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1. Introduction
Optimization Problems (OP) are modelled and solved as deterministic OPs, but in the real-
world applications, OPs are not purely deterministic, because it contains uncertain information.
Therefore, to model such uncertain and imprecise data, fuzzy optimization problems were
introduced. Again, through further research, fuzzy set theory is advanced by Intuitionistic
Fuzzy Set Theory (InFST), then by PYthagorean Fuzzy Sets (PYFS) and finally qROPF set
theory.
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In Intuitionistic Fuzzy set theory, the degree of belongingness and non-belongingness of
elements in the set are modelled by degree of membership and degree of non-membership on
[0,1] such that, whose sum is less than 1. However, because 0.5+0.6 > 1, an analyst cannot
choose membership (mbp) and non-membership (n-mbp) degrees of an element such as 0.5 and
0.6. To overcome such situations, the PYFS theory was introduced, and then, in 2016, Yager
[15] introduced the qROPF set theory. This theory allows the analyst to choose membership
and non-membership degrees such that, sum of the qth power is less than one, for q ≥ 1.

Motivated by fuzzy optimization problem, we discuss the qROPF optimization problem in
this paper by considering a triangular qROPF (T-qROPF) valued objective function with convex
linear inequality constraints. Therefore, we introduced α,β level set for triangular qROPF
numbers and Hukuhara differentiability for qROPF valued functions. By using them, we
formulated the KKT optimality condition for the qROPF optimization problem. This condition
allows us to obtain the non-dominated solution for the given qROPF optimization problem.

2. Preliminaries
Definition 2.1 ([2]). Let X be a universe of discourse, an Intuitionistic Fuzzy Set (IFS) Â on a set
A is an object having the form Â = {〈ẋ, ζÂ(ẋ), η Â(ẋ)〉 | ẋ ∈ X }, where the function ζÂ(ẋ) : Â → [0,1]
is the degree of mbp, and η Â(x) : Â → [0,1] is the degree of n-mbp of the elements in the set Â
satisfying 0≤ ζÂ(x)+η Â(x)≤ 1.

Definition 2.2 ([15]). Let X be a universe of discourse, a PYthagorean Fuzzy Set (PYFS) in
X is given by P̂ = {〈x, ζP̂(ẋ), ηP̂(ẋ)〉 | ẋ ∈ X }, where the function ζP̂(ẋ) : X → [0,1] is the degree
of mbp, and ηP̂(ẋ) : X → [0,1] is the degree of n-mbp of the elements in the set S satisfying
0≤ (ζP̂ (ẋ))2 + (ηP̂ (ẋ))2 ≤ 1.

Definition 2.3 ([14]). Let X be a universe of discourse, a qROPF set Q̃ in X is given by

Q̃ = {〈ẋ,ζQ̃(ẋ), ηQ̃(ẋ)〉 | ẋ ∈ X }, (2.1)

where the function ζQ̃(ẋ) : X → [0,1] is the degree of mbp, and ηQ̃(ẋ) : X → [0,1] is the degree
of n-mbp of the elements in the set X satisfying 0≤ (ζQ̃(ẋ))q + (ηQ̃(ẋ))q ≤ 1, q ≥ 1, for all ẋ ∈ S.
The degree of Hesitancy of elements in X is denoted by ΠQ̃(ẋ)= (1− (ζQ̃(ẋ))q − (ηQ̃(ẋ))q)1/q.

Definition 2.4 ([4]). A qROPF relation qR is a qROPF subset of X ×Y , which is defined as
qR = {〈(ẋ, ẏ),ζqR(ẋ, ẏ),ηqR(ẋ, ẋ)〉 | ẋ ∈ X , ẏ ∈Y }, (2.2)

where ζqR(ẋ, ẏ) : X ×Y → [0,1] and ηqR(ẋ, ẏ) : X ×Y → [0,1] denote the mbp and n-mbp degrees
of (ẋ, ẏ) in X ×Y which satisfies the condition 0≤ ζ

q
qR(ẋ, ẏ)+ηq

qR(ẋ, ẏ)≤ 1, for all (ẋ, ẏ) ∈ X ×Y .
The set of all qROPF relations on X ×Y is denoted qROPF(X ×Y ).

