Two Regular Polygons with a Shared Vertex

Mamuka Meskhishvili
Department of Mathematics, Georgian-American High School, 18 Chkondideli Str., Tbilisi 0180, Georgia mathmamuka@gmail.com

Received: March 17, 2022
Accepted: June 21, 2022

Abstract

For two non-congruent regular polygons of the same type, the method of finding a point in the plane at the equal distances to the vertices, is established. The existence of two points with this property is proved for two polygons with a shared vertex. For one of them, it is proved that it satisfies the Bottema theorem conditions and based on this, the generalized Bottema theorem for any two regular polygons is given.

Keywords. Bottema theorem, Cyclic averages, Regular polygon, Common vertex
Mathematics Subject Classification (2020). 51M15, 51M20, 51M35
Copyright © 2022 Mamuka Meskhishvili. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

For a regular n-sided polygon $A_{1} A_{2} \cdots A_{n}$ and an arbitrary point M in the plane of the polygon, the distances from M to the vertices $A_{1}, A_{2}, \ldots, A_{n}$ satisfy [2,3]:

$$
\begin{equation*}
\sum_{i=1}^{n} d_{i}^{2 m}=n\left[\left(R^{2}+L^{2}\right)^{m}+\sum_{k=1}^{\left\lfloor\frac{m}{2}\right\rfloor}\binom{m}{2 k}\binom{2 k}{k} R^{2 k} L^{2 k}\left(R^{2}+L^{2}\right)^{m-2 k}\right] \tag{1.1}
\end{equation*}
$$

where $m=1, \ldots, n-1 ; R$ is the radius of the circumcircle Ω and L is the distance between M and the centroid O of the regular polygon.

Let us the second n-sided polygon $B_{1} B_{2} \cdots B_{n}$ is given in the plane. The distance from the point M to the vertices $B_{1}, B_{2}, \ldots, B_{n}$ denote by $t_{1}, t_{2}, \ldots, t_{n}$. Therefore, for given two n-sided regular polygons and the point M, we have two sets of distances:

$$
\left\{d_{i}\right\} \text { and }\left\{t_{i}\right\}
$$

are there points in the plane, which have the same set of these distances? This problem is investigated in the present paper.

Denote by R_{2} and L_{2} the radius of the circumcircle Ω_{2} and the distance between M and centroid O_{2} of the regular polygon $B_{1} B_{2} \cdots B_{n}$. Equalize the right sides of (1.1), we get

$$
\begin{aligned}
& \left(R_{1}^{2}+L_{1}^{2}\right)^{m}+\sum_{k=1}^{\left\lfloor\frac{m}{2}\right\rfloor}\binom{m}{2 k}\binom{2 k}{k} R_{1}^{2 k} L_{1}^{2 k}\left(R_{1}^{2}+L_{1}^{2}\right)^{m-2 k} \\
& \quad=\left(R_{2}^{2}+L_{2}^{2}\right)^{m}+\sum_{k=1}^{\left\lfloor\frac{m}{2}\right\rfloor}\binom{m}{2 k}\binom{2 k}{k} R_{2}^{2 k} L_{2}^{2 k}\left(R_{2}^{2}+L_{2}^{2}\right)^{m-2 k} .
\end{aligned}
$$

For any n-gons, the first two relations ($m=1,2$) are:

$$
\begin{aligned}
R_{1}^{2}+L_{1}^{2} & =R_{2}^{2}+L_{2}^{2} \\
\left(R_{1}^{2}+L_{1}^{2}\right)^{2}+2 R_{1}^{2} L_{1}^{2} & =\left(R_{2}^{2}+L_{2}^{2}\right)^{2}+2 R_{2}^{2} L_{2}^{2}
\end{aligned}
$$

So, we obtain two cases:

$$
\begin{array}{ll}
\text { congruent case: } & R_{1}=R_{2} \text { and } L_{1}=L_{2}, \\
\text { non-congruent case: } & R_{1}=L_{2} \text { and } L_{1}=R_{2} .
\end{array}
$$

