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Abstract. Let G = (V (G),E(G)) be a connected graph. A restrained weakly connected 2-dominating
(RWC2D) set in G is a subset D ⊆V (G) such that every vertex in V (G)\D is dominated by at least
two vertices in D and is adjacent to a vertex in V (G)\D, and that the subgraph 〈D〉w weakly induced
by D is connected. The restrained weakly connected 2-domination number of G, denoted by γr2w(G),
is the smallest cardinality of a restrained weakly connected 2-dominating set in G. In this paper,
we characterize the RWC2D sets in the join of two graphs G and H, each of which is of order at
least 3 and has no isolated vertex, and in the join K1 ∨F , where K1 is the trivial graph and that at
least one component of F is of order at least 3. In particular, it is shown that 2≤ γr2w(G∨H)≤ 4 and
γr2w(K1∨F)=min{1+γr(F),γ2(F)}, where γr and γ2 are the restrained domination and 2-domination
parameters, respectively.
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1. Introduction
Let G = (V (G),E(G)) be a simple, finite and undirected graph with vertex set V (G) and edge
set E(G). The set of neighbors of a vertex u ∈V (G) is called the open neighborhood of u in G,
denoted by NG(u), and the set NG[u] = NG(u)∪ {u} is called the closed neighborhood of u in
G. If U ⊆ V (G), then the open neighborhood and the closed neighborhood of U are the sets
NG(U) =⋃

u∈U NG(u) and NG[U] =U ∪NG(U), respectively. The subgraph weakly induced by

http://doi.org/10.26713/cma.v13i3.1939
https://orcid.org/0000-0002-5632-0340
https://orcid.org/0000-0003-1762-0970
https://orcid.org/0000-0003-2893-2953


1088 Restrained Weakly Connected 2-Domination in the Join of Graphs: M. P. Militante et al.

a subset D ⊆ V (G) is the subgraph 〈D〉w = (NG[D],Ew), where Ew is the set of all edges in G
incident with at least one vertex in D.

A set S ⊆ V (G) is a dominating set in G if for every u ∈ V (G)\S, there exists v ∈ S such
that uv ∈ E(G). The domination number of G, denoted by γ(G), is the smallest cardinality of a
dominating set in G. A dominating set S ⊆V (G) with |S| = γ(G) is called a γ-set in G. Moreover,
a dominating set S ⊆V (G) is a restrained dominating set if every vertex in V (G)\S is adjacent
to another vertex in V (G)\S. The restrained domination number of G, denoted by γr(G), is the
smallest cardinality of a restrained dominating set in G. A restrained dominating set S ⊆V (G)
with |S| = γr(G) is called a γr-set in G. The concept of restrained domination was studied by
Domke et al. [2]. A dominating set S ⊆ V (G) is called weakly connected dominating set in G
if the subgraph 〈S〉w = (V (G),Ew) weakly induced by S is connected. The weakly connected
domination number of G, denoted by γw(G), is the smallest cardinality of a weakly connected
dominating set in G. A weakly connected dominating set S ⊆V (G) with |S| = γw(G) is called a
γw-set in G. The concept of weakly connected domination was investigated in [3]. A set D ⊆V (G)
is a 2-dominating set in G if for every u ∈V (G)\D, |D∩NG(u)| ≥ 2. The 2-domination number of
G, denoted by γ2(G), is the smallest cardinality of a 2-dominating set in G. A 2-dominating set
S ⊆V (G) with |S| = γ2(G) is called a γ2-set in G. The concept of 2-domination was introduced by
Fink and Jacobson [4]. A 2-dominating set D ⊆V (G) is called a weakly connected 2-dominating
(WC2D) set if the subgraph 〈D〉w weakly induced by D is connected. The weakly connected
2-domination number of G, denoted by γ2w(G), is the smallest cardinality of a weakly connected
2-dominating set in G. Any WC2D set D ⊆ V (G) with |D| = γ2w(G) is called a γ2w-set in G.
The concept of weakly connected 2-domination was investigated in [6].

A restrained weakly connected 2-dominating (RWC2D) set in G is a subset D of V (G) such
that every vertex in V (G)\D is dominated by at least two vertices in D and is adjacent to a
vertex in V (G)\D and that the subgraph 〈D〉w weakly induced by D is connected. The restrained
weakly connected 2-domination number of G, denoted by γr2w(G), is the smallest cardinality of
a RWC2D set in G. Any RWC2D set with cardinality equal to γr2w(G) is called a γr2w-set in G.
This concept has been previously studied in [5].