Definition 2.5 ([1]). Let Â and B̂ be two nonempty subsets of Rnand c ∈ R. The Minkowski
addition and scalar multiplication are defined as follows:

Â+ B̂ = {â+ b̂ : â ∈ Â and b̂ ∈ B̂},

ĉ Â = {ĉâ : â ∈ Â}.
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Definition 2.6 (Convexity of Fuzzy Mapping [6]). A fuzzy valued function f̈ :Ω⊆Rn → FΩ is
said to be convex on a convex subset Ω⊆ Rn, if for each α ∈ [0,1] both level sets f̈ (ẋ,α)L and
f̈ (ẋ,α)U are convex on Ω. That is for 0≤λ′ ≤ 1, ẋ, ẏ ∈Ω

f̈ L
α ((1−λ′)ẋ+λ′ ẏ)≤ (1−λ′) f̈ L

α (ẋ)+λ′ f̈ L
α ( ẏ),

f̈ U
α ((1−λ′)ẋ+λ′ ẏ)≤ (1−λ′) f̈ U

α (ẋ)+λ′ f̈ U
α ( ẏ).

f̈ is said to be concave if − f̈ is convex.

3. Differentiability of qROPF Valued Function
Definition 3.1 ([9]). Let Ä = 〈(ȧ, ḃ, ċ) : MÄ, NÄ〉 be a Triangular qROPF number. Its mbp
function and n-mbp functions are given by

ζÄ(ẋ)=


(ẋ−ȧ)MÄ

ḃ−ȧ
, a ≤ ẋ ≤ ḃ,

(ċ−ẋ)MÄ
ċ−ḃ

, ḃ ≤ ẋ ≤ ċ,

0, ȧ > ẋ or ẋ > ċ,

(3.1)

η Ä(ẋ)=


ḃ−ẋ+NÄ(ẋ−ȧ)

ḃ−ȧ
, ȧ ≤ ẋ ≤ ḃ,

ẋ−ḃ+NÄ(ċ−ẋ)
ċ−ḃ

, ḃ ≤ ẋ ≤ ċ,

1, ȧ > ẋ or ẋ > ċ,

(3.2)

where ζÄ(ẋ) and η Ä(ẋ) denote the degree of mbp and n-mbp of Ä, MÄ denote maximum degree
of mbp and NÄ denote minimum degree of n-mbp, MÄ, NÄ ∈ [0,1], and 0 ≤ Mq

Ä
+ Nq

Ä
≤ 1.

a,b, c ∈ [0,1] and ζÄ(ẋ)q +η Ä(ẋ)q ≤ 1.

Definition 3.2. The (α,β) level set of the triangular qROPF number Ä = 〈(ȧ, ḃ, ċ) : MÄ, NÄ〉 is
the set of all x such that whose degree of mbp greater than equal to α and degree of n-mbp is
less than or equal to β, i.e.,

Äα,β = {ẋ ∈ X : ζÄ(ẋ)≥α,η Ä(ẋ)≤β,αq +βq ≤ 1} (3.3)

which is represented in the interval form Äα,β = [ÄL, ÄU ], where

ÄL =max

{
ȧ+ α(ḃ− ȧ)

MÄ
,
ḃ(1−β)+ ȧ(β−NÄ)

1−NÄ

}
, (3.4)

ÄU =min

{
ċ− α(ċ− ḃ)

MÄ
,
ḃ(1−β)+ ċ(β−NÄ)

1−NÄ

}
. (3.5)

Definition 3.3. Let X̂ and Ŷ be two sets, a qROP fuzzy valued function from X to qROPF set
of Ŷ is defined as

ϕ : X̂ → qROPFS(Ŷ ) such that x′ →ϕ(x′),

where ϕ(x′)= 〈y′,ζq
ϕ(x′)(y′), ηq

ϕ(x′)(y′), y′ ∈ Ŷ 〉, where for x′ ∈ X̂ ,ζq
ϕ(x′)(y′) : Ŷ → [0,1] and η

q
ϕ(x′)(y′) :

Ŷ → [0,1] denote the mbp and n-mbp of y′ =ϕ(x′), such that 0≤ ζq
ϕ(x′)(y′)+ηq

ϕ(x′)(y′)≤ 1.
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Let G be an open subset of Rn and Qn be the set of all qROPF numbers. Let f̈ : G →Q1 be a
qROPF valued function defined on G.

Definition 3.4. For two qROPF numbers q1, q2, d = q1⊟ q2 means the Hukuhara difference of
q1 and q2, if there exist qROPF number d such that d⊟ q2 = q1.

Definition 3.5. Let P and Q be two qROPF sets then the Hausdorff distance between P and Q
is defined by HD(P,Q)=min(HD(qi, q j)), where qi ∈ P and q j ∈Q.

