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1. Introduction
We use the following notations, properties and definitions throughout this paper.

(i) X is a metric space with metric d.

(ii) CL(X )= {A : A is non-empty closed subset of X }.

(iii) For x ∈ X and A ⊆ X , d(x, A)= inf
y∈A

d(x, y).
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(iv) For every A,B ∈ CL(X ),

H(A,B)=
max

{
sup
x∈A

d(x,B),sup
y∈B

d(y, A)
}

if the maximum exists,

∞ otherwise.

Note that H is a metric on CL(X ), which is known as Pompeiu-Hausdorff metric.

(v) If x ∈ A, then d(x,B)≤ H(A,B).

(vi) If x ∈ A, then d(x, A)= 0.

(vii) If A ⊆ B, then d(x,B)≤ d(x, A).

(viii) If y ∈ A, then d(x, A)≤ d(x, y).

(ix) If h is a self map of X and P be a multi valued map from X to CL(X ), then

• the pair (h,P) is known as a hybrid pair.
• a point x in X is called a fixed point of P , if x ∈ Px.
• a point x in X is called a coincidence point of h and P , if hx ∈ Px.

We write C(h,P)= {x : hx ∈ Px}.
• A point x in X is called a common fixed point of h and P , if hx = x ∈ Px.

Sessa [16] introduced the weak commutative notion of two mappings. Jungck [9] discovered
the compatibility of two maps and proved that if two maps are weakly commuting, then they are
compatible, but the compatibility need not imply commutativity. Sastry and Krishnamurthy [15]
introduced tangential property, which is rediscovered by Aamri and Moutawakil [1] and named
as (E.A) property. The class of maps that satisfy (E.A) property has remarkable results because
it consists both compatible and non-compatible mappings. After that, Kamran [12] expanded
the property (E.A) to a hybrid pair. Jungck [10] proposed the property of weak compatibility
of self maps and further Jungck and Rhoades [11] extended it to hybrid pairs. The property
of occasional weak compatibility is proposed by Al. Thagafi and Shahzad [3], which is further
extended to a hybrid pair by Abbas and Rhoades[2].

As a generalization of weak compatibility, Singh and Mishra [17] proposed the concept of
(IT)-commutativity to a hybrid pair. On the other hand, Kamran [12] introduced T-weakly
commuting property and proved that (IT)-commutative property at the coincidence point implies
T-weakly commuting but the other way not around.

The idea of Common Limit Range (CLR) property for single-valued mappings was proposed
by Sintunavarat and Kumam [18], which does not need the underlying maps’ range to be closed.
Imdad et al. [7] later expanded this property to hybrid pairs and derived some fixed point
outcomes in symmetric spaces. Further, the joint common limit range property was extended to
hybrid pairs by Imdad et al. [6] which was proposed by Sintunvarat et al. [5] for a pair of self
maps and proved that by applying (JCLR) property the containment condition between ranges
of underlying maps can be removed, in order to acquire fixed points.

Before we get to our main results, we will go through certain definitions that will be used
later. P and Q are mappings from X to CL(X ), where as h and k are sellf maps of X throughout
the definitions.
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Definition 1.1. The hybrid pair (h,P) is said to
(i) be compatible [13], if hPx ∈ CL(X ) for all x in X and lim

n→∞H(hPxn,Phxn) = 0 for every
sequence {xn} in X such that lim

n→∞hxn = t ∈ A = lim
n→∞Pxn.

(ii) satisfy (E.A) property [12], if there exists a sequence {xn} in X with lim
n→∞hxn = t ∈ A =

lim
n→∞Pxn for some t ∈ X and A ∈ CL(X ).

(iii) be weakly compatible [11], if x ∈ X ,hx ∈ Px implies hPx = Phx.

(iv) be (I.T)-commuting [8,17] at x ∈ X , if hPx ⊆ Phx.

(v) be occasionally weakly compatible [2], if hPx ⊂ Phx for some point x ∈ X such that
hx ∈ Px.