In this paper, characterizations of RWC2D sets in the join of two graphs G and H, each
of which is of order at least 3 and without isolated vertex, and in the join K1 ∨F , where K1

is the trivial graph and F is a graph having at least one component of order at least 3, are
obtained. As a consequence, bounds or exact values for γr2w in the join G∨H and K1 ∨F are
given. In addition, some necessary and sufficient conditions for the join of two graphs to have
restrained weakly connected 2-domination numbers equal to 2, 3, and 4 are provided.

Note that the join of two graphs, denoted by G∨H, is the graph with vertex set

V (G∨H)=V (G)∪̇V (H)

and edge set
E(G∨H)= E(G)∪̇E(H)∪̇ {uv : u ∈V (G) and v ∈V (H)}.
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The symbol ∪̇ denotes the disjoint union of sets. As an illustration, Figure 1(c) shows the join
P3 ∨C4 of the path P3 and the cycle C4.
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Figure 1. (a) The path P3; (b) the cycle C4; and (c) the join P3 ∨C4

Readers may refer to [1] for other graph theoretic terminologies which are not specifically
defined here.

In this paper, we will use the following published results.

Theorem 1.1 ([6]). Let G and H be any nontrivial connected graphs. Then D ⊆ V (G∨H) is a
WC2D set in G∨H if and only if one of the following holds:

(i) D ⊆V (G) and D is a 2-dominating set of G;

(ii) D ⊆V (H) and D is a 2-dominating set of H;

(iii) |D∩V (G)| = 1 and |D∩V (H)| = 1 where D∩V (G) is a dominating set of G and D∩V (H)
is a dominating set of H;

(iv) |D∩V (G)| = 1 and |D∩V (H)| ≥ 2 where D∩V (H) is a dominating set of H;

(v) |D∩V (H)| = 1 and |D∩V (G)| ≥ 2 where D∩V (G) is a dominating set of G;

(vi) 2≤ |D∩V (G)| ≤ |V (G)| and 2≤ |D∩V (H)| ≤ |V (H)|.

Remark 1.2 ([6]). Let G and H be any graphs. If D is a nonempty subset of V (G ∨H), then
〈D〉w is connected.

Proposition 1.3 ([5]). Let G be a nontrivial connected graph. Then 2≤ γr2w(G)≤ |V (G)|.

Proposition 1.4 ([5]). If D is a RWC2D set in a nontrivial connected graph G, then D contains
all vertices of G whose degrees are either 1 or 2.

2. Main Results
Theorem 2.1. Let G and H be any graphs without isolated vertices and each of which is of order
at least 3. Then D ⊆V (G∨H) is a RWC2D set in G∨H if and only if one of the following holds:

(i) D is a 2-dominating set in G;

(ii) D is a 2-dominating set in H;
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(iii) |D∩V (G)| = 1 and |D∩V (H)| = 1 where D∩V (G) is a dominating set in G and D∩V (H)
is a dominating set in H;

(iv) |D∩V (G)| = 1 and |D∩V (H)| ≥ 2 where D∩V (H) ̸=V (H) and D∩V (H) is a dominating
set in H;

(v) |D∩V (H)| = 1 and |D∩V (G)| ≥ 2 where D∩V (G) ̸=V (G) and D∩V (G) is a dominating
set in G;

(vi) 2≤ |D∩V (G)| < |V (G)| and 2≤ |D∩V (H)| < |V (H)|;
(vii) D∩V (G)=V (G) and 〈V (H)\(D∩V (H))〉 has no isolated vertex;

(viii) D∩V (H)=V (H) and 〈V (G)\(D∩V (G))〉 has no isolated vertex;

(ix) D∩V (G)=V (G) and D∩V (H)=V (H).

Proof. Suppose D ⊆V (G∨H) is a RWC2D set in G∨H. Consider the following cases:

Case 1. D∩V (H)=∅ or D∩V (G)=∅.
Suppose D∩V (H)=∅. Then D ⊆V (G). Since D is a RWC2D set in G∨H, it follows that D

is a 2-dominating set in G. Similarly, if D∩V (G)=∅, then D is a 2-dominating set in H. This
proves the necessities for (i) and (ii).

Case 2. D∩V (G) ̸=∅ and D∩V (H) ̸=∅.

