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1. Introduction
Fractional calculus is a field of applied mathematics that deals with derivates and integrals of
arbitrary orders. In the last few decades fractional calculus found many applications in various
field of physical science, fluid mechanics, acoustics, biology, electromagnetism, diffusion, signal
processing and many other physical process. Since the physical side is often associated with
fractional differential equation as explained in the previous paragraph, many researchers have
used existing methods to solve this type of equations. Historically, the origin of the integral
transform can be traced back to the work of Pierre-Simon de Laplace in 1780 and Joseph
Fourier in 1822. In the recent years, differential and integral equations have been solved using
many integral transforms like Sumudu transform [18], the New Integral transform “Elzaki
transform” [4], and so on.
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The objective of the present study is to combine two powerful methods, variational iteration

method [5–7,15] and Shehu transform [2,9] to get a faster method to solve nonlinear fraction

partial differential equations.

The present paper has been organised as follows: In Section 2, some basic notions about

fractional calculus and basic definitions and properties of shehu transform method. In Section 3,

we give an analysis of the proposed method. In Section 4, we present some applications and

finally the conclusion.

2. Basic Preliminaries

In this section, we present successively the auxiliary basic functions, the fractionary derivative

according to the Riemann Liouville approach and the Caputo fractionary derivative.

2.1 Auxiliary Functions

In this section, we present successively the definitions and some properties of the Euler gamma

and beta functions, the definitions and some properties of two classical Mittag-Leffler functions.

Definition 2.1 (Euler gamma function). For all complex number such that z ∈
C/{0,−1,−2,−3, . . .}, the Euler gamma function [1,14], denoted by Γ is defined by

Γ(z)=


∫ ∞

0
t(z−1)e−tdt, if Re(z)> 0,

Γ(z+1)
z , if Re(z)≤ 0 and z ̸∈ Z−

0 .
(2.1)

Definition 2.2 (Euler beta function). The Euler beta function [1,3] is defined by the integral of

by the Euler integral of the first kind.

B(z,w)=
∫ 1

0
tz−1(1− t)w−1dt, Re(z)> 0, R(w)> 0. (2.2)

Definition 2.3 (Mittag-Leffler function to one parameter). The classical Mittag-Leffler function

to one parameter α, is defined by the expression

Eα(z)=
∞∑

k=0

zk

Γ(αk+1)
, z ∈C, Re(z)> 0. (2.3)

Definition 2.4 (Mittag-Leffler function to two parameters). The classical Mittag-Leffler function

to two parameters α,β is given by the expression

Eα,β(z)=
∞∑

k=0

zk

Γ(αk+β)
, z ∈C, β ∈C, Re(α)> 0. (2.4)

2.2 Riemann-Liouville Fractional Derivative

The fractional derivative according to the Riemann-Liouville approach [3,8,10,14,17] is defined

from the juxtaposition of the fractional integral previously defined and the integer derivative.
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As it was presented above, we start by writing successively the fractional derivatives on the left,

then on the right, of complex order α such than Re(α)≥ 0.

Definition 2.5 (Riemann-Liouville fractional derivative to left-sided). The fractional derivative

to left-sided of Riemann-Liouville of order α according to the Riemann-Liouville approach of

function f is defined and denote respectively by

(Dα
a+ f )(x)=

(
d
dx

)n
(In−α

a+ f )(x)= 1
Γ(n−α)

(
d
dx

)n ∫ x

a
(x− t)n−α−1 f (t)dt, x > a. (2.5)

Definition 2.6 (Riemann-Liouville fractional derivative to right-sided).

(Dα
b− f )(x)=

(−d
dx

)n
(In−α

−b f )(x)= 1
Γ(n−α)

(−d
dx

)n ∫ x

b
(t− x)n−α−1 f (t)dt, x < b. (2.6)

In the two previous definitions, the integer n and the complex α are dependent on each

other according to the relation n = [Re(α)]+1 where the notation [Re(α)] designates the integer

part of Re(α).

2.3 Caputo Fractional Derivative

In 1967, Michele Caputo [3, 8, 10, 13, 14, 17], introduced a variant of the Riemann-Liouville

fractional derivative. It is distinguished from the latter by the nullity of constant functions and

also by its applications in many fields of engineering sciences. By keeping the same notations

and the same data as before, we give the definitions of the fractional derivatives of Caputo,

respectively on the left, on the right using their Riemann-Liouville analogues. We will see later,

the importance of this fractional derivative in practical applications.