(vi) satisfy commom limit in the range of h (CLRh)property [7], if we can find a sequence {xn}
in X such that lim

n→∞hxn = hz ∈ A = lim
n→∞Pxn where z ∈ X and A ∈ CL(X ).

Definition 1.2. The map h is said to be P-weakly commuting[12] at x ∈ X if hhx ∈ Phx.

Definition 1.3 ([6]). The hybrid pairs (h,P) and (k,Q) are said to satisfy joint common limit in
the range of h and k (JCLRhk) property if we can find two sequences {xn} and {yn} in X such
that

lim
n→∞Pxn = A, lim

n→∞Q yn = B

and

lim
n→∞hxn = lim

n→∞kyn = t ∈ A∩B∩h(X )∩k(X ).

In 2011, Babu and Alemuyehu [4] proved some fixed point outcomes for self mappings
that satisfy occasional weak compatibility property together with (E.A) property/common
property (E.A). In their results they used an inequality involving quadratic terms. Later in 2015,
M.Samreen et al [14] extended these results to hybrid pairs. In this paper we generalize these
results using an inequality of higher degree. We also apply (CLR)/(JCLR) properties together
with P-weakly commuting for this purpose.

2. Main Results
We begin with the following proposition, in which we apply (CLR) property.

Proposition 2.1. Let h, k be mappings from a metric space X to itself, and P , Q be mappings
from X to CL(X ) such that

[H(Px,Q y)]p ≤ c1 max{[d(hx,Px)]p, [d(ky,Q y)]p, [d(hx,ky)]p}

+ c2 max{[d(hx,Px)]r[d(hx,Q y)]s, [d(ky,Q y)]r[d(ky,Px)]s}

+ c3[d(hx,Q y)]r[d(ky,Px)]s (2.1.1)

for all x, y in X , where c1, c2, c3 ≥ 0, c1 < 1 and p, r, s ∈ Z+, p = r+ s. Suppose that either
(i) The pair (h,P) satisfy (CLRh) property and

⋃
x∈X

Px ⊆ k(X ); or

(ii) The pair (k,Q) satisfy (CLRk) property and
⋃

x∈X
Qx ⊆ h(X ).
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Then, the maps h and P have a coincidence point u and the maps k and Q have a coincidence
point v.

Proof. Let us assume that (i) holds.
Then there must be a sequence {xn} in X and some A ∈ CL(X ), u ∈ X such that

lim
n→∞hxn = hu ∈ A = lim

n→∞Pxn. (2.1.2)

Since
⋃

x∈X
Px ⊆ k(X ), we have Pxn ⊆ k(X ) for all n.

This implies d(hu,k(X ))≤ d(hu,Pxn).
Now by the definition of Hausdorff metric and since hu ∈ A, we have

d(hu,k(X ))≤ d(hu,Pxn)≤ H(A,Pxn) for all n.

On letting n →∞,

d(hu,k(X ))≤ lim
n→∞d(hu,Pxn)≤ lim

n→∞H(A,Pxn)= 0.

This implies hu ∈ k(X ).
Therefore,

lim
n→∞kyn = hu for some sequence {yn} in X . (2.1.3)

Now, we prove that lim
n→∞Q yn = A.

For this, we put x = xn, y= yn in (2.1.1).
Then,

[H(Pxn,Q yn)]p ≤ c1 max{[d(hxn,Pxn)]p, [d(kyn,Q yn)]p, [d(hxn,kyn)]p}

+ c2 max{[d(hxn,Pxn)]r[d(hxn,Q yn)]s, [d(kyn,Q yn)]r[d(kyn,Pxn)]s}

+ c3[d(hxn,Q yn)]r[d(kyn,Pxn)]s.

On taking limit superior and using (2.1.2) and (2.1.3), we get

limsup
n→∞

[H(A,Q yn)]p ≤ c1 limsup
n→∞

[d(hu,Q yn)]p ≤ c1 limsup
n→∞

[H(A,Q yn)]p.