Subcase 2.1. Suppose D∩V (G)⊊V (G) and D∩V (H)⊊V (H).
Suppose first that |D ∩V (G)| = 1 and |D ∩V (H)| = 1. Since D is a WC2D set in G ∨H, by

Theorem 1.1(iii), D∩V (G) is a dominating set in G and D∩V (H) is a dominating set in H, so
that the necessity for (iii) holds. Secondly, suppose that |D∩V (G)| = 1 and 2≤ |D∩V (H)| < |V (H)|.
Let u ∈ V (H)\(D ∩V (H)). Since D is a 2-dominating set in G ∨H, there exists v ∈ D ∩V (H)
such that uv ∈ E(H). Hence, D ∩V (H) is a dominating set in H. Similarly, if |D ∩V (H)| = 1
and 2 ≤ |D ∩V (G)| < |V (G)|, we have D ∩V (G) is a dominating set in G. This proves the
necessities for (iv) and (v). The last option of this subcase is when 2≤ |D∩V (G)| < |V (G)| and
2≤ |D∩V (H)| < |V (H)| which is the statement in (vi).

Subcase 2.2. Suppose that D ∩V (G) = V (G) and D ∩V (H) ⊊ V (H), or D ∩V (H) = V (H) and
D ∩V (G) ⊊ V (G). If D ∩V (G) = V (G) and D ∩V (H) ⊊ V (H). Let x ∈ V (H)\(D ∩V (H)). Since
D is a restrained set in G ∨H, there exists y ∈ V (H)\(D ∩V (H)) such that xy ∈ E(H). Since
x is arbitrary, it follows that 〈V (H)\(D∩V (H))〉 has no isolated vertex in H. Similarly, if
D ∩V (H) = V (H) and D ∩V (G) ⊊ V (G), then 〈V (G)\(D ∩V (G))〉 has no isolated vertex in G.
This proves (vii) and (viii).

Subcase 2.3. D∩V (G)=V (G) and D∩V (H)=V (H). Then clearly the necessity for (ix) holds.
Conversely, suppose first that D is a 2-dominating set in G. Then by Theorem 1.1(i), D is

a WC2D set in G∨H. Let y ∈V (G∨H)\D. Then y ∈V (H) or y ∈V (G)\(D∩V (G)). If y ∈V (H),
then there exists z ∈V (H) such that yz ∈ E(H) since H is nontrivial graph having no isolated
vertex. Thus, yz ∈ E(G ∨ H). On the other hand, if y ∈ V (G)\(D ∩V (G)), then there exists
w ∈ V (H) such that yw ∈ E(G ∨H). In either scenario, we have seen that D is a restrained
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dominating set in G ∨H. It follows that D is a RWC2D set in G ∨H. Similarly, if D is a 2-
dominating set in H, then D is a RWC2D set in G∨H. Secondly, suppose |D∩V (G)| = 1 and
|D∩V (H)| = 1 where D∩V (G) and D∩V (H) are dominating sets in G and H, respectively. By
Theorem 1.1(iii), D is a WC2D set in G ∨H. Now, let y ∈ V (G ∨H)\D. Then y ∈ V (G)\D or
y ∈ V (H)\D. Suppose that y ∈ V (G)\D. Then by definition of the join of graphs, there exists
z ∈V (H)\D such that yz ∈ E(G∨H). The existence of an element z in V (H)\D is guaranteed
since H is nontrivial. Similarly, if y ∈V (H)\D, there exists w ∈V (G)\D such that yw ∈ E(G∨H).
In either case, D is a restrained dominating set in G ∨H. Therefore, D is a RWC2D set in
G ∨H. Thirdly, suppose that |D ∩V (G)| = 1 and |D ∩V (H)| ≥ 2 where D ∩V (H) ̸= V (H) and
D ∩V (H) is a dominating set in H. Then by Theorem 1.1(iv), D is a WC2D set in G ∨ H.
Let y ∈ V (G ∨H)\D. If y ∈ V (G)\D, then there exists z ∈ V (H)\D such that yz ∈ E(G ∨H).
On the other hand, if y ∈ V (H)\D, then there exists z∗ ∈ V (G)\D such that yz∗ ∈ E(G ∨H).
Thus, D is a RWC2D set in G ∨ H. Similarly, if |D ∩V (H)| = 1 and |D ∩V (G)| ≥ 2 where
D ∩V (G) ̸= V (G) and D ∩V (G) is a dominating set in G, then D is a RWC2D set in G ∨H.
Fourthly, suppose 2 ≤ |D ∩V (G)| < |V (G)| and 2 ≤ |D ∩V (H)| < |V (H)|. By Theorem 1.1(vi),
we have D is a WC2D set in G ∨ H. Let y ∈ V (G ∨ H)\D. If y ∈ V (G)\D, then there exists
z ∈V (H)\D such that yz ∈ E(G∨H) by definition of the join of graphs. The existence of y and
that of z are guaranteed by the assumption that D ∩V (G) ⊊ V (G) and D ∩V (H) ⊊ V (H). If
y ∈V (H)\D, then by using similar argument, D is a restrained dominating set in G∨H. Hence,
D is a RWC2D set in G∨H. Fifthly, suppose that D∩V (G)=V (G) and 〈V (H)\(D∩V (H))〉 has
no isolated vertex. Since D ⊆V (G∨H), by Remark 1.2, D is a weakly connected set in G∨H.
Since V (G)⊆ D and |V (G)| ≥ 2, D is a 2-dominating set. Thus, D is a WC2D set in G∨H. Let
y ∈ V (G ∨H)\D. Then y ∈ V (H)\(D ∩V (H)). Since 〈V (H)\(D ∩V (H))〉 has no isolated vertex,
there exists x∗ ∈ V (H)\(D ∩V (H)) such that x∗y ∈ E(H). Thus, we have x∗y ∈ E(G ∨ H). It
follows that D is a restrained dominating set in G∨H and hence, D is a RWC2D set in G∨H.
Similarly, if D∩V (H)=V (H) and 〈V (G)\(D∩V (G))〉 has no isolated vertex, then D is a RWC2D
set in G∨H. Lastly, suppose that D∩V (G)=V (G) and D∩V (H)=V (H). Then D =V (G∨H) is
obviously a RWC2D set in G∨H. This completes the proof.