Definition 3.6. Let q1 = (ζq
q1 ,ηq

q1) and q2 = (ζq
q2 ,ηq

q2) be two qROPF numbers, the Hausdorff
distance between A and B is given by

HD(q1, q2)=max(|ζq
q1 −ζq

q2 |, |ηq
q1 −ηq

q2 |). (3.6)

Theorem 3.1. Let q̃i and q̃ j be two qROPF numbers in Qn, such that q̃i = (ζq
q̃i

,ηq
q̃i

) and
q̃ j = (ζq

q̃ j
,ηq

q̃ j
). The function HD(q̃i, q̃ j)=max(|ζq

q̃i
−ζq

q̃ j
|, |ηq

q̃i
−ηq

q̃ j
|), is a metric on Qn.

Proof. We are going to show that HD satisfies all the axioms of a metric

M1: HD(q̃i, q̃ j)= 0⇔max(|ζq
q̃i
−ζq

q̃ j
|, |ηq

q̃i
−ηq

q̃ j
|)= 0⇔ ζ

q
q̃i
= ζq

q̃ j
,ηq

q̃i
= ηq

q̃ j
.

Therefore, ⇔ q̃i = q̃ j .

M2: HD(q̃i, q̃ j)=max(|ζq
q̃i
−ζq

q̃ j
η

q
q̃i
−ηq

q̃ j
|)=max(|ζq

q̃ j
−ζq

q̃i
|, |ηq

q̃ j
−ηq

q̃i
|)=HD(q̃ j, q̃i).

M3: Let q̃i, q̃ j and q̃k ∈Qn. It is obvious that HD(q̃i, q̃ j)≤HD(q̃i, q̃k)+HD(q̃k, q̃ j), by applying
max{x, y} = x+y+|x−y|

2 .

From the axioms M1, M2 and M3 we get HD is a metric on Qn. Therefore, (Qn,HD) is a metric
space.

Definition 3.7. A qROPF valued function f̈ : [a,b] ⊆ R →Qn is said to be continuous at x′0 ∈
[a,b] if for every ε> 0, δ> 0 such that for all x′ ∈ [a,b] with |x′− x′0| < δ ⇒ HD( ḟ (x′), ḟ (x′0))< ε.

Definition 3.8. A qROPF valued function f̈ : (a,b) ⊆ R → Q1 is said to be Hukuhara-
differentiable or H-differentiable at t′0 ∈ (a,b), if the both limits

lim
∆t′→0+

f̈ (t′0 +∆t′)⊟ f̈ (t′0)
∆t′

= lim
∆t′→0+

f̈ (t′0)⊟ f̈ (t′0 +∆t′)
∆t′

(3.7)

exist and is denoted by f̈ ′(t′0).

Definition 3.9. Let X be a set, a qROP fuzzy valued function f̈ : X → Q is said to be α,β
level-wise H-differentiable at ẋ ∈ X , if and only if both f̈ L

α,β and f̈ U
α,β-differentiable at ẋ0 ∈ X , for

all α,β ∈ [a,b] with 0≤αq +βq ≤ 1. That is the limits

lim
h→0+

f̈ L
α,β(ẋ0 +h)⊟ f̈ L

α,β(ẋ0)

h
, lim

h→0+

f̈ U
α,β(ẋ0)⊟ f̈ U

α,β(ẋ0 +h)

h
(3.8)

exists.

Communications in Mathematics and Applications, Vol. 14, No. 1, pp. 375–383, 2023



The Karush-Kuhn-Tucker Optimality Condition for q-Rung Orthopair Fuzzy. . . : J. James and S. Jose 379

Theorem 3.2. If a qROPF valued function f̈ : X → Q1 is said to be H-differentiable, then
the interval valued function f̈α,β are also H-differentiable. In particular f̈ L

α,β(X̄ ), and f̈ U
α,β(X̄ ),

are also H-differentiable for every α,β ∈ [0,1] with 0≤αq +βq ≤ 1.

Proof. Proof is obvious from the definition of f̈α and f̈β.
Let G be an open subset of Rn and for X̄ = (ẋ1, ẋ2, . . . , ẋn), f̈ (X̄ ) ∈Q and

f̈ L
α,β(X̄ )= f̈ L

α,β(ẋ1, ẋ2, . . . , ẋn)= f̈ (ẋ1, ẋ2, . . . , ẋn)|Lα,β ,

f̈ U
α,β(X̄ )= f̈ U

α,β(ẋ1, ẋ2, . . . , ẋn)= f̈ (ẋ1, ẋ2, . . . , ẋn)|Uα,β .

Definition 3.10. The Gradient of the continuous qROPF valued function f̈ denoted by ▽ f̈ (X̄ )
and is defined as ∇ f̈ (X̄ )=

(
∂ f̈ (X̄ )
∂ẋ1

, ∂ f̈ (X̄ )
∂ẋ2

, . . . , ∂ f̈ (X̄ )
∂ẋn

)
.