Definition 2.7 (Derivative of Caputo to left-sided, to right-sided).

(cDα
a+ f )(x)=

(
Dα

a+

[
f (t)−

n−1∑
k=0

f (k)(a)
k!

(t−a)k

])
(x), (2.7)

(cDα
b− f )(x)=

(
Dα

b−

[
f (t)−

n−1∑
k=0

f (k)(b)
k!

(b− t)k

])
(2.8)

with n = [Re(α)]+1 if α ̸∈ N0 and n =α if α ∈ N0.

In case 0< R(e)< 1, the Caputo fractional derivative functions are defined by the expressions

(cDα
a+ f )(x)= (Dα

a+[ f (t)− f (a)])(x),

(cDα
b− f )(x)= (Dα

b−[ f (t)− f (b)])(x).

Theorem 2.1. Let α and n such that n = [Re(α)]+1 and Re(α)≥ 0. We assume that f ∈ ACn[a,b]

and that (cDα
a+ f )(x) (respectively (cDα

b− f )(x)) exist almost everywhere in [a,b]. In this conditions,
we have

(cDα
a+ f )(x)= 1

Γ(n−α)

∫ x

a
(x− t)n−α−1 f (n)(t)dt = (In−α

a+ )Dn f (x), (2.9)
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(cDα
b− f )(x)= 1

Γ(n−α)

∫ b

x
(t− x)n−α−1 f (n)(t)dt = (In−α

b− )Dn f (x). (2.10)

3. Shehu Transform

The Shehu transform was defined by Shehu Maitama [9,19], in 2019. In this section, we give

some basics definitions and properties of this transform.

Definition 3.1 (Shehu transform). The Shehu transform of the function v(t) of exponential

order is defined over the set of functions

A =
{

v(t) : ∃ N,n1,n2 > 0, N ×exp
(∣∣∣∣ t

n j

∣∣∣∣) if t ∈ (−1) j × [0,∞[
}

(3.1)

by the following integral

S[v(t)]=V (s,u)= lim
x→∞

∫ x

0
exp

(−st
u

)
v(t)dt . (3.2)

There is convergence if the limit of the integral exists, and divergence in the opposite case.

In case of convergence, the previous expression is written

S[v(t)]=V (s,u)=
∫ ∞

0
exp

(−st
u

)
v(t)dt . (3.3)

Definition 3.2 (Inverse Shehu transform). The inverse Shehu transform is given by

S−1[V (s,u)]= v(t), s,u > 0. (3.4)

Definition 3.3 (Equivalent form of the inverse Shehu transform). The inverse Shehu transform

can be write also in the following form,

v(t)= S−1[V (s,u)]= 1
2πi

∫ α+i∞

α−i∞
1
u

exp
(

st
u

)
V (s,u)ds , (3.5)

where s and u are Shehu transform variables, and α is a real scalar and the integral in equation

is taken along s = α in the complex plane s = x+ i y.

Theorem 3.1 (The sufficient condition for the existence of Shehu transform). If the function v(t)
is piecewise continues in every finite interval 0≤ t ≤β and of exponential order α for t >β, then
its Shehu transform V (s,u) exists.

Proof. See [9].

Properties 3.1. In this paragraph, we present the main properties of Shehu transform [3,9].

(i) Property of linearity: the Shehu transform is a linear operator.
Let λ, µ arbitrary scalars and u(t),v(t) ∈ A. Then λu(t) and µv(t) are trivially in set A,
previously defined in (3.1). In these conditions

S[(λu+µv)(t)]=λS[u(t)]+µS[v(t)] . (3.6)
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(ii) Property of change of scale of Shehu transform.
Let the function v(βt) be in set A, where β is an arbitrary constant. Then

[v(βt)]= u
β

V
(

s
β

,u
)
. (3.7)

Properties 3.2.

v(t)= 1 , S[1]= u
s

,

v(t)= t , S[t]= u2

s2 ,

v(t)= tn

Γ(n+1) , S[v(t)]=
(u

s

)n+1
,

v(t)= tn

Γ(n+1)
, S[v(t)]=

(u
s

)n+1
.

Theorem 3.2 (Shehu transform of derivative function). If the function v(n) (t) design the nth
derivate of the function v (t) ∈ A relatively to variable t, then its Shehu transform is defined by

S[v(n)(t)]= sn

un V (s,u)−
n−1∑
k=0

( s
u

)n−(k+1)
v(k)(0). (3.8)

Proof. See [2,9].