The next corollary is an immediate consequence of Theorem 2.1.

Corollary 2.2. Let G and H be any graphs without isolated vertex and each of which is of order
at least 3. Then 2≤ γr2w(G∨H)≤ 4.

Proof. Let D ⊆V (G∨H) be such that |D∩V (G)| = 2 and |D∩V (H)| = 2. Then by Theorem 2.1(vi),
D = (D ∩ V (G)) ∪ (D ∩ V (H)) is a RWC2D set in G ∨ H. Thus, γr2w(G ∨ H) ≤ |D| = 4. By
Proposition 1.3, γr2w(G∨H)≥ 2. Therefore, 2≤ γr2w(G∨H)≤ 4.

Corollary 2.3. Let G and H be any graphs without isolated vertices and each of which is of
order at least 3. Then γr2w(G∨H)= 2 if and only if one of the following holds:

(i) γ2(G)= 2;
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(ii) γ2(H)= 2;

(iii) γ(G)= 1 and γ(H)= 1.

Proof. Suppose γr2w(G∨H)= 2. Let D be a γr2w-set in G∨H. By Theorem 2.1, (i), (ii) or (iii), we
have D ⊆V (G) and D is a 2-dominating set in G, or D ⊆V (H) and D is a 2-dominating set in
H, or |D∩V (G)| = 1 and |D∩V (H)| = 1, where D∩V (G) is a dominating set in G and D∩V (H)
is a dominating set in H, respectively. From these options, we have γ2(G)= 2, or γ2(H)= 2, or
γ(G)= 1 and γ(H)= 1.

Conversely, suppose first γ2(G)= 2. Let D be a γ2-set in G. By Theorem 2.1(i), D is a RWC2D
set in G∨H. Thus, γr2w(G∨H)≤ 2. By Proposition 1.3, γr2w(G∨H)≥ 2. Hence, γr2w(G∨H)= 2.
Similarly, if γ2(H)= 2, then γr2w(G∨H)= 2. Finally, suppose that γ(G)= 1 and γ(H)= 1. Let {u}
be a dominating set in G and let {v} be a dominating in H. Set D = {u,v}. By Theorem 2.1(iii),
D is a RWC2D set in G ∨H. Hence, γr2w(G ∨H) ≤ |D| = |{u,v}| = 2. Again by Proposition 1.3,
γr2w(G∨H)≥ 2. Therefore, γr2w(G∨H)= 2.