Since c1 < 1, we will have lim
n→∞[H(A,Q yn)]p = 0, which implies

lim
n→∞Q yn = A. (2.1.4)

Now we show that hu ∈ Pu.
To do this, we take x = u, y= yn in (2.1.1).
Then,

[H(Pu,Q yn)]p ≤ c1 max{[d(hu,Pu)]p, [d(kyn,Q yn)]p, [d(hu,kyn)]p}

+ c2 max{[d(hu,Pu)]r[d(hu,Q yn)]s, [d(kyn,Q yn)]r[d(kyn,Pu)]s}

+ c3[d(hu,Q yn)]r[d(kyn,Pu)]s.

On letting n →∞ and using (2.1.3) and (2.1.4), [H(Pu, A)]p ≤ c1[d(hu,Pu)]p.
Since hu ∈ A, by the definition of Hausdorff metric,

d[hu,Pu)]p ≤ [H(A,Pu)]p ≤ c1[d(hu,Pu)]p.

This implies d(hu,Pu)= 0, since c1 < 1.
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Hence,

hu ∈ Pu = Pu, since Pu is closed. (2.1.5)

This implies that the hybrid pair (h,P) has a coincidence point u.
Since

⋃
x∈X

Px ⊆ k(X ), we have hu ∈ k(X ).

This implies

hu = kv for some v ∈ X . (2.1.6)

Now we will show that kv ∈Qv.
This can be done by putting x = u, y= v in (2.1.1).
Thus

[H(Pu,Qv)]p ≤ c1 max{[d(hu,Pu)]p, [d(kv,Qv)]p, [d(hu,kv)]p}

+ c2 max{[d(hu,Pu)]r[d(hu,Qv)]s, [d(kv,Qv)]r[d(kv,Pu)]s}

+ c3[d(hu,Qv)]r[d(kv,Pu)]s.

On using (2.1.5) and (2.1.6), [H(Pu,Qv)]p ≤ c1[d(kv,Qv)]p .
Then [d(kv,Qv)]p ≤ [H(Pu,Qv)]p ≤ c1[d(kv,Qv)]p .
Since c1 < 1, we have kv ∈Qv =Qv, since Qv is closed.
Thus, the pair (k,Q) has a coincidence point v.
In similar manner, the proof follows under assumption (ii).

Theorem 2.2. If all the conditions of Proposition 2.1 on h, k, P and Q hold and in addition to
that

(i) If h is P-weakly commuting at u and hhu = hu then h and P have a common fixed point.

(ii) If k is Q-weakly commuting at v and kkv = kv then k and Q have a common fixed point.

(iii) If both (i) and (ii) hold, then h, k, P and Q have a common fixed point.

Proof. By (i), hhu = hu and h is P-weakly commuting at u.
This implies hu = hhu ∈ Phu. Hence z = hz ∈ Pz, where z = hu.
Thus z is the common fixed point of h and P .
By (ii), kkv = kv and k is Q-weakly commuting at v.
This imples kv = kkv ∈Qkv. Hence w = kw ∈Qw, where w = kv.
Thus w is the common fixed point of k and Q.
If both (i) and (ii) hold, (iii) immediately follows, since hu = kv = z = w.

Example 2.3. The above result is backed up by this example.
Let (X ,d) be a metric space with usual metric where X = [0,1).
Let h,k : X → X and P,Q : X → CL(X ) be defined by

h(x)=


x
2 , if x ∈

[
0, 1

2

)
,

1
4 + x

2 , if x ∈
[

1
2 ,1

)
,

k(x)= x for all x ∈ [0,1),
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P(x)=


{3
4

}
, if x ∈

[
0, 1

2

)
,[1

2 , 2
3

]
, if x ∈

[
1
2 ,1

)
,

Q(x)=
[

1
2

,
2
3

]
for all x ∈ [0,1).

Case I: If x ∈
[
0, 1

2

)
, then

H(Px,Q y)= 1
4

, d(hx,Px)=
∣∣∣∣ x
2
− 3

4

∣∣∣∣= (3−2x)
4

∈
(
1
2

,
3
4

]
.