Equalize the left sides of (1.1), we get the $n-1$ relations for distances:

$$
\left.\begin{array}{c}
d_{1}^{2}+d_{2}^{2}+\cdots+d_{n}^{2}=t_{1}^{2}+t_{2}^{2}+\cdots+t_{n}^{2}, \tag{*}\\
d_{1}^{4}+d_{2}^{4}+\cdots+d_{n}^{4}=t_{1}^{4}+t_{2}^{4}+\cdots+t_{n}^{4}, \\
\vdots \\
d_{1}^{2(n-1)}+d_{2}^{2(n-1)}+\cdots+d_{n}^{2(n-1)}=t_{1}^{2(n-1)}+t_{2}^{2(n-1)}+\cdots+t_{n}^{2(n-1)} .
\end{array}\right\}
$$

Let's consider the cases separately.

2. Congruent Regular Polygons

Congruent n-gons case is divided into two subcases: $O_{1}=O_{2}$ and $O_{1} \neq O_{2}$.
If two polygons centroids coincide, we get two n-gons inscribed in the same circle and they differ only by rotation around the common centroid, see Figure 1 (for figures of any n-gons we use the squares in the Figures (1+6).

Figure 1

For M, we can take any point in the plane.

Proposition 2.1 (Rotational invariant). If two congruent polygons are inscribed in the same circle, the distances from any point in the plane to the vertices of the polygons satisfy the system (*).

If $O_{1} \neq O_{2}$, it is clear M lies on the perpendicular bisector of the line segment $O_{1} O_{2}$ (see Figure 2).

Figure 2
For M, we can take any point on the perpendicular bisector.
Proposition 2.2 (Reflection invariant). If two congruent polygons are inscribed in symmetrical circles, the distances from any point on the axis of symmetry to the vertices of polygons satisfy the system (*).

3. Non-Congruent Regular Polygons

From the conditions of non-congruent case:

$$
R_{1}=L_{2} \quad \text { and } \quad L_{1}=R_{2}
$$

follow - the point M is the intersection point of two circles:

$$
\Omega_{1}\left(O_{2}, R_{1}\right) \text { and } \Omega_{2}\left(O_{1}, R_{2}\right)
$$

It is clear, such point exists, if

$$
\begin{equation*}
\left|R_{1}-R_{2}\right| \leq O_{1} O_{2} \leq R_{1}+R_{2} \tag{3.1}
\end{equation*}
$$

and if the circles intersect each other there are two points M_{1} and M_{2} of such property (see Figure 3).

Figure 3

For M, we can take only points M_{1} and M_{2}.
Proposition 3.1 (Necessary condition). For two non-congruent n-gons with centroids: O_{1}, O_{2}, circumradiii: R_{1}, R_{2} and circumcircles Ω_{1}, Ω_{2}, the only points of the intersection

$$
\left\{M_{1}, M_{2}\right\}=\Omega_{1}\left(O_{2}, R_{1}\right) \cap \Omega_{2}\left(O_{1}, R_{2}\right)
$$

satisfy the system (*).
Until now we consider all cases for which the distances from the point to the vertices of two regular n-gons satisfy the system (*), but for equality of the distances the system (*) is only necessary condition. Let us establish the sufficient condition.

4. Equalization of Distances

Let us consider the distances from the given point M_{1} to the vertices of the second regular polygon $B_{1} B_{2} \cdots B_{n}$ as variables:

$$
t_{1}, t_{2}, \ldots, t_{n}
$$

In the system (*), we have $n-1$ equations and n variables in order to determine the variables uniquely we must eliminate one of them. It is possible by using Proposition 2.1. The rotation does not change the system (*) thus we can rotate the second polygon, so that one pair of distances will be equal to each other.

Explain this procedure by using Figure 3. Construct circumscribe circles of the second polygon Ω_{2}, whose center is O_{2}. From the point M_{1} as the center draw the auxiliary circle with radius $M_{1} A_{1}$.