Corollary 2.4. Let G and H be any graphs without isolated vertices and each of which is of
order at least 3. Suppose γr2w(G∨H) ̸= 2. Then γr2w(G∨H)= 3 if and only if one of the following
holds:

(i) γ2(G)= 3;

(ii) γ2(H)= 3;

(iii) γ(H)= 2;

(iv) γ(G)= 2.

Proof. The assumption that γr2w(G∨H) ̸= 2 immediately means that γr2w(G) ̸= 2 and γr2w(H) ̸=
2. Suppose γr2w(G∨H)= 3. Let D be a γr2w-set in G∨H. By Theorem 2.1, (i), (ii), (iv) and (v)
there are four possible options, namely, |D∩V (G)| = 3 and D∩V (G) is a 2-dominating set in G,
or |D∩V (H)| = 3 and D∩V (H) is a 2-dominating set in H, or |D∩V (G)| = 1 and |D∩V (H)| = 2
where D∩V (H) is a dominating set in H, or |D∩V (G)| = 2 and |D∩V (H)| = 1 where D∩V (G)
is a dominating set in G. This means that γ2(G) ≤ 3, or γ2(H) ≤ 3, or γ(H) ≤ 2, or γ(G) ≤ 2.
Since γr2w(G) ̸= 2, by Corollary 2.3 we have γ2(G) ≥ 3, or γ2(H) ≥ 3, or γ(H) ≥ 2, or γ(G) ≥ 2.
Consequently, we have either γ2(G)= 3, or γ2(H)= 3, or γ(H)= 2, or γ(G)= 2.

Conversely, suppose first that γ2(G)= 3. Let D ⊆V (G) be a γ2-set in G. By Theorem 2.1(i), D
is a RWC2D set in G∨H. Hence, we have γr2w(G∨H)≤ |D| = 3. Since γr2w(G∨H) ̸= 2, we have
γr2w(G∨H)≥ 3. Thus, γr2w(G∨H)= 3. Similarly, if γ2(H)= 3, then γr2w(G∨H)= 3. Now, suppose
that γ(H)= 2. Let D′ be a γ-set in H and let x ∈V (G). Set D∗ = D′∪ {x}. By Theorem 2.1(iv), D∗

is a RWC2D set in G∨H. Thus, γr2w(G∨H)≤ |D∗| = |D′∪ {x}| = 2+1= 3. Since by assumption
γr2w(G∨H) ̸= 2, we have γr2w(G∨H)≥ 3. Thus, γr2w(G∨H)= 3. Similarly, if γ(G)= 2, then by
Theorem 2.1(v) and the fact that γr2w(G∨H) ̸= 2, we have γr2w(G∨H)= 3.
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Corollary 2.5. Let G and H be any graphs without isolated vertices and each of which is of order
at least 3. Suppose γr2w(G∨H) ̸= 2,3. Then γr2w(G∨H) = 4 if and only if one of the following
holds:

(i) γ2(G)= 4;

(ii) γ2(H)= 4;

(iii) γ(G)= 3;

(iv) γ(H)= 3;

(v) |D∩V (G)| = 2 and |D∩V (H)| = 2.

Proof. Suppose γr2w(G ∨ H) = 4. Let D be a γr2w-set in G ∨ H. By Theorem 2.1(i), (ii), (iv),
(v) and (vi), we have the following possible options, namely, |D ∩V (G)| = 4 and D is a 2-
dominating set in G, |D ∩V (H)| = 4 and D is a 2-dominating set in H, |D ∩V (G)| = 1 and
|D∩V (H)| = 3 where D∩V (H) ̸=V (H) and D∩V (H) is a dominating set in H, |D∩V (H)| = 1 and
|D∩V (G)| = 3 where D∩V (G) ̸=V (G) and D∩V (G) is a dominating set in G, and |D∩V (G)| = 2
and |D ∩V (H)| = 2, respectively. This means that γ2(G) ≤ 4, or γ2(H) ≤ 4, or γ(H) ≤ 3, or
γ(G) ≤ 3 or |D ∩V (G)| = 2 and |D ∩V (H)| = 2. Since γr2w(G ∨ H) ̸= 2,3 by Corollary 2.3(i)
and Corollary 2.4(i), γ2(G) ̸= 2,3. Thus, γ2(G) ≥ 4. Hence, γ2(G) = 4. Similarly, we must have
γ2(H) = 4. Also, since γr2w(G ∨H) ̸= 2,3 by Corollary 2.4(iii), γ(G) ̸= 2. Thus, γ(G) ≥ 3. Hence,
γ(G)= 3. Similarly, it can be shown that γ(H)= 3. Therefore, γ2(G)= 4, or γ2(H)= 4, or γ(G)= 3,
or γ(H)= 3, or |D∩V (G)| = 2 and |D∩V (H)| = 2.

