now define a function f from points of $m C_{9} \odot K_{1}$ to $k, k+1, \ldots, k+16 m+1$ as given below:

$$
\begin{array}{ll}
f\left(y_{1}^{1}\right)=k, & \\
f\left(y_{r}^{s}\right)=k+2 r+16 s-118, & 2 \leq r \leq 9,1 \leq s \leq m, \\
f\left(x_{a, b}\right)=k+16 a+2 b-17, & 1 \leq b \leq 9,1 \leq a \leq m, \\
f\left(x_{a, 9}\right)=f\left(x_{a+1,1}\right), & 1 \leq a \leq m .
\end{array}
$$

For any $x_{a, b} x_{a, b+1} \in E\left(m C_{9} \odot K_{1}\right), \operatorname{gcd}\left(f\left(x_{a, b}\right), f\left(x_{a, b+1}\right)\right)=\operatorname{gcd}(k+16 a+2 b-17, k+16 a+2 b-15)=1$ since $k+16 a+2 b-17$ and $k+16 a+2 b-15$ are consecutive odd positive integers. For any $x_{a, 9} x_{a, 1} \in E\left(m C_{9} \odot K_{1}\right)=\operatorname{gcd}\left(f\left(x_{a, 9}\right), f\left(x_{a, 1}\right)\right)=\operatorname{gcd}(k+16 a+1, k+16 a-15)$ since k is odd. For any $x_{a, b} y_{r}^{s} \in E\left(m C_{9} \odot K_{1}\right)=\operatorname{gcd}\left(f\left(x_{a, b}\right), f\left(y_{r}^{s}\right)\right)=\operatorname{gcd}(k+16 a+2 b-17, k+2 r+16 s-18)=1$ since $k+16 a+2 b-17$ and $k+2 r+16 s-18$ are consecutive positive integers.
Hence $m C_{9} \odot K_{1}$ admits vertex k-prime labeling.
Theorem 3.9. The corona graph $m C_{n} \odot K_{1}$ is vertex k-prime for even positive integer $n \geq 4$ and $k \not \equiv 0(\bmod (n-1))$, where $n-1$ is prime.

Proof. Let m blocks of C_{n} form a cyclic snake $m C_{n}$. We represent the point set and line set of $m C_{n} \odot K_{1}$ as

$$
\begin{aligned}
& V\left(m C_{n} \odot K_{1}\right)=\left\{x_{a, b}: 1 \leq b \leq n, 1 \leq a \leq m\right\} \cup\left\{y_{r}^{s}: 1 \leq r \leq n, 1 \leq s \leq m\right\}, \\
& E\left(m C_{n} \odot K_{1}\right)=\left\{\begin{array}{l}
\left\{x_{a, b} x_{a, b+1}: 1 \leq b \leq n-1,1 \leq a \leq m\right\}, \\
\left\{x_{a, n} x_{a, 1}: 1 \leq a \leq m\right\}, \\
\left\{x_{a, b}^{s} y_{r}^{s}: 1 \leq b \leq n, 1 \leq a \leq m, 1 \leq r \leq n, 1 \leq s \leq m\right\} .
\end{array}\right.
\end{aligned}
$$

We refer the point $x_{a+1,1}$ as $x_{a, n}$ for $1 \leq a \leq m-1$ and y_{1}^{s+1} as y_{n}^{s} for $1 \leq s \leq m-1$ to facilitate defining of lines. The number of points and lines of $m C_{n} \odot K_{1}$ is $\left|V\left(m C_{n} \odot K_{1}\right)\right|=2(n-1) m+2$ and $\left|E\left(m C_{n} \odot K_{1}\right)\right|=(2 n-1) m+1$ (see Figure 3).