[H(Px,Q y)]p =
(
1
4

)p
< 9

10

(
1
2

)p
< 9

10
[d(hx,Px)]p

< 9
10

max{[d(hx,Px)]p, [d(ky,Q y)]p, [d(hx,ky)]p}.

Hence inequality (2.1.1) holds for c1 = 9
10 < 1, c2, c3 ≥ 0 and p = r+ s > 1.

Case II: If x ∈ [1
2 ,1

)
, then H(Px,Q y)= 0.

Hence inequality (2.1.1) holds for every c1, c2, c3 ≥ 0, c1 < 1 and p = r+ s > 1.
Thus inequality (2.1.1) holds in both the cases.
Clearly,⋃

x∈X
Px =

[
1
2

,
2
3

]
∪

{
3
4

}
⊆ [0,1)= k(X ).

We observe that neither h(X ) nor k(X ) are closed.

For the sequence xn = 1
2
+ 1

4n
, n = 1,2,3, . . . in X ,

lim
n→∞hxn = lim

n→∞

{
1
4
+ 1

2

(
1
2
+ 1

4n

)}
= 1

2
= h

(
1
2

)
∈

[
1
2

,
2
3

]
= lim

n→∞Pxn.

Then the pair (h,P) satisfy (CLRh) property.
Here 1

2 ∈ C(h,P) and 1
2 ∈ C(k,Q).

Also,

hh
(
1
2

)
= 1

2
∈

[
1
2

,
2
3

]
= Ph

(
1
2

)
and hh

(
1
2

)
= h

(
1
2

)
and

kk
(
1
2

)
= 1

2
∈

[
1
2

,
2
3

]
=Qk

(
1
2

)
and kk

(
1
2

)
= k

(
1
2

)
.

Thus h is P-weakly commuting and k is Q-weakly commuting.
All the required conditions of Theorem 2.2 hold.
It can be noted that ‘ 1

2 ’ is the common fixed point of h,k,P and Q, since

h
(
1
2

)
= k

(
1
2

)
= 1

2
∈ P

(
1
2

)
∩Q

(
1
2

)
.

In the following proposition, we use (JCLR) property so that containment conditions can be
removed.
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Proposition 2.4. Let h, k be mappings from a metric space X to itself, and P , Q be mappings
from X to CL(X ) such that

[H(Px,Q y)]p ≤ c1 max{[d(hx,Px)]2, [d(ky,Q y)]p, [d(hx,ky)]p}

+ c2 max{[d(hx,Px)]r[d(hx,Q y)]s, [d(ky,Q y)]r[d(ky,Px)]s}

+ c3[d(hx,Q y)]r[d(ky,Px)]s (2.4.1)

for all x, y in X , where c1, c2, c3 ≥ 0, c1 < 1 and p, r, s ∈ Z+, p = r+ s.
Suppose that the pairs (h,P) and (k,Q) satisfy (JCLRhk) property.
Then the maps h and P have a coincidence point u and the maps k and Q have a coincidence
point v.

Proof. Since the pairs (h,P) and (k,Q) satisfy (JCLRhk) property, there exist sequences {xn}
and {yn} such that lim

n→∞Pxn = A, lim
n→∞Q yn = B,

lim
n→∞hxn = lim

n→∞kyn = t ∈ A∩B∩h(X )∩k(X ) (2.4.2)

Hence

t = hu = kv for some u,v ∈ X . (2.4.3)

Now, we will show that hu ∈ Pu.
This can be done by taking x = u, y= yn in (2.4.1).
Then,

[H(Pu,Q yn)]p ≤ c1 max{[d(hu,Pu)]p, [d(kyn,Q yn)]p, [d(hu,kyn)]p}

+ c2 max{[d(hu,Pu)]r[d(hu,Q yn)]s, [d(kyn,Q yn)]r[d(kyn,Pu)]s}

+ c3[d(hu,Q yn)]r[d(kyn,Pu)]s.