4. KKT Optimality Condition for qROPF Optimization Problem
Consider the following linear optimization problem with qROPF valued objective function and
inequality constraints

(qFP) max/min f̈ (X )= f̈ (x1, x2, . . . , xn), i = 1,2, . . . ,k

subject to h̃ j(X )≥ or ≤ 0, for j = 1,2, . . . ,m,

where X belongs to an open set G ⊆ Rn, f̈ (X ) and h̃ j ∈Qn .
For convenience, consider a minimization problem

(qFoP) min f̈ (X )= f̈ (x1, x2, . . . , xn), i = 1,2, . . . ,k

subject to h̃ j(X )≤ 0, for j = 1,2, . . . ,m,

where f̈ , h̃ j , where j = 1 to m are convex, continuously H-differentiable functions defined on Rn.

Definition 4.1. A solution X ◦ is said to be a non-dominated solution to the qROPF optimization
problem, if there exist no other feasible solution X⋆ such that f̈ (X⋆)< f̈ (X ◦).

Theorem 4.1. Let X = {Ẍ ∈ Rn : h̃ j(Ẍ ) ≤ 0, j = 1,2 . . . ,n}, be a feasible set of the constraints
h̃ j : Rn → R, assume that which is convex and continuously H-differentiable at Ẍ ◦ ∈ X for
j = 1,2, . . . ,n. Suppose that the objective function f̈ : Rn → Q is convex and α,β level-wise
continuously H-differentiable at Ẍ ◦. If there exist non-negative real valued functions (Lagrange
function multipliers) ψ j for j = 1,2, . . . ,m defined on [0,1] such that,

(i) ∇ f̈ L
α,β(Ẍ ◦)+∇ f̈ U

α,β(Ẍ ◦)+
m∑

j=1
ψ j(α,β)∇h̃ j(Ẍ ◦)= 0, for all α,β ∈ [0,1], (4.1)

(ii) ψ j(α,β)h̃ j(Ẍ ◦)= 0, for all α,β ∈ [0,1], (4.2)

then Ẍ ◦ is a non-dominated solution of the problem.

Proof. To prove the theorem we assume the contradiction that, there will no such non-dominated
solution to the qRoP problem satisfying the assumptions and conditions (i) and (ii), i.e., there
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exist X̄ ∈ X such that f̈ (X̄ )< f̈ (X ◦). Hence, f̈ L
α,β(X̄ )< f̈ L

α,β(Ẍ ◦)

f̈ U
α,β(X̄ )≤ f̈ U

α,β(Ẍ ◦)
or

 f̈ L
α,β(X̄ )≤ f̈ L

α,β(Ẍ ◦)

f̈ U
α,β(X̄ )< f̈ U

α,β(Ẍ ◦)
or

 f̈ L
α,β(X̄ )< f̈ L

α,β(Ẍ ◦)

f̈ U
α,β(X̄ )< f̈ U

α,β(Ẍ ◦)
(4.3)

Now, define a function

ḟ (X )= f̈ L
α,β(X )+ f̈ U

α,β(X ) . (4.4)

Therefore,

ḟ (X̄ )= f̈ L
α,β(X̄ )+ f̈ U

α,β(X̄ )

< f̈ L
α,β(Ẍ ◦)+ f̈ U

α,β(Ẍ ◦) (from (4.3))

< ḟ (Ẍ ◦),

i.e.,

ḟ (X̄ )< ḟ (Ẍ ◦) . (4.5)

Since f̈ is continuously differentiable and convex at Ẍ ◦, f̈ is level-wise continuously
differentiable and convex at Ẍ ◦, i.e., f̈ L

α,β and f̈ U
α,β is convex and differentiable

∇ ḟ (X )=∇ f̈ L
α,β(X )+∇ f̈ U

α,β(X ), for all α,β ∈ [0,1].

Hence for any fixed α′,β′ ∈ [0,1]

∇ f̈ L
α′,β′(Ẍ

◦)+∇ f̈ U
α′,β′(Ẍ

◦)+
m∑

j=1
ψ j(α′,β′)∇h̃ j(Ẍ ◦)= 0

=⇒ ∇ f (X )+
m∑

j=1
ψ j(α′,β′)∇h̃ j(Ẍ ◦)= 0 . (4.6)

Also,

ψ j(α′,β′)h̃ j(Ẍ ◦)= 0, for all j = 1,2, . . . ,m . (4.7)

Now consider a new qROPF valued optimization problem

min ḟ (Ẋ )

subject to h̃ j(Ẋ )≤ 0, for all j = 1,2, . . . ,m .