Figure 3. $m C_{n} \odot K_{1}$

Case 1. k is odd
Now define a function f from points of $m C_{n} \odot K_{1}$ to $k, k+1, \ldots, k+2(n-1) m+1$ as given below:

$$
\begin{array}{ll}
f\left(x_{1,1}\right)=k, & \\
f\left(x_{a, b}\right)=k+(2 n-2) a+2 b-2 n, & 2 \leq b \leq n, 1 \leq a \leq m, \\
f\left(y_{r}^{s}\right)=k+2 r+(2 n-2) s-(2 n-1), & 1 \leq r \leq n, 1 \leq s \leq m, \\
f\left(x_{a, n}\right)=f\left(x_{a+1,1}\right), & 1 \leq a \leq m .
\end{array}
$$

Based on the labeling pattern defined, the lines of $m C_{n} \odot K_{1}$ satisfy the conditions of vertex k-prime labeling as, for any $x_{a, b} x_{a, b+1} \in E\left(m C_{n} \odot K_{1}\right), \operatorname{gcd}\left(f\left(x_{a, b}\right), f\left(x_{a, b+1}\right)\right)=\operatorname{gcd}(k+(2 n-2) a+$ $2 b-2 n, k+(2 n-2) a+2 b-2 n+2)=1$ since $k+(2 n-2) a+2 b-2 n$ and $k+(2 n-2) a+2 b-2 n+2$ are consecutive odd positive integers. For any $x_{a, n} x_{a, 1} \in E\left(m C_{n} \odot K_{1}\right)=\operatorname{gcd}\left(f\left(x_{a, n}\right), f\left(x_{a, 1}\right)\right)=$ $\operatorname{gcd}(k+(2 n-2) a, k+(2 n-2) a-2 n+2)=1$ since $k \not \equiv 0(\bmod (n-1))$, where $n-1$ is prime. For any $x_{a, b} y_{r}^{s} \in E\left(m C_{n} \odot K_{1}\right), \operatorname{gcd}\left(f\left(x_{a, b}\right), f\left(y_{r}^{s}\right)\right)=\operatorname{gcd}(k+(2 n-2) a+2 b-2 n, k+2 r+(2 n-2) s-(2 n-1))=1$ since $k+(2 n-2) a+2 b-2 n$ and $k+2 r+(2 n-2) s-(2 n-1)$ are consecutive positive integers.
Case 2. k is even
Now define a function f from points of $m C_{n} \odot K_{1}$ to $k, k+1, \ldots, k+2(n-1) m+1$ as given below:

$$
\begin{array}{ll}
f\left(y_{1}^{1}\right)=k, & \\
f\left(y_{r}^{s}\right)=k+2 r+(2 n-2) s-2 n, & 2 \leq r \leq n, 1 \leq s \leq m, \\
f\left(x_{a, b}\right)=k+(2 n-2) a+2 b-(2 n-1), & 1 \leq b \leq n, 1 \leq a \leq m, \\
f\left(x_{a, n}\right)=f\left(x_{a+1,1}\right), & 1 \leq a \leq m .
\end{array}
$$

Based on the labeling pattern defined, the lines of $m C_{n} \odot K_{1}$ satisfy the conditions of vertex k-prime labeling as, for any $x_{a, b} x_{a, b+1} \in E\left(m C_{n} \odot K_{1}\right), \operatorname{gcd}\left(f\left(x_{a, b}\right), f\left(x_{a, b+1}\right)\right)=\operatorname{gcd}(k+(2 n-2) a+$ $2 b-(2 n-1), k+(2 n-2) a+2 b-2 n+3)=1$ since $k+(2 n-2) a+2 b-(2 n-1)$ and $k+(2 n-2) a+2 b-2 n+3$ are consecutive odd positive integers. For any $x_{a, n} x_{a, 1} \in E\left(m C_{n} \odot K_{1}\right), \operatorname{gcd}\left(f\left(x_{a, n}\right), f\left(x_{a, 1}\right)\right)=$ $\operatorname{gcd}(k+(2 n-2) a+1, k+(2 n-2) a-2 n+3)=1$ since $k \not \equiv 0(\bmod (n-1))$, where $n-1$ is prime. For any $x_{a, b} y_{r}^{s} \in E\left(m C_{n} \odot K_{1}\right)=\operatorname{gcd}\left(f\left(x_{a, b}\right), f\left(y_{r}^{s}\right)\right)=\operatorname{gcd}(k+(2 n-2) a+2 b-(2 n-1), k+2 r+(2 n-2) s-2 n)=1$ since $k+(2 n-2) a+2 b-(2 n-1)$ and $k+2 r+(2 n-2) s-2 n$ are consecutive positive integers.
Hence $m C_{n} \odot K_{1}$ admits vertex k-prime labeling.
Theorem 3.10. The corona graph $m C_{n} \odot K_{1}$ is vertex k-prime for even positive integer $n \geq 10$ and k not multiple factor of $(n-1)$, where $n-1$ is not prime.