Conversely, suppose γ2(G) = 4. Let D be a γ2-set in G. By Theorem 2.1(i), D is a RWC2D
set in G ∨ H. Thus, γr2w(G ∨ H) ≤ |D| = 4. Since γr2w(G ∨ H) ̸= 2,3, γr2w(G ∨ H) ≥ 4. Hence,
γr2w(G ∨ H) = 4. Similarly, if γ2(H) = 4, then γr2w(G ∨ H) = 4. Suppose γ(H) = 3. Let D′

be a γ-set in H. Let x ∈ V (G). Set D∗ = D′ ∪ {x}. By Theorem 2.1(iv), D∗ is a RWC2D set
in G ∨ H. Thus, we have γr2w(G ∨ H) ≤ |D∗| = |D′∪ {x}| = 3+1 = 4. Since γr2w(G ∨ H) ̸= 2,3,
γr2w(G∨H)≥ 4. Hence, γr2w(G∨H)= 4. Similarly, if γ(G)= 3, then by Theorem 2.1(v) and the
fact that γr2w(G∨H) ̸= 2,3, we have γr2w(G∨H)= 4. Lastly, suppose D = (D∩V (G))∪(D∩V (H))
where |D∩V (G)| = 2= |D∩V (H)|. Then |D| = 4. By Theorem 2.1(vi), D is a RWC2D set in G∨H.
Thus, γr2w(G∨H)≤ 4. Since γr2w(G∨H) ̸= 2,3, γr2w(G∨H)≥ 4. Hence, γr2w(G∨H)= 4.

The following result is useful to prove the needed characterization in the join K1 ∨H.

Theorem 2.6 ([6]). Let K1 = 〈{v}〉 and let H be any graph of order at least 2. Then D ⊆V (K1∨H)
is a WC2D set in K1 ∨H if and only if one of the following holds:

(i) v ∈ D and D\{v} is a dominating set of H.

(ii) D ⊆V (H) and D is a 2-dominating set of H.

We need the following definition for the join K1 ∨H.
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Definition 2.7 ([1]). Let G1 = (V (G1),E(G1)) and G2 = (V (G2),E(G2)) be graphs where
V (G1) and V (G2) are disjoint. Then the union of G1 and G2 is the graph G1 + G2 =
(V (G1)∪̇V (G2), E(G1)∪̇E(G2)).

Lemma 2.8. Let H be a connected graph of order n ≥ 3. Then there exists a 2-dominating set D
in H such that D is a proper subset of V (H). As a consequence, γ2(H)≤ n−1.

Proof. If H is a connected graph of order n ≥ 3, then there is at least one vertex in H of degree
greater than or equal to two. Let x ∈ V (H) such that degH(x) ≥ 2. Let D = V (H)\{x}. Then
|D∩NH(x)| ≥ 2. Thus, D is a 2-dominating set in H. It follows that γ2(H)≤ |D| = |V (H)\{x}| =
n−1.

Theorem 2.9. Let K1 = 〈{v}〉 and H = H1+H2+ . . .+Hp +
〈 q⋃

j=1
{u j}

〉
where Hi is a component of

H with |V (Hi)| ≥ 3 for 1≤ i ≤ p and u j is an isolated vertex for 1≤ j ≤ q. Then D ⊆V (K1 ∨H) is
a RWC2D set in K1 ∨H if and only if one of the following holds:

(i) D = {v}∪
( p⋃

i=1
Si

)
∪

( q⋃
j=1

{u j}
)
, where Si is a restrained dominating set in Hi for each i.

(ii) D =
( p⋃

i=1
S′

i

)
∪

( q⋃
j=1

{u j}
)
, where S′

i is a 2-dominating set in Hi for each i and S′
i ⊊ V (Hi)

for some i.