Clearly from (4.6) and (4.7), the above optimization problem satisfies the conditions (i) and (ii)
of the hypothesis. Therefore, ḟ (Ẍ ◦) is an optimal solution to the problem.
But this contradicts equation (4.5).
Therefore, our assumption is wrong that is Ẍ ◦ is a non-dominated solution to the problem.

Illustrative Example. Consider the following qROPF optimization problem

f̈ = 〈(4,5,7);0.7,0.3〉⊗ ẋ1 ⊕〈(5,6,9);0.3,0.8〉⊗ ẋ2 ⊕〈(6,7,8);0.4,0.5〉⊗ ẋ3 ⊕〈(1,2,3);0.2,0.6〉ẋ4

subject to h1(ẋ1, ẋ2, ẋ3, ẋ4)= ẋ1 + ẋ2 +3ẋ3 +2ẋ4 ≤ 35

h2(ẋ1, ẋ2, ẋ3, ẋ4)= 3ẋ1 +5ẋ2 +4ẋ3 +2ẋ4 ≤ 40

4ẋ1 +3ẋ3 ≤ 15
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ẋ1, ẋ2, ẋ3, ẋ4 ≥ 0

f̈ = 〈(4,5,7);0.7,0.3〉⊗ ẋ1 ⊕〈(5,6,9);0.3,0.8〉⊗ ẋ2 ⊕〈(6,7,8);0.4,0.5〉⊗ ẋ3 ⊕〈(1,2,3);0.2,0.6〉ẋ4

subject to h1(ẋ1, ẋ2, ẋ3, ẋ4)= ẋ1 + ẋ2 +3ẋ3 +2ẋ4 −35

h2(ẋ1, ẋ2, ẋ3, ẋ4)= 3ẋ1 +5ẋ2 +4ẋ3 +2ẋ4 −40

4ẋ1 +3ẋ3 −15

ẋ1, ẋ2, ẋ3, ẋ4 ≥ 0

For α,β ∈ [0,1] with 0≤αq +βq ≤ 1

f̈ L
α,β = ẋ1

(
3.8−β

0.7

)
+ ẋ2

(
2−β
0.2

)
+ ẋ3

(
6+ α

0.4

)
+ ẋ4

(
1+ α

0.6

)
,

f̈ U
α,β = ẋ1

(
2.9+2β

0.7

)
+ ẋ2

(
3β−1.2

0.2

)
+ ẋ3

(
8− α

0.4

)
+ ẋ4

(
3− α

0.6

)
.

For α,β ∈ [0,1] with 0≤αq +βq ≤ 1, we can also obtain

∇ f̈ L
α,β =



3.8−β
0.7
2−β
0.2

6+ α
0.4

1+ α
0.4

 , ∇ f̈ U
α,β =



2.9+2β
0.7

3β−1.2
0.2

8− α
0.4

3− α
0.6

 , ∇h̃1 =


1
1
3
2

 , ∇h̃2 =


3
5
4
2

 , ∇h̃3 =


4
0
3
0

 .

Solve h̃1 = 0 and h̃2 = 0, obtain the solution x∗ = (0,0,5,10). Solved using LINGO 18.0.
Applying the conditions (4.1) and (4.2)

(
3.8−β

0.7

)
+

(
2.9+2β

0.7

)
+ψ1(α,β)+3ψ2(α,β)+4ψ3(α,β)−ψ4 = 0,(

2−β
0.2

)
+

(
3β−1.2

0.2

)
+ψ1(α,β)+5ψ2(α,β)= 0,(

6+ α
0.4

)+ (
8− α

0.4

)+3ψ1(α,β)+4ψ2(α,β)+3ψ3(α,β)= 0,(
1+ α

0.4

)+ (
3− α

0.6

)+2ψ1(α,β)+2ψ2(α,β)−ψ8 = 0.

(4.8)

The above system is feasible and we get non-negative values for ψ1,ψ2,ψ3,ψ8,ψ4 is arbitrary,
therefore x∗ become a solution to the given optimization problem.

5. Conclusion
The Hukuhara difference for qROPF sets and Hukuhara differentiability or H-differentiability
for qROPF valued functions are defined. The α,β level set [ÄL, ÄU ] is defined for triangular
qROPF number Ä, using this we formulated the Karush-Kuhn-Tucker optimality condition
for qROPF optimization problem. Also, a qROPF optimization problem is illustrated using
the proposed KKT optimality condition.
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