On letting n →∞ and using (2.4.2) and (2.4.3), [H(Pu,B)]p ≤ c1[d(hu,Pu)]p.
Since hu = t ∈ B, [d(hu,Pu)]p ≤ [H(B,Pu)]p ≤ c1[d(hu,Pu)]p .
Since c1 < 1, it follows that d(hu,Pu)= 0, which implies

hu ∈ Pu = Pu, as Pu is closed. (2.4.4)

Therefore the pair (h,P) has the coincidence point u.
Now, we prove that kv ∈Qv.
For this purpose, we take x = u and y= v in (2.4.1). Then,

[H(Pu,Qv)]p ≤ c1 max{[d(hu,Pu)]p, [d(kv,Qv)]p, [d(hu,kv)]p}

+ c2 max{[d(hu,Pu)]r[d(hu,Qv)]s, [d(kv,Qv)]r[d(kv,Pu)]s}

+ c3[d(hu,Qv)]r[d(kv,Pu)]s.

On using (2.4.3) and (2.4.4), we have [H(Pu,Qv)]p ≤ c1[d(kv,Qv)]p.
Since t = kv = hu ∈ Pu, we have

[d(kv,Qv)]p ≤ [H(Pu,Qv)]p ≤ c1[d(kv,Qv)]p.

Since c1 < 1, it follows that d(kv,Qv)= 0, which implies kv ∈Qv =Qv, as Qv is closed.
Hence the the pair (k,Q) has the the coincidence point v.
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Theorem 2.5. If all the conditions of Proposition 2.4 on h,k,P and Q hold and in addition to
that

(i) If h is P-weakly commuting at u and hhu = hu then h and P have a common fixed point.

(ii) If k is Q-weakly commuting at v and kkv = kv then k and Q have a common fixed point.

(iii) If both (i) and (ii) hold, then h,k,P and Q have a common fixed point.

Proof. The proof follows in the same lines of Theorem 2.2.

Example 2.6. Let (X ,d) be a metric space with usual metric where X = [0,1).
Let h,k : X → X and P,Q : X → CB(X ) be defined by

h(x)=


x
2 , if x ∈

[
0, 1

2

)
,

3
4 − x

2 , if x ∈
[

1
2 ,1

)
,

k(x)=


x
3 , if x ∈

[
0, 1

2

)
,

1
4 + x

2 , if x ∈
[

1
2 ,1

)
,

P(x)=


{3
4

}
, if x ∈

[
0, 1

2

)
,[1

2 , 2
3

]
, if x ∈

[
1
2 ,1

)
,

Q(x)=
[

1
2

,
2
3

]
for all x ∈ [0,1).

We can easily prove that inequality (2.4.1) holds, same in the lines of Example 2.3.
We observe that

⋃
x∈X

Px ̸⊆ k(X ) and
⋃
x∈X

Qx ̸⊆ h(X ).

Also neither h(X ) nor k(X ) is closed.

For the sequences xn = 1
2
+ 1

4n
and yn = 1

2 + 1
3n2 , n = 1,2, . . ..

lim
n→∞Pxn = lim

n→∞Q yn =
[

1
2

,
2
3

]
,

lim
n→∞hxn = lim

n→∞kyn = 1
2
= h

(
1
2

)
= k

(
1
2

)
∈

[
1
2

,
2
3

]
.

Therefore, the pairs (h,P) and (k,Q) satisfy (JCLRhk) property.
Also,

hh
(
1
2

)
= 1

2
∈

[
1
2

,
2
3

]
= Ph

(
1
2

)
and hh

(
1
2

)
= h

(
1
2

)
and

kk
(
1
2

)
= 1

2
∈

[
1
2

,
2
3

]
=Qk

(
1
2

)
and kk

(
1
2

)
= k

(
1
2

)
.

Thus h is P-weakly commuting and k is Q-weakly commuting.
All the required conditions of Theorem 2.5 hold.
It can be seen that ‘ 1

2 ’ is the common fixed point of h,k,P and Q, since

h
(
1
2

)
= k

(
1
2

)
= 1

2
∈ P

(
1
2

)
∩Q

(
1
2

)
.
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