Example 3.1 (Particular order).

n = 1 : S[v(1)(t)]= s
u

V (s,u)−v(0)

n = 2 : S[v(2)(t)]= s2

u2 V (s,u)− s
u

v(0)−v(1)(0)

n = 3 : S[v(3)(t)]= s3

u3 V (s,u)− s2

u2 v(0)− s
u

v(1)(0)−v(2)(0).

Theorem 3.3 (Shehu transform of Caputo fractional derivative). If v(t) ∈ ACn(a,b), then the
Shehu transform of its fractional derivative of Caputo is given by

S
[cDα

0+v(t)
]= ( s

u

)α
S[v(t)]−

n−1∑
k=0

( s
u

)α−(k+1)
v(k)(0), n−1<α≤ n, n = 1,2, . . . . (3.9)

Proof. See [2,9].

4. Applications of Variational Iteration Shehu Transform Method with
Caputo Fractional Derivative

For this section, it seems very important to begin to even briefly recall the iterative variational

method to then analytically express the combination of the iterative variational method with

the integral transformation of Shehu.

After that, we shall present few numeric examples on solving fractional differential

equations.
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4.1 Variational Iteration Method (VIM)

Let the following general nonlinear ordinary differential equation

Lu(x)+Nu(x)= h(x) , (4.1)

where L is a linear operator, N is a nonlinear operator and the function h(x) is the second

member. According to variational iterative method (VIM) [5–7,11,12,15,16], we can construct

the correction functional as follows:

un+1(x)= un(x)+
∫ x

0
λ(Lun(t)+Nũn(t)−h(t))dt , (4.2)

where λ is Lagrange multiplier which can be identified optimally, according to the variational

theory, un is the nth approximate solution, and ũn is considered as a restricted variation, to

mean that δñ = 0.

After identification of Lagrange multiplier, the successive approximations un+1(x), for n ≥ 0

of the solution u can be readily obtained.

The exact solution will determined in form

u(x)= lim
n→+∞un(x). (4.3)

4.2 Variational Iteration Shehu Transform Method

To illustrate the basic idea of this method, we consider a general nonlinear fractional partial

differential non homogeneous equation with initial conditions of the form
cDα

t v(x, t)+Rv(x, t)+Nv(x, t)= g(x, t), (4.4)

v(x,0)= h(x), (4.5)

where t > 0, x ∈R, 0<α≤ 1.

The function cDα
t v(x, t) is the Caputo fractional derivative of the v(x, t), R is the linear

differential operator, N represents the general nonlinear operator, and g(x, t) the second

member.

It is a question of constructing, similarly to the iterative variational method, a series of

approximate functions of the exact solution of the problem (4.4)-(4.5).

This method is called variational iteration Shehu transform method. We proceed as follows.

We begin to apply the Shehu transform on both sides of (4.4) using the different properties

listed above of this transform.

Proposition 4.1. If v(x, t) is solution of problem (4.4)-(4.5), then

v(x, t)=
[
h(x)+S−1

(
uα

sα
Sg(x, t)

)]
−S−1

[
uα

sα
(SRv(x, t)+SNv(x, t))

]
. (4.6)

Proof. Let follow problem
cDα

t v(x, t)+Rv(x, t)+Nv(x, t)= g(x, t),
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v(x,0)= h(x).

We begin to apply the Shehu transform on both sides of equation using the different properties

listed above of this transform, then use the Shehu transform of Caputo fractional derivative.

S [g(x, t)]= S
[cDα

t v(x, t)+Rv(x, t)+Nv(x, t)
]

S [g(x, t)]= S
[cDα

t v(x, t)
]+ [Rv(x, t)+Nv(x, t)]

S
[cDα

t v(x, t)
]= S [g(x, t)]− [Rv(x, t)+Nv(x, t)]

S
[cDα

t v(x, t)
]= ( s

u

)α
S[v(x, t)]−

n−1∑
k=0

( s
u

)α−(k+1)
v(k)(x,0), n−1<α≤ n, n = 1,2 . . .

( s
u

)α
S[v(x, t)]=

n−1∑
k=0

( s
u

)α−(k+1)
v(k)(x,0)+S [g(x, t)]−S [Nv(x, t)+Rv(x, t)]

By multiplying
( s

u
)−α on both sides of last equation, then using applying the Shehu transform

inverse on both sides of equation obtained, it results

S [v(x, t)]=
( s
u

)−α n−1∑
k=0

( s
u

)α−(k+1)
v(k)(x,0)+

( s
u

)−α
S [g(x, t)]−

( s
u

)−α
S [Nv(x, t)+Rv(x, t)] .