Figure 4

The intersection point of the auxiliary and Ω_{2} circles is the new position of the vertex B_{1} (see Figure 4). For the new position of the polygon $B_{1} B_{2} \cdots B_{n}$, we obtain

$$
\begin{equation*}
t_{1}=d_{1} \tag{**}
\end{equation*}
$$

The condition $(* *)$ and the system $(\sqrt{*)}$, give us a new system:

$$
\left.\begin{array}{c}
d_{2}^{2}+\cdots+d_{n}^{2}=t_{2}^{2}+\cdots+t_{n}^{2}, \\
d_{2}^{4}+\cdots+d_{n}^{4}=t_{2}^{4}+\cdots+t_{n}^{4}, \tag{***}\\
\vdots \\
d_{2}^{2(n-1)}+\cdots+d_{n}^{2(n-1)}=t_{2}^{2(n-1)}+\cdots+t_{n}^{2(n-1)} .
\end{array}\right\}
$$

Now the number of the variables equals to the number of the equations. By using Newton's Identities, elementary symmetric polynomials can be expressed in terms of power sums [4, 6]. Because of $(* * *)$, the power sums of $\left(d_{2}^{2}, \ldots, d_{n}^{2}\right)$ equal to the power sums of $\left(t_{2}^{2}, \ldots, t_{n}^{2}\right)$, so the corresponding elementary polynomials are the same, so

$$
d_{2}^{2}, \ldots, d_{n}^{2} \quad \text { and } \quad t_{2}^{2}, \ldots, t_{n}^{2}
$$

are the roots of the same equation of degree $n-1$. Consequently, t_{2}, \ldots, t_{n} are the permutation of the d_{2}, \ldots, d_{n}, therefore:

Proposition 4.1 (Sufficient condition). If in the system $(* * *)$, one pair of the distances is the same $\left(t_{1}=d_{1}\right)$, from that it follows the equality of the sets

$$
\left\{t_{2}, \ldots, t_{n}\right\}=\left\{d_{2}, \ldots, d_{n}\right\}
$$

For congruent case, the rotation gives the coincidence (if $O_{1}=O_{2}$, see Figure 1) and reflexion symmetry (if $O_{1} \neq O_{2}$, see Figure 2).

For non-congruent polygons, we obtain:
Theorem 4.1. If two non-congruent regular polygons are given in the plane, it is possible to fix both of them, so that there is the point M (in the plane) at equal distances from the vertices of the polygons. The point M satisfies:
I. $M=\Omega_{1}\left(O_{2}, R_{1}\right) \cap \Omega_{2}\left(O_{1}, R_{2}\right)$; where Ω_{1}, Ω_{2} - are circumscribed circles, $R_{1}, R_{2}-$ circumradii and O_{1}, O_{2} - centroids of the polygons.
II. One pair of distances must be equal, which is possible by rotation of one polygon over its centroid.

By convenient enumeration of the vertices, we get
$M A_{k}=M B_{k}, \quad$ where $k=1, \ldots, n$.

5. A Shared Vertex

If two n-gons have a shared vertex, the equality (**) automatically holds for M_{1} and M_{2}, so we do not need the rotation. For non-congruent case, we obtain two regular polygons and two points theorem.

Theorem 5.1. If in the plane two regular non-congruent polygons of the same type have a shared vertex, there are two points in the plane separately having equal distances to the vertices of the polygons.

