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1. Introduction
The fixed point theory has been used in a variety of mathematical disciplines, including
graph theory, non-linear analysis, and differential equations ([2, 4, 5, 8, 14, 15, 17, 27]).
In 1922, Banach [8] established Banach contraction principle which was followed by various
generalizations and improvements in generalized spaces. In 1968, the first improvement related
to this theorem was seen by Kannan [22]. After that Rus, Ćirić, Reich, Hardy, and Rogers worked
on this famous principle. Introduced the concept of b-metric space in 1993 and developed a
number of fixed point results for contractive type mappings in b-metric space. Kamran et al. [21]
proposed the notion of extended b-metric space in 2017. For more information in this space
(see [3, 7, 18, 19, 23–25]). Errai et al. [16] recently acquired various Ćirić-Rus-Reich type and
interpolative Hardy-Rogers type contraction mapping results. Recently, many authors have
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been working on combining fixed-point results with visual concepts such as edge preserves,
graph preservence, weak graph preservence of the mappings and involved, transitivity of the
graph, etc. Jachymski [20] initiated use of the graph concepts in the sector of fixed point and
established the new direction in fixed point theory. He generalized the prominent “Banach
contraction principle” for mapping in metric spaces by approaching the graph concept. Inspired
by the significant work of Jachymski [20], more results in this direction were considered by
Beg et al. [9], Bojor [10,11], Samreen and Kamran [26] etc. Later this concept was extended
and generalized by a lot of researchers. Motivated by [16] and [20], we generalize the results
of Errai et al. [16] in an extended b-metric space fit up with a graph. Throughout this paper,
let ∆ represent the diagonal of the product Å×Å where Å ̸= φ. Let us choose Ĝ as a graph,
where the set of vertices are indicated by V (Ĝ) coincide with Å, edges and loops are contained
by E(Ĝ). Thus a pair (V (Ĝ,E(Ĝ)= Ĝ represents a graph. Let Ĝ−1 represents a change in Ĝ i.e.
E(Ĝ−1)= {(v,u)|(u,v) ∈ E(Ĝ)} and G̈ indicates an undirected graph from Ĝ, when the direction
of edges are not considered consequently E(Ĝ)

⋃
E(Ĝ−1)= E(G̈).

2. Definitions and Preliminaries
Definition 2.1 ([12]). Consider a non-empty set Å ̸=φ and s ≥ 1 a given real number. Then a
function db : Å×Å→ [0,∞) is a b-metric space if the following axioms are met for all u,v,w ∈Å.

(b1) db(u,v)= 0 iff u= v,

(b2) db(u,v)= db(v,u),

(b3) db(u,w)≤ s[db(u,v)+db(v,w)].

Then, the pair (Å,db) is b-metric space.

Definition 2.2 ([21]). Consider a function θ : Å×Å → [1,∞) with a non-empty set Å ̸= φ.
A function dθ : Å×Å→ [0,∞) is an extended b-metric space if it satisfies the following axioms
for all u,v,w ∈Å.

(dθ1) dθ(u,v)= 0 iff u= v,

(dθ2) dθ(u,v)= dθ(v,u),

(dθ3) dθ(u,w)≤ θ(u,w)[dθ(u,v)+dθ(v,w)].

So, the pair (Å,dθ) is an extended b-metric space.

Example 2.1. Consider Å = {−2,1,2} and define the function θ : Å×Å → [1,∞) as θ(u,v) =
|u| + |v|. Let dθ(u,v) define as: dθ(1,1) = dθ(2,2) = dθ(−2,−2) = 0, dθ(1,2) = dθ(2,1) = 1

2 and
dθ(−2,1)= dθ(1,−2)= dθ(2,−2)= dθ(−2,2)= 1

3 . We observe that dθ(u,v) clearly satisfy the first
two axioms. So, we have to prove only the last axiom:

dθ(1,2)= 1
2
≤ 3

[
1
3
+ 1

3

]
= θ(1,2)[dθ(1,−2)+dθ(−2,2)],

dθ(1,−2)= 1
3
≤ 3

[
1
2
+ 1

3

]
= θ(1,−2)[dθ(1,2)+dθ(2,−2)],

dθ(2,−2)= 1
3
≤ 4

[
1
2
+ 1

3

]
= θ(2,−2)[dθ(2,1)+dθ(1,−2)].
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Definition 2.3 ([12]). Suppose (Å,dθ) is an extended b-metric space.