Proof. Let m blocks of C_{n} form a cyclic snake $m C_{n}$. We represent the point set and line set of $m C_{n} \odot K_{1}$ as

$$
\begin{aligned}
& V\left(m C_{n} \odot K_{1}\right)=\left\{x_{a, b}: 1 \leq b \leq n, 1 \leq a \leq m\right\} \cup\left\{y_{r}^{s}: 1 \leq r \leq n, 1 \leq s \leq m\right\}, \\
& E\left(m C_{n} \odot K_{1}\right)=\left\{\begin{array}{l}
\left\{x_{a, b} x_{a, b+1}: 1 \leq b \leq n-1,1 \leq a \leq m\right\}, \\
\left\{x_{a, n} x_{a, 1}: 1 \leq a \leq m\right\}, \\
\left\{x_{a, b} y_{r}^{s}: 1 \leq b \leq n, 1 \leq a \leq m, 1 \leq r \leq n, 1 \leq s \leq m\right\} .
\end{array}\right.
\end{aligned}
$$

We refer the point $x_{a+1,1}$ as $x_{a, n}$ for $1 \leq a \leq m-1$ and y_{1}^{s+1} as y_{n}^{s} for $1 \leq s \leq m-1$ to facilitate defining of lines. The number of points and lines of $m C_{n} \odot K_{1}$ is $\left|V\left(m C_{n} \odot K_{1}\right)\right|=2(n-1) m+2$ and $\left|E\left(m C_{n} \odot K_{1}\right)\right|=(2 n-1) m+1$.

Case 1. k is odd
Now define a function f from points of $m C_{n} \odot K_{1}$ to $k, k+1, \ldots, k+2(n-1) m+1$ as given below:

$$
\begin{array}{ll}
f\left(x_{1,1}\right)=k, & \\
f\left(x_{a, b}\right)=k+(2 n-2) a+2 b-2 n, & 2 \leq b \leq n, 1 \leq a \leq m, \\
f\left(y_{r}^{s}\right)=k+2 r+(2 n-2) s-(2 n-1), & 1 \leq r \leq n, 1 \leq s \leq m, \\
f\left(x_{a, n}\right)=f\left(x_{a+1,1}\right), & 1 \leq a \leq m .
\end{array}
$$

Based on the labeling pattern defined, the lines of $m C_{n} \odot K_{1}$ satisfy the conditions of vertex k-prime labeling as, for any $x_{a, b} x_{a, b+1} \in E\left(m C_{n} \odot K_{1}\right), \operatorname{gcd}\left(f\left(x_{a, b}\right), f\left(x_{a, b+1}\right)\right)=\operatorname{gcd}(k+(2 n-2) a+$ $2 b-2 n, k+(2 n-2) a+2 b-2 n+2)=1$ since $k+(2 n-2) a+2 b-2 n$ and $k+(2 n-2) a+2 b-2 n+2$ are consecutive odd positive integers. For any $x_{a, n} x_{a, 1} \in E\left(m C_{n} \odot K_{1}\right)=\operatorname{gcd}\left(f\left(x_{a, n}\right), f\left(x_{a, 1}\right)\right)=$ $\operatorname{gcd}(k+(2 n-2) a, k+(2 n-2) a-2 n+2)=1$ since k not multiple factor of $(n-1)$, where $n-1$ is not prime. For any $x_{a, b} y_{r}^{s} \in E\left(m C_{n} \odot K_{1}\right), \operatorname{gcd}\left(f\left(x_{a, b}\right), f\left(y_{r}^{s}\right)\right)=\operatorname{gcd}(k+(2 n-2) a+2 b-2 n, k+2 r+$ $(2 n-2) s-(2 n-1))=1$ since $k+(2 n-2) a+2 b-2 n$ and $k+2 r+(2 n-2) s-(2 n-1)$ are consecutive positive integers.