The point M_{1} and M_{2} satisfy:

$$
\left\{M_{1}, M_{2}\right\}=\Omega_{1}\left(O_{2}, R_{1}\right) \cap \Omega_{2}\left(O_{1}, R_{2}\right)
$$

In the Figure 5 is given the case of two squares with shared vertex $-A_{1}$:

Figure 5

Communications in Mathematics and Applications, Vol. 13, No. 2, pp. 435 447,2022

The same distances are:

$$
\begin{equation*}
M_{1} A_{2}=M_{1} B_{2}, \quad M_{1} A_{3}=M_{1} B_{3}, \quad M_{1} A_{4}=M_{1} B_{4} \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{2} A_{2}=M_{2} B_{4}, \quad M_{2} A_{3}=M_{2} B_{3}, \quad M_{2} A_{4}=M_{2} B_{2} . \tag{5.2}
\end{equation*}
$$

In case of the shared vertex, from the triangle $-O_{1} A_{1} O_{2}$ the condition (3.1) is always held, so generally there are two points. If the shared vertex and the centroids are collinear, there is only one point having equal distances to the vertices (see Figure 6)

Figure 6

6. Corresponding Equal Distances

The equal distances (5.1) and (5.2), for points M_{1} and M_{2} are different in the order. If we take the vertices of the first polygon in clockwise direction:

$$
A_{2}, A_{3}, A_{4},
$$

the vertices of the corresponding equal distances for the second polygon are:

- for M_{2}, in clockwise direction: B_{4}, B_{3}, B_{2};
- for M_{1}, in anticlockwise direction: B_{2}, B_{3}, B_{4};
i.e., the vertices of corresponding equal distances for points M_{1} and M_{2} are in opposite order. Is it true for any regular polygons of the same type? Let us consider two regular n-gons with the shared vertex A_{1} (see Figure 7 and Figure 8).

For the point M_{1} in Figure 7, we have

$$
\Delta M_{1} A_{1} O_{2}=\triangle M_{1} O_{1} A_{1}, \quad \text { so } \quad \angle A_{1} O_{2} M_{1}=\angle M_{1} O_{1} A_{1} \equiv \alpha .
$$

Figure 7

Then,

$$
\begin{aligned}
M_{1} A_{2}^{2} & =R_{1}^{2}+R_{2}^{2}-2 R_{1} R_{2} \cos \left(\frac{2 \pi}{n}-\alpha\right), \\
M_{1} B_{2}^{2} & =R_{1}^{2}+R_{2}^{2}-2 R_{1} R_{2} \cos \left(\frac{2 \pi}{n}-\alpha\right), \\
& \vdots \\
M_{1} A_{k}^{2} & =R_{1}^{2}+R_{2}^{2}-2 R_{1} R_{2} \cos \left((k-1) \frac{2 \pi}{n}-\alpha\right), \\
M_{1} B_{k}^{2} & =R_{1}^{2}+R_{2}^{2}-2 R_{1} R_{2} \cos \left((k-1) \frac{2 \pi}{n}-\alpha\right) .
\end{aligned}
$$

Therefore,

$$
M_{1} A_{k}=M_{1} B_{k}, \quad \text { where } k=2, \ldots, n
$$

i.e., the vertices of the corresponding equal distances are in anticlockwise direction.

In the same manner for the point M_{2}, we have (see Figure 8):

$$
\triangle M_{2} O_{1} A_{1}=\triangle M_{2} O_{2} A_{1}, \quad \angle M_{2} O_{1} A_{1}=\angle M_{2} O_{2} A_{1} \equiv \beta
$$

Then,

$$
\begin{aligned}
& M_{2} A_{2}^{2}=R_{1}^{2}+R_{2}^{2}-2 R_{1} R_{2} \cos \left(\frac{2 \pi}{n}+\beta\right) \\
& M_{2} B_{n}^{2}=R_{1}^{2}+R_{2}^{2}-2 R_{1} R_{2} \cos \left(\frac{2 \pi}{n}+\beta\right)
\end{aligned}
$$

$$
\begin{aligned}
M_{2} A_{k}^{2} & =R_{1}^{2}+R_{2}^{2}-2 R_{1} R_{2} \cos \left((k-1) \frac{2 \pi}{n}+\beta\right), \\
M_{2} B_{n+2-k}^{2} & =R_{1}^{2}+R_{2}^{2}-2 R_{1} R_{2} \cos \left((k-1) \frac{2 \pi}{n}+\beta\right) .
\end{aligned}
$$

Therefore,

$$
M_{2} A_{k}=M_{2} B_{n+2-k}, \quad \text { where } k=2, \ldots, n,
$$

i.e., the vertices of the corresponding equal distances are in clockwise direction.