(i) A sequence {un} in Å converges to point u if for any ϵ> 0 there is a number N = N(ϵ) ∈N
with dθ(un,u)< ϵ for any n ≥ N and we write lim

n→∞un =u, where u is the unique limit of
the convergent sequence.

(ii) A sequence {un} in u is said to be a Cauchy sequence for any ϵ> 0 there is N = N(ϵ) ∈N
with dθ(un,um)< ϵ for any n,m ≥ N .

(iii) An extended b-metric space (Å,dθ) is said to be complete if we take every Cauchy
sequence in Å which is convergent in Å.

Definition 2.4 ([1]). Let {un} be a sequence in an extended b-metric space (Å,dθ). Then the
maps G,T : Å→ Å and a point u ∈Å possesses a property of coincidence point for the pair G,T
if Gu=Tu.

Definition 2.5 ([6,13]). Let Ψ denote the set of all non-decreasing functions ψ : [0,∞)→ [0,∞)

along with
∞∑

k=1
ψk(t)<∞, for all t> 0 and

(i) ψ(t)< t for any t> 0,

(ii) ψ(0)= 0.

Definition 2.6. Assume Å ̸= φ and (Å,dθ) is an extended b-metric space. Let Ĝ = (V ,E)
represents the graph where the set of a vertices is V (Ĝ) and set of an edge is denoted by
E(Ĝ) (including loops also). Then

(i) A sequence {un} in Å converges to a point u of Å, if for any ϵ > 0 there is a number
N = N(ϵ) ∈ N with dθ(un,u) < ϵ for any n ≥ N imply (un,u) ∈ E(Ĝ) and we write
lim

n→∞un =u, where u is the unique limit of the convergent sequence.

(ii) A sequence {un} in Å is considered a Cauchy sequence for any ϵ> 0 if ∃ N = N(ϵ) ∈N with
dθ(un,un)< ϵ for any n,m ≥ N imply (un,un) ∈ E(Ĝ).

(iii) If we take any Cauchy sequence that is convergent in Å implies convergent in E(Ĝ) then
(Å,dθ) is a complete extended b-metric space.

Throughout the upcoming two lemmas, we assume that θ(u,v)= L ≥ 1 (a finite number).

Lemma 2.1. Consider the function θ : Å×Å → [1,∞) in an extended b-metric space (Å,dθ).
Let Ĝ = (V ,E) represents a graph which contains loops. Suppose {un}, {vn} are two sequences
converging to u, v respectively with (un,vn) ∈ E(Ĝ) and (un,u), (vn,v) ∈ E(Ĝ) then

(i) 1
L2 dθ(u,v)≤ liminf

n→∞ dθ(un,vn)≤ limsup
n→∞

dθ(un,vn)≤ L2dθ(u,v).

Besides, if u= v, then lim
n→∞dθ(un,vn)= 0. Further, for any w in Å which is a loop. Also, we

get

(ii) 1
L dθ(u,w)≤ liminf

n→∞ dθ(un,w)≤ limsup
n→∞

dθ(un,w)≤ Ldθ(u,v).
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Proof. By employing the triangle inequality of an extended b-metric space, we observe that

dθ(u,v)≤ θ(u,v)[dθ(u,un)+dθ(un,v)],

dθ(un,v)≤ θ(un,v)[dθ(un,vn)+dθ(vn,v)]

Thus, we obtain

dθ(u,v)≤ Ldθ(u,un)+L2dθ(un,vn)+L2dθ(vn,v) . (2.1)

Further,

dθ(un,vn)≤ θ(un,vn)[dθ(un,u)+dθ(u,vn)],

dθ(u,vn)≤ θ(u,vn)[dθ(u,v)+dθ(v,vn)].

This implies

dθ(un,vn)≤ Ldθ(un,u)+L2dθ(u,v)+L2dθ(vn,v). (2.2)

Taking the lower limit as n →∞ in (2.1) and upper limit as n →∞ in equation (2.2), we obtain
the first required result. Similarly, by using triangle inequality of an extended b-metric space
we obtain condition (ii) of Lemma 2.1.