To finish proof of proposition, we can studied the case where 0<α≤ 1.

In these conditions,necessarily n = 1. By substituting the condition n = 1, in the previous

equation, we obtain

S [v(x, t)] (s,u)= u
s

h(x)+ uα

sα
S[g(x, t)]− uα

sα
S [Rv(x, t)+Nv(x, t)] .

Finally, we take the Shehu transport inverse from both sides of the above equation

v(x, t)=
[
h(x)+S−1

(
uα

sα
Sg(x, t)

)]
−S−1

[
uα

sα
(SRv(x, t)+SNv(x, t))

]
.

This finish the proof.

Theorem 4.1. According a modification of variational iterative method [6, 7, 19], the exact
solution of problem (4.4)-(4.5) is given in form as a limit of successive approximations
vn(x, t),n = 0,1,2, . . . , in the others words,

v(x, t)= lim
n→+∞vn(x, t) (4.7)

with respectively

vn(x, t)= vn−1(x, t)−
∫ t

0

[
∂

∂τ
vn−1(x,τ)+ ∂

∂τ
S−1

(
uα

sα
S[Rvn−1(x,τ)+Nvn−1(x,τ)]

)
− ∂

∂τ
S−1

(
uα

sα
Sg(x,τ)

)]
dτ . (4.8)

Proof. Applying
(
∂
∂t

)
on both sides of equation below.

v(x, t)=
[
h(x)+S−1

(
uα

sα
Sg(x, t)

)]
−S−1

[
uα

sα
(SRv(x, t)+SNv(x, t))

]
.
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We obtain,
∂

∂t
v(x, t)+ ∂

∂t
S−1

[
uα

sα
S((Rv(x, t)+Nv(x, t))

]
− ∂

∂t
S−1

[
uα

sα
Sg(x, t)

]
= 0. (4.9)

This method is based on the construct of the following correctional functional for eq. (4.8), where

λ is a general Lagrange multiplier which can be identified optimally via the variational theory.

Applying variational iteration method with 0<α≤ 1, we obtain,

vn(x, t)= vn−1(x, t)+
∫ t

0
λ(t,τ)

[
∂

∂τ
vn−1(x,τ)+ ∂

∂τ
S−1

(
uα

sα
S[Rvn−1(x,τ)+Nvn−1(x,τ)]

)
− ∂

∂τ
S−1

(
uα

sα
Sg(x,τ)

)]
dτ . (4.10)

In this case, the general Lagrange multiplier is given by the formula [7,19]

λ(t,τ)= (−1)m(τ− t)m−1

(m−1)!
,

with m = 1. In this case, λ=−1 [19].

Finally, the correctional functional is given by

vn(x, t)= vn−1(x, t)−
∫ t

0

[
∂

∂τ
vn−1(x,τ)+ ∂

∂τ
S−1

(
uα

sα
S[Rvn−1(x,τ)+Nvn−1(x,τ)]

)
− ∂

∂τ
S−1

(
uα

sα
Sg(x,τ)

)]
dτ .

This finish the proof of Theorem 4.1.

Example 4.1 (First successive approximations). We can consider,

v0(x, t)= v(x,0)= h(x),

for start the iterations. We have successively

v1(x, t)= v0(x, t)−
∫ t

0

[
∂

∂τ
v0(x,τ)+ ∂

∂τ
S−1

(
uα

sα
S[Rv0(x,τ)+Nv0(x,τ)]

)
− ∂

∂τ
S−1

(
uα

sα
Sg(x,τ)

)]
dτ,

v2(x, t)= v1(x, t)−
∫ t

0

[
∂

∂τ
v1(x,τ)+ ∂

∂τ
S−1

(
uα

sα
S[Rv1(x,τ)+Nv1(x,τ)]

)
− ∂

∂τ
S−1

(
uα

sα
Sg(x,τ)

)]
dτ,

v3(x, t)= v2(x, t)−
∫ t

0

[
∂

∂τ
v2(x,τ)+ ∂

∂τ
S−1

(
uα

sα
S[Rv2(xτ)+Nv2(x,τ)]

)
− ∂

∂τ
S−1

(
uα

sα
Sg(x,τ)

)]
dτ,

and so one.