Figure 8

We obtain:
Theorem 6.1. There are two points M_{1} and M_{2} in the plane having the equal distances to the vertices of two regular polygons $A_{1} A_{2} \cdots A_{n}$ and $A_{1} B_{2} \cdots B_{n}$ with a shared vertex A_{1} :

$$
M_{1} A_{k}=M_{1} B_{k} \quad \text { and } \quad M_{2} A_{k}=M_{2} B_{n+2-k},
$$

where $k=2, \ldots, n$.

7. Properties of M_{1} and M_{2}

If the number n of the sides of the polygons is even, then diametrically opposed points of the shared vertex A_{1} are the vertices

$$
A_{1+\frac{n}{2}} \text { and } B_{1+\frac{n}{2}},
$$

see Figure 7
The quadrilateral $O_{2} M_{1} O_{1} M_{2}$ is parallelogram with sides: R_{1}, R_{2}, then

$$
\angle B_{1+\frac{n}{2}} M_{1} A_{1+\frac{n}{2}}=\angle B_{1+\frac{n}{2}} M_{1} O_{2}+\angle O_{2} M_{1} O_{1}+\angle A_{1+\frac{n}{2}} M_{1} O_{1}=\pi
$$

because of

$$
\angle B_{1+\frac{n}{2}} M_{1} O_{2}=\angle M_{1} A_{1+\frac{n}{2}} O_{1} \text { and } \angle M_{1} A_{1+\frac{n}{2}} O_{1}+\angle A_{1+\frac{n}{2}} M_{1} O_{1}=\angle M_{1} O_{1} A_{1} .
$$

Property 7.1. If n is even, the point M_{1} is the midpoint of the line segment $A_{1+\frac{n}{2}} B_{1+\frac{n}{2}}$.
If the number n is odd, diametrically opposed points D_{1}, D_{2} of the A_{1} are the midpoints of the arcs

$$
A_{\frac{1+n}{2}} A_{\frac{3+n}{2}} \quad \text { and } \quad B_{\frac{1+n}{2}} B_{\frac{3+n}{2}}
$$

of the circles $\Omega_{1}\left(O_{1}, R_{1}\right), \Omega_{2}\left(O_{2}, R_{2}\right)$, respectively (see Figure 8).
In odd case we can "double" the number of the vertices and then use the Property 7.1. For even case

$$
D_{1}=A_{1+\frac{n}{2}} \quad \text { and } \quad D_{2}=B_{1+\frac{n}{2}},
$$

so for both cases, we have:
Property 7.2. The point M_{1} is the midpoint of the line segment $D_{1} D_{2}$, where D_{1}, D_{2} are diametrically opposed points of the shared vertex of the polygons.

The triangle $M_{2} D_{1} D_{2}$ is isosceles (Theorem 6.1, $k=1+\frac{n}{2}$), so

$$
M_{1} M_{2} \perp D_{1} D_{2}
$$

In the quadrelateral $A_{1} M_{2} O_{1} O_{2}$ (see Figure 8)

$$
M_{2} O_{1}=O_{2} A_{1} \quad \text { and } \quad A_{1} O_{1}=M_{2} O_{2}
$$

so $A_{1} M_{2} O_{1} O_{2}$ is the isosceles trapezoid and

$$
A_{1} M_{2} / / O_{2} O_{1}
$$

The line segment $O_{1} O_{2}$ is the midsegment of the triangle $D_{1} A_{1} D_{2}$, so we obtain:
Property 7.3. The point M_{2} lies on the perpendicular bisector of $D_{1} D_{2}$ and $A_{1} M_{2} / / D_{1} D_{2}$.
Property 7.4. The line segment $M_{1} M_{2}$ is equal to the distance from the shared vertex to the line $D_{1} D_{2}$.