Lemma 2.2. Consider a sequence {un} which is defined on an extended b-metric space (Å,dθ)
and satisfies the axioms listed below:

(i) if {un} is a convergent sequence in (Å,dθ), then (un,u) ∈ E(Ĝ).

(ii) dθ(un+1,un)≤ψ(dθ(un,un−1))≤ψ2(dθ(un−1,un−2)≤ . . .≤ψ2(dθ(u1,u0), where ψ ∈Ψ.

Then {un} is a Cauchy sequence in an extended b-metric space.

Proof. Let p ∈ N− {0} and employing the triangle inequality of the extended b-metric space
(Å,dθ) along with condition (ii) of Lemma 2.2, we obtain

dθ(un,un+p)≤ L[dθ(un,un+1)+dθ(un+1,un+p)]

≤ L[dθ(un,un+1)+Ldθ(un+1,un+2)+Ldθ(un+2,un+p)]
...

≤ Lψn[dθ(u0,u1)+L2ψn+1dθ(u0,u1)+ . . .+Lpψn+p−1dθ(u0,u1]

≤ Lp
n+p−1∑

k=1
ψkdθ(u0,u1)

≤ Lp
∞∑

k=n
ψkdθ(u0,u1).

Since we observe that
∞∑

k=0
ψk(t) <∞, for all t > 0 ⇒ lim

n→∞
∞∑

k=n
ψkdθ(u0,u1) = 0 ⇒ for any finite

integer p ≥ 1, lim
n→∞dθ(un,un+p)= 0. Hence {un} is a Cauchy sequence in an extended b-metric

space (Å,dθ).
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3. Main Results
Now, we present here our main results. We denote the set of all functions i.e.,

Ω= {ξ(t)< t, for any t> 0, t ∈ [0,1]}

where ξ is function on [0,∞).

Definition 3.1. Consider an extended b-metric space (Å,dθ) and Ĝ = (V (Ĝ), E(Ĝ)) contains
loops. A self map A on Å is termed as generalized ξ-interpolative Hardy-Rogers type contraction
if it satisfy the following conditions:

(i) There ∃ κ,β,γ,δ ∈ (0,1) such that κ+β+γ+δ> 1 imply κ,β,γ,δ ∈ E(Ĝ).

(ii) θ(u,v)dθ(Au, Av)≤ ξ
(
[dθ(u,v)]κ[dθ(u, Av)]β[dθ(v, A(v))]γ

[
dθ(u, A(v))+dθ(v, A(u))

2

]δ )
for any u,v ∈Å−Fix(A) imply (u,v) ∈ E(Ĝ) where Fix(A)= {u ∈Å : Au=u}, ξ ∈Ω.

Theorem 3.1. Consider an extended b-metric space (Å,dθ) which is complete and Ĝ = (V (Ĝ),
E(Ĝ)) represents a graph containing loops also. Choose a generalized ξ-interpolative Hardy-
Rogers type contraction map A on Å. Assume that ∃ u ∈Å with dθ(u, Au)< 1 imply A, possesses
a fixed point in Å and (u,u) ∈ E(Ĝ).

Proof. Choose a sequence {un} defined by u0 = u and un+1 = Aun for any integer n. If there
exists n0 with un0 =un0+1 then un0 is a fixed point of A. Suppose un+1 = A(un), for all n≥ 0 in
of Definition 3.1 we obtain

dθ(un,un+1)≤ θ(un,un+1)dθ(un,un+1)

≤ ξ
(
[dθ(un−1,un)]κ[dθ(un−1,un)]β[dθ(un,un+1)]γ

[
dθ(un−1,un+1)+dθ(un,un)

2

]δ)
≤ ξ

(
[dθ(un−1,un)]κ+β[dθ(un,un+1)]γ

[
dθ(un−1,un)+dθ(un,un)

2

]δ)
. (3.1)

By employing the condition ξ(t)< t, for all t> 0, we have

dθ(un,un+1)<
(
[dθ(un−1,un)]κ+β[dθ(un,un+1)]γ

[
dθ(un−1,un)+dθ(un,un)