For n ∈N, we continue in this manner to obtain the general recursive relation (4.9). Finally,

the approximate solution (possibly exact) is calculated by

v(x, t)= lim
n→+∞vn(x, t).

4.3 Treatment of Numerical Example

In this part, we apply variational iteration method Shehu transform with the Caputo fractional

derivate to solve linear and nonlinear equations. The example that we present is a nonlinear

time-fractional Fokker Planck equation described according following model:
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Example 4.2.
cDα

t v(x, t)=
( x
3

v(x, t)
)

x
−

(
4
x

v2(x, t)
)

x
+ (v2(x, t))xx, 0<α≤ 1, (4.11)

with the initial condition

v(x,0)= x2. (4.12)

By applying VIM combined with Shehu transform in the problem (4.11)-(4.12), we obtain the

following iteration,

vn(x, t)= vn−1(x, t)−
∫ t

0

[
∂vn−1

∂τ
− ∂

∂τ
S−1 uα

sα
S

( x
3

vn−1

)
x
+ ∂

∂τ
S−1 uα

sα
S

(
4
x

v2
n−1

)
x

− ∂

∂τ
S−1 uα

sα
S(v2

n−1)xx

]
dτ .

In particular cases n = 1,2,3, we get following iterations,

v1(x, t)= v0(x, t)−
∫ t

0

[
∂v0

∂τ
− ∂

∂τ
S−1 uα

sα
S

( x
3

v0

)
x
+ ∂

∂τ
S−1 uα

sα
S

(
4
x

v2
0

)
x
− ∂

∂τ
S−1 uα

sα
S(v2

0)xx

]
dτ ,

v2(x, t)= v1(x, t)−
∫ t

0

[
∂v1

∂τ
− ∂

∂τ
S−1 uα

sα
S

( x
3

v1

)
x
+ ∂

∂τ
S−1 uα

sα
S

(
4
x

v2
1

)
x
− ∂

∂τ
S−1 uα

sα
S(v2

1)xx

]
dτ ,

v3(x, t)= v2(x, t)−
∫ t

0

[
∂v2

∂τ
− ∂

∂τ
S−1 uα

sα
S

( x
3

v2

)
x
+ ∂

∂τ
S−1 uα

sα
S

(
4
x

v2
2

)
x
− ∂

∂τ
S−1 uα

sα
S(v2

2)xx

]
dτ .

We give now iterations obtained in a practical form,

v1(x, t)= x2
(
1+ tα

Γ(α+1)

)
,

v2(x, t)= x2
(
1+ tα

Γ(α+1)
+ t2α

Γ(2α+1)

)
,

v3(x, t)= x2
(
1+ tα

Γ(α+1)
+ t2α

Γ(2α+1)
+ t3α

Γ(3α+1)

)
.

We continue in this manner to obtain the recursive relation to order n.

vn(x, t)= x2
(
1+ tα

Γ(α+1)
+ t2α

Γ(2α+1)
+ t3α

Γ(3α+1)
+ . . .+ tnα

Γ(nα+1)

)
,

with 0<α≤ 1. Hence,

vn(x, t)= x2
n∑

k=0

tkα

Γ(kα+1)
.

We deduce the solution of problem (4.11)-(4.12),

v(x, t)= lim
n→+∞x2

n∑
k=0

tkα

Γ(kα+1)
= x2Eα(tα),

where Eα is the Mittag-Leffler function to one parameter define in this case by,

Eα(tα)=
∞∑

k=0

tkα

Γ(kα+1)
.

In special case, where α= 1, we obtain,

v(x, t)= x2et.
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In what follows, we present the graphs of the approximate solutions of the problem (4.11)-

(4.12) for four remarkable values of the order alpha of differentiation.

(a) α= 1

(b) α= 0.25

Figure 1. The surface shows the solution v(x, t) for equation (4.11) with initial condition (4.12)
v0(x, t)= x2: FVIM results are, respectively, (a) α= 1 and (b) α= 0.25
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(a) α= 0.5

(b) α= 0.75

Figure 2. The surface shows the solution v(x, t) for equation (4.11) with initial condition (4.12)
v0(x, t)= x2: FVIM results are, respectively, (a) α= 0.50 and (b) α= 0.75
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5. Conclusion

The combined method of Shehu’s integral transformation with the iterative variational method

gives flexible and precise results. We have plotted the graphs of the approximate solutions

corresponding to particular and remarkable values of the alpha scalar. This allowed us to

analyse and compare the approximate solutions by their geometric aspects.
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