Case 2. k is even
Now define a function f from points of $m C_{n} \odot K_{1}$ to $k, k+1, \ldots, k+2(n-1) m+1$ as given below:

$$
\begin{array}{ll}
f\left(y_{1}^{1}\right)=k, & \\
f\left(y_{r}^{s}\right)=k+2 r+(2 n-2) s-2 n, & 2 \leq r \leq n, 1 \leq s \leq m, \\
f\left(x_{a, b}\right)=k+(2 n-2) a+2 b-(2 n-1), & 1 \leq b \leq n, 1 \leq a \leq m, \\
f\left(x_{a, n}\right)=f\left(x_{a+1,1}\right), & 1 \leq a \leq m .
\end{array}
$$

Based on the labeling pattern defined, the lines of $m C_{n} \odot K_{1}$ satisfy the conditions of vertex k-prime labeling as, for any $x_{a, b} x_{a, b+1} \in E\left(m C_{n} \odot K_{1}\right), \operatorname{gcd}\left(f\left(x_{a, b}\right), f\left(x_{a, b+1}\right)\right)=\operatorname{gcd}(k+$ $(2 n-2) a+2 b-(2 n-1), k+(2 n-2) a+2 b-2 n+3)=1$ since $k+(2 n-2) a+2 b-(2 n-1)$ and $k+(2 n-2) a+2 b-2 n+3$ are consecutive odd positive integers. For any $x_{a, n} x_{a, 1} \in E\left(m C_{n} \odot K_{1}\right)$, $\operatorname{gcd}\left(f\left(x_{a, n}\right), f\left(x_{a, 1}\right)\right)=\operatorname{gcd}(k+(2 n-2) a+1, k+(2 n-2) a-2 n+3)=1$ since k not multiple factor of ($n-1$), where $n-1$ is not prime. For any $x_{a, b} y_{r}^{s} \in E\left(m C_{n} \odot K_{1}\right)=\operatorname{gcd}\left(f\left(x_{a, b}\right), f\left(y_{r}^{s}\right)\right)=$ $\operatorname{gcd}(k+(2 n-2) a+2 b-(2 n-1), k+2 r+(2 n-2) s-2 n)=1$ since $k+(2 n-2) a+2 b-(2 n-1)$ and $k+2 r+(2 n-2) s-2 n$ are consecutive positive integers.

Hence $m C_{n} \odot K_{1}$ admits vertex k-prime labeling when $n-1$ is not prime.
An illustration is given in Figure 4

Figure 4. Vertex k-prime labeling of $2 C_{34} \odot K_{1}$ for $k=12$

4. Conclusion

The results presented in this paper is on cyclic snake graphs and corona graphs of the form $m C_{n} \odot K_{1}$ that satisfy the conditions of vertex k-prime labeling.

Competing Interests

The authors declare that they have no competing interests.

Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

[1] S. T. Arockiamary and G. Vijayalakshmi, k-Prime labeling of one point union of path graph, Procedia Computer Science 172 (2020), 649 - 654, DOI: 10.1016/j.procs.2020.05.084
[2] C. Barrientos, Graceful labelings of cyclic snakes, Ars Combinatoria 60 (2001), 85 - 96, URL: http: //www.combinatoire.ca/ArsCombinatoria/Vol60.html.
[3] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Mathematicae 4 (1970), 322 325, DOI: 10.1007/BF01844162.
[4] J. A. Gallian, A dynamic survey of graph labeling, Electronic Journal of Combinatorics DS6 (2021), Version 24, 576 page, URL: https://www.combinatorics.org/files/Surveys/ds6/ds6v24-2021.pdf.
[5] S. Vaidya and U. Prajapati, Some results on prime and k-prime labeling, Journal of Mathematics Research 3(1) (2011), 66 - 75, DOI: 10.5539/jmr.v3n1p66.