2

]δ)
. (3.2)

If dθ(un−1,un)< dθ(un,un+1) for some n≥ 1, imply
dθ(un−1,un)+dθ(un,un)

2
≤ dθ(un,un+1). (3.3)

From (3.2), we get

dθ(un,un+1)< [dθ(un−1,un)]κ+β[dθ(un,un+1)]γ+δ. (3.4)

So,

dθ(un,un+1)1−γ−δ < [dθ(un−1,un)]κ+β . (3.5)

This implies

dθ(un−1,un)1−γ−δ < [dθ(un−1,un]κ+β . (3.6)
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From (3.6) we arrive at contradiction i.e. 1 − γ − δ < κ + β and dθ(un−1,un) < 1. Thus,
dθ(un−1,un) ≥ 1, dθ(un,un+1) for all n ≥ 1 and dθ(un−1,un)+dθ(un,un)

2 ≤ dθ(un−1,un). Using (3.2)
we obtain

dθ(un−1,un)1−δ < [dθ(un−1,un)]κ+β+γ, for all n≥ 1 . (3.7)

Also, dθ(u0,u1) < 1 implies there exists a number k ∈ (0,1) such that dθ(u0,u1) ≤ 1 and
k = dθ(u0,u1)+1

2 .

From (3.7), we get dθ(u1,u2)≤ dθ(u0,u1)
κ+β+γ

1−δ ≤ k
κ+β+γ

1−δ . Suppose there exists a real number ℘n,
for all n≥ 0. From (3.7) we obtain

dθ(un+1,un+2)1−δ < [dθ(un,un+1)]κ+β+γ ≤ k(κ+β+γ)℘(n) . (3.8)

Thus, we obtain

dθ(un+1,un+2)< k(κ+β+γ)℘(n+1) . (3.9)

Let ℘(n+1)=
(
κ+β+γ

1−δ
)
℘(n), for all n≥ 1 such that ℘(0)= 1.

Also, κ+β+γ
1−δ > 1 with lim

n→∞℘(n)=∞. This implies
∞∑

n=0
dθ(un,un+1)≤

∞∑
n=0

k℘(n) . (3.10)

Thus {un} represents a cauchy sequence in (Å,dθ) converging to u in Å⇒ (u,u) ∈ E(Ĝ). Let us
suppose that Au ̸=u, then by (ii) of Definition 3.1

θ(un+1,un+1)dθ(un+1, Au)

≤ ξ
(
[dθ(un,u)]κ[dθ(un,un+1)]γ[dθ(u, Au]γ

[
dθ(un, Au)+dθ(u,un)

2

]δ)
<

(
[dθ(un,u)]κ[dθ(un,un+1)]β[dθ(u, Au]γ

[
dθ(un, Au)+dθ(u,un+1)

2

]δ)
. (3.11)

Letting n→∞, we obtain dθ(u, Au)<0. Thus dθ(u, Au)=0, which is contradiction so Au=u.

Example 3.1. Let Å = [0,3] be a non-empty set endowed with an extended b-metric space
dθ : Å×Å→ [0,∞) defined by

dθ(u,v)=


0, if u= v
2, if u,v ∈ [0,1] and u ̸= v
3, otherwise

where θ : Å×Å → [1,∞) defined as θ(u,v) = u+v along with Graph, i.e., [0,1] = V (Å)E(Ĝ) =
{(u,v)| ∈Å×Å}. Consider the map, A : Å→Å defined as

A(u)=
{

1
3 , u ∈ [0,1]
u
3 , u ∈ (1,5)

and the function ξ(t) = 2
7u2 , for all t ∈ [0,∞). Choose κ = 0.7, β = 0.6, γ = 0.8, δ = 0.5 and

dθ(Au, Av)≤ 2, θ(u,v)≤ 6, for all u,v ∈Å.

The following cases are under consideration:
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Case I: If u,v in [0,1] or u=v, for all u,v in Å, we obtain ξ(t) is non negative, for all t ∈ [0,∞)
also dθ(u,v) = 0, for all u,v ∈ [0,1] or u = v, for all u,v in [0,3]. Clearly, Cases (i) and (ii) of
Definition 3.1 are fulfilled.