Proof. Suppose D is a RWC2D set in K1 ∨H. Then D is a WC2D set in K1 ∨H. Consider the
following cases:

Case 1. Suppose v ∈ D. Then by Theorem 2.6(i), D\{v} is a dominating set in H. By

Proposition 1.4,
q⋃

j=1
{u j} ⊆ D\{v}. This means that

( p⋃
i=1

Si

)
∪

( q⋃
j=1

{u j}
)
⊆ D\{v} where Si is a

dominating set in Hi for each i. Since D is a restrained dominating set and v ∈ D, it follows

that Si is a restrained dominating set in Hi for each i. Hence, D = {v}
( p⋃

i=1
Si

)
∪

( q⋃
j=1

{u j}
)
, where

Si is a restrained dominating set in Hi for each i. This proves the necessity for (i).

Case 2. Suppose v ∉ D. Then by Theorem 2.6(ii), D ⊆ V (H) and D is a 2-dominating set in H.

Since
q⋃

j=1
{u j} ⊆ D by Proposition 1.4 and D is a restrained dominating set, as a consequence,

S′
i is a 2-dominating set of Hi for each i and that S′

i ⊊ V (Hi) for some i. The existence of a
2-dominating set S′

i ⊊V (Hi) is guaranteed in Lemma 2.8. This proves the necessity for (ii).

Conversely, suppose first that D = {v} ∪
( p⋃

i=1
Si

)
∪

( q⋃
j=1

{u j}
)

where Si is a restrained

dominating set in Hi for each i. Then by Theorem 2.6(i), D is a WC2D set in K1∨H. Since Si is

a restrained dominating set in Hi for each i, we must have
p⋃

i=1
Si is a restrained dominating set

in the union H1+H2+ . . .+Hp . This implies that
( p⋃

i=1
Si

)
∪

( q⋃
j=1

{u j}
)

is a restrained dominating
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set in H. It follows that D is a RWC2D set in K1 ∨ H. On the other hand, suppose that

D =
( p⋃

i=1
S′

i

)
∪

( q⋃
j=1

{u j}
)

where S′
i is a 2-dominating set in Hi for each i with S′

i ⊊ V (Hi) for

some i. Then by Theorem 2.6(ii), D is a WC2D set in K1 ∨H. Since S′
i ⊊V (Hi) for some i, it

follows that there exists w ∈V (H)\D such that vw ∈ E(K1∨H). Hence, D is a restrained set in
K1 ∨H. Therefore, D is a RWC2D set in K1 ∨H.

Theorem 2.9 is still true whenever some (but not all) components of H are of orders equal
to 2. In this case, all the vertices of the components of H which are of order 2 are included in
any RWC2D set in K1 ∨H as ascertained in Proposition 1.4.

Corollary 2.10. Let K1 = 〈{v}〉 and H = H1+H2+ . . .+Hp +
〈 q⋃

j=1
{u j}

〉
where Hi is a component

of H with |V (Hi)| ≥ 3 for 1≤ i ≤ p and u j is an isolated vertex for 1≤ j ≤ q. Then γr2w(K1∨H)=
min{1+γr(H), γ2(H)}.

Proof. By Theorem 2.9, γr2w(K1 ∨H) is the smallest among the values 1+ |S| where S is a
restrained dominating set in H, and |S′| where S′ is a 2-dominating set in H with S′ ⊊V (H).
Note that the existence of a proper subset S′ of V (H) is ascertained in Lemma 2.8. As a
consequence, γr2w(K1 ∨H)=min{1+γr(H), γ2(H)}.

Example 2.11. Consider the graph of K1 ∨H, where K1 = 〈{v}〉 and H = C4 +〈{x, y, z,w}〉. If
D ⊆V (K1 ∨H) is a RWC2D set in K1 ∨H, then by Theorem 2.9(i) we can have v ∈ D and that
either D\{v}=V (H) or D\{v}⊊V (H) is a restrained dominating set in H. The darkened vertices
in Figure 2(a) shows a particular RWC2D set where v ∈ D and D \{v} is a restrained dominating
subset of V (H). If v ∉ D, then by Theorem 2.9(ii), D \{v}⊊V (H) is a 2-dominating set in H. The
darkened vertices in Figure 2(b) shows some γr2w-set in K1∨H where v ∉ D. Moreover, γr(H)= 6
and γ2(H)= 6. By Corollary 2.10, γr2w(K1 ∨H)=min{1+γr(H),γ2(H)}=min{1+6,6}= 6.
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Figure 2. The graph of K1 ∨H, where K1 = 〈{v}〉 and H = C4 +〈{w, x, y, z}〉 with darkened vertices in
some RWC2D sets
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