8. Generalized Bottema Theorem

The Bottema theorem concerns two squares, which have a common vertex. The theorem can be stated as follows (see Figure 5) [1,5]:
In any given triangle $A_{4} A_{1} B_{4}$, construct two squares on two sides $A_{1} A_{4}$ and $A_{1} B_{4}$. The midpoint of the line segment that connects the vertices of squares opposite the common vertex A_{1}, is independent of the location of A_{1}.

Let us change two squares by two regular polygons of the same number of sides in the Bottema theorem:

Theorem 8.1. In any given triangle $A_{n} A_{1} B_{n}$, construct two regular n-gons $A_{1} A_{2} \cdots A_{n}$ and $A_{1} B_{2} \cdots B_{n}$ on two sides $A_{1} A_{n}$ and $A_{1} B_{n}$. Take the points D_{1}, D_{2} on the circumcircles of the
polygons, which are diametrically opposed of the common vertex A_{1}. Then, the midpoint of the line segment $D_{1} D_{2}$ is independent of the location of A_{1}.

Proof. In our notations (see Figure 7 and Figure 8) the midpoint is M_{1}, and from Theorem 6.1. $M_{1} A_{k}=M_{1} B_{k}, \quad$ where $k=2, \ldots, n$.
Draw the altitude $M_{1} H$ of the triangle $A_{n} M_{1} B_{n}$ (see Figure 9). The triangle $A_{n} M_{1} B_{n}$ is isosceles $M_{1} A_{n}=M_{1} B_{n}$. Because

$$
\begin{aligned}
& M_{1} O_{1}=O_{2} B_{n}=R_{2} \\
& M_{1} O_{2}=O_{1} A_{n}=R_{1}
\end{aligned}
$$

so

$$
\triangle A_{n} O_{1} M_{1}=\triangle M_{1} O_{2} B_{n} .
$$

Because of $\angle M_{1} O_{1} A_{1} \equiv \alpha$, then

$$
\begin{aligned}
\angle A_{n} A_{1} B_{n} & =2 \pi-\left(\angle O_{1} A_{1} O_{2}+\angle O_{1} A_{1} A_{n}+\angle O_{2} A_{1} B_{n}\right) \\
& =\alpha+\frac{2 \pi}{n}=\angle A_{n} O_{1} M_{1} \\
& =\angle B_{n} O_{2} M_{1} .
\end{aligned}
$$

Figure 9

The sides $A_{1} A_{n}, A_{1} B_{n}$ are proportional to R_{1}, R_{2}, respectively. Therefore,

$$
\triangle A_{n} O_{1} M_{1} \sim \triangle A_{n} A_{1} B_{n}
$$

so

$$
\angle B_{n} A_{n} A_{1}=\angle O_{1} A_{n} M_{1} .
$$

Then,

$$
\begin{aligned}
\angle A_{n} M_{1} B_{n} & =2 \cdot \angle A_{n} M_{1} H \\
& =2\left(\frac{\pi}{2}-\angle B_{n} A_{n} M_{1}\right) \\
& =\pi-2\left(\angle B_{n} A_{n} A_{1}+\angle M_{1} A_{n} A_{1}\right) \\
& =\pi-2\left(\angle O_{1} A_{n} M_{1}+\angle M_{1} A_{n} A_{1}\right) \\
& =\pi-2 \angle O_{1} A_{n} A_{1} \\
& =\angle A_{1} O_{1} A_{n} \\
& =\frac{2 \pi}{n} .
\end{aligned}
$$

For the position of the point M_{1}, we have:

$$
H M_{1}=\frac{1}{2} A_{n} B_{n} \cot \frac{\pi}{n}
$$

So the position of the M_{1} depends only on the line segment $A_{n} B_{n}$ and is independent of the location of A_{1}. Moreover, the obtained expression for $H M_{1}$ also shows that M_{1} is the center of the regular n-gon formed on the side $A_{n} B_{n}$.