Case II: If u,v in (1,3] and v ̸=u, we get

θ(u,v)dθ(Au, Av)≤ ξ
(
[dθ(u,v)]κ[dθ(u, Au)]β[dθ(v, Av)]γ

[
dθ(u, Av)+dθ(v, Au)

2

]δ)
= ξ(2κ+β+γ+δ)= 2

7
25.2 ≥ 12 . (3.12)

Case III: If u ∈ [0,1] and v ∈ (1,3], u ̸= 1
3 , we get

θ(u,v)dθ(Au, Av)≤ ξ
(
[dθ(u,v)]κ[dθ(u, Au)]β[dθ(v, Av)]γ

[
dθ(u, Av)+dθ(v, Au)

2

]δ)
= ξ(3κ+γ.2β−δ.3κ+γ.5δ)= 2

7
.33.20.2.5≥ 12 . (3.13)

Case IV: If u in (1,3] and v in [0,1], v ̸= 1
3 , we get

θ(u,v)dθ(Au, Av)≤ ξ
(
[dθ(u,v)]κ[dθ(u, Au)]β[dθ(v, Av)]γ

[
dθ(u, Av)+dθ(v, Au)

2

]δ)
= ξ(3κ+γ.2β−δ.5δ)= 2

7
.32.6.20.6.5≥ 12 . (3.14)

Hence in all the cases, the map A and distance function dθ satisfies generalized ξ-interpolative
Hardy-Rogers type contraction, for all u,v ∈ Å − 1

3 . Consequently, all the conditions of
Theorem 3.1 are satisfied so A possesses a fixed point say u= 1

3 ≈ 0.33 as shown Figure 1.

Figure 1. Graph of a fixed point for A
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If we take ξ(u)= κu such that κ ∈ (0,1) in Theorem 3.1, we obtain the following corollary:

Corollary 3.1. Consider an extended b-metric space (Å,dθ) which is complete and Ĝ= (V (Ĝ),
E(Ĝ)) represents a graph containing loops also. Consider a map A on Å satisfied the following
conditions:

(i) There exists κ,β,γ,δ ∈ (0,1) such that κ+β+γ+δ> 1 imply κ,β,γ,δ ∈ E(Ĝ).

(ii) θ(u,v)dθ(Au, Av)≤ ξ
(
[dθ(u,v)]κ[dθ(u, Av)]β[dθ(v, A(v))]γ

[dθ(u, A(v))+dθ(v, A(u))
2

]δ)
for any u,v ∈Å−Fix(A) imply (u,v) ∈ E(Ĝ) where Fix(A)= {u ∈Å : Au=u}, ξ ∈Ω.

Definition 3.2. Let (Å,dθ) be an extended b-metric space that represents a graph Ĝ =
(V (Ĝ),E(Ĝ)) containing loops. For these self maps A, B on Å are termed as generalized b-
interpolative Hardy-Rogers type contraction if it satisfies the following conditions:

(i) There exists κ,β,γ ∈ (0,1) such that κ+β+γ> 1 imply κ,β,γ ∈ E(Ĝ).

(ii) θ(u,u)dθ(Au, Av)

≤ ξ
(
[dθ(Bu,Bv)]κ[dθ(Bu, Au)]β[dθ(Bv, Av)]γ

[
dθ(Bu, Av)+dθ(Bv, Au)

2θ

]1−κ−β−γ)
for any u,v ∈ Å implies (u,v) ∈ E(G) such that Au ̸= Bu, Av ̸= Bv, and Bu ̸= Bv and
ψ ∈Ψ.

Theorem 3.2. Consider an extended b-metric space (Å,dθ) which is complete that represents a
graph Ĝ= (V (Ĝ),E(Ĝ)) containing loops. Consider a generalized b-interpolative Hardy-Rogers
type contraction map A on Å with

(i) AÅ⊆ BÅ.

(ii) BÅ is closed.

Then A and B possess a coincidence point.