For the triangle $\triangle A_{2} M_{1} B_{2}$ (see Figure 7 and Figure 8), analogically we get:

$$
\angle A_{2} M_{1} B_{2}=\frac{2 \pi}{n}
$$

i.e.,

$$
\angle A_{n} M_{1} B_{n}=\angle A_{2} M_{1} B_{2} .
$$

In the same manner, if we consider the triangles $A_{n-1} M_{1} B_{n-1}$ and $A_{3} M_{1} B_{3}$, we have

$$
\angle A_{n-1} M_{1} B_{n-1}=\angle A_{3} M_{1} B_{3}=\angle A_{1} O_{1} A_{n-1},
$$

so:
Theorem 8.2. In two regular n-gons $A_{1} A_{2} \cdots A_{n}$ and $A_{1} B_{2} \cdots B_{n}$ with the shared vertex A_{1} and opposite orientation, take the points D_{1}, D_{2} on the circumcircles of the polygons, which are diametrically opposed of the shared vertex. Then, for the midpoint M_{1} of the line segment $D_{1} D_{2}$ holds:

$$
\angle A_{k} M_{1} B_{k}=\angle A_{n+2-k} M_{1} B_{n+2-k}=\frac{2 \pi}{n}(k-1), \quad \text { where } k=2, \ldots, n \text {. }
$$

9. Conclusion

In the present paper general method is given - how to fix two regular polygons in the plane, so that there is a point M in the plane at equal distances to the vertices of the polygons? The result is trivial for the congruent n-gons, but for two non-congruent regular n-gons we get an
unexpected result, which gives the new theorems in Euclidian geometry. For the existence of the point M two conditions must be satisfied:
I. $M=\Omega_{1}\left(O_{2}, R_{1}\right) \cap \Omega_{2}\left(O_{1}, R_{2}\right)$, where Ω_{1}, Ω_{2} : are circumscibed circles, R_{1}, R_{2} : circumradii and O_{1}, O_{2} : centroids of the regular polygons.
II. One pair of the distances from the point M must be equal, which is obtained by rotation of one of the polygons over its centroid.

In case of two n-gons with the shared vertex, the second condition is satisfied automatically, so we get two points M_{1} and M_{2}. The properties of these points are investigated. We have established that M_{1} is the point which satisfies the Bottema theorem ($n=4$) conditions, from where we obtain generalized Bottema theorem for any two regular polygons.

Competing Interests

The author declares that he has no competing interests.

Authors' Contributions

The author wrote, read and approved the final manuscript.

References

[1] N.N. Giang, A new proof and some generalizations of the Bottema theorem, International Journal of Computer Discovered Mathematics 3 (2018), 49 - 54, URL: https://www.journal-1.eu/2018/Nguyen-Ngoc-Giang-Bottema-Theorem.pdf.
[2] M. Meskhishvili, Cyclic averages of regular polygons and platonic solids, Communications in Mathematics and Applications 11(3) (2020), 335 - 355, DOI: 10.26713/cma.v11i3.1420.
[3] M. Meskhishvili, Cyclic averages of regular polygonal distances, International Journal of Geometry 10(1) (2021), 58 - 65, URL: https://ijgeometry.com/wp-content/uploads/2020/12/4.-58-65.pdf.
[4] R. Seroul, Newton-Girard formulas, in: Programming for Mathematicians, pp. 278 - 279, Springer-Verlag (2000), URL: https://link.springer.com/book/9783540664222?cm_mmc=Google-_-Book\ Search-_-Springer-_-0.
[5] A. Shriki, Back to treasure island, The Mathematics Teacher 104(9) (2011), 658 - 664, DOI: 10.5951/MT.104.9.0658,
[6] J.P. Tignol, Galois' Theory of Algebraic Equations, World Scientific, pages 348 (2001), DOI: 10.1142/4628.

Communications in Mathematics and Applications, Vol. 13, No. 2, pp. $435-447,2022$