Proof. Consider a point u ∈Å, since AÅ⊆ BÅ, we define a sequence {un} such that

u0 =u and Bun = Aun, for all integer n. (3.15)

Consider a sequence {un} defined by u0 =u and Bun+1 = Aun for any integer n. If there exists
n ∈ {0,1,2, . . .} with Aun = Bun then un is a coincidence point. Let us suppose that Aun ̸= Bun,
for all n. From (ii) of Definition 3.2 we obtain

dθ(Aun+1, Aun)≤ θ(un+1,un)dθ(Aun+1, Aun)

≤ψ
(
[dθ(Bun+1,Bun)]κ[dθB(un+1, Aun+1)]β[dθB(un, Aun)]γ

.
[

dθ(Bun+1, Aun)+dθB(un, Aun+1)
2

]1−κ−β−γ)
=ψ

(
[dθ(Aun, Aun−1)]κ[dθ(Aun, Aun+1)]β[dθ(Aun−1, Aun)]γ
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.
[

dθ(Aun, Aun)+dθ(Aun−1,un+1)
2

]1−κ−β−γ)
≤ψ

(
[dθ(Aun, Aun−1)]κ+γ[dθ(Aun,un+1)]β

.
[

dθ(Aun−1, Aun)+dθ(Aun, Aun+1)
2

]1−κ−β−γ)
. (3.16)

By employing the condition ψ(t)< t for any t> 0, we have

dθ(Aun+1, Aun)≤
(
[dθ(Aun, Aun−1)]κ+γ[dθ(Aun,un+1)]β

.
[

dθ(Aun−1, Aun)+dθ(Aun, Aun+1)
2

]1−κ−β−γ)
. (3.17)

If dθ(Aun+1, Aun)< dθ(Aun, Aun+1) for some n≥ 1. Then
dθ(Aun−1, Aun)+dθ(Aun, Aun+1)

2
≤ dθ(Aun, Aun+1). (3.18)

Thus, from (3.17) we obtain

dθ(Aun+1, Aun)≤ [dθ(Aun, Aun−1)]κ+γ[dθ(Aun, Aun+1)]1−κ−γ . (3.19)

Further,

dθ(Aun+1, Aun)κ+γ ≤ [dθ(Aun, Aun−1)]κ+γ . (3.20)

Thus, we obtain

dθ(Aun+1, Aun)≤ [dθ(Aun, Aun−1)] (3.21)

which is contradiction. Thus

dθ(Aun+1, Aun)≤ [dθ(Aun, Aun−1)], for all n≥ 1. (3.22)

Thus, the positive sequence {dθ(Aun+1, Aun)} is monotone decreasing sequence so there exists
h ≥ 0 such that lim

n→∞dθ(Aun+1, Aun)= h. By using (3.17), (3.18) and (3.22) we conclude

dθ(Aun+1, Aun)≤ [dθ(Aun, Aun−1)]κ+γ[dθ(Aun, Aun−1)]β[dθ(Aun, Aun−1)]1−κ−γ

= dθ(Aun, Aun−1) . (3.23)

Thus from (3.17) and with non-decreasing character of ψ, we obtain

dθ(Aun+1, Aun)≤ψdθ(Aun, Aun−1), (3.24)

dθ(Aun+1, Aun)≤ψdθ(Aun, Aun−1)≤ψ2dθ(Aun−1, Aun−2)≤ . . .≤ψndθ(Au1, Au0) . (3.25)

As n→∞ in (3.26) and with using the fact lim
n→∞ψ

n(t)= 0, we conclude that

lim
n→∞dθ(Aun+1, Aun)= 0 . (3.26)

Thus by Lemma 2.2 {Aun} is Cauchy sequence in an extended b-metric space and consequently
B(un) is also a is Cauchy sequence in same so there exists t ∈Å imply (t,t) ∈ E(Ĝ) such that

lim
n→∞dθ(Aun,t)= lim

n→∞dθ(Bun+1,t)= 0 . (3.27)

As t ∈ B(Å), there exists v ∈ Å such that t = Bv. Suppose v is coincidence point of A and B.

Communications in Mathematics and Applications, Vol. 13, No. 3, pp. 955–971, 2022



964 Generalized Contractions on Extended b-Metric Space Endowed With a Graph: N. Kumar and S. Mehra

Further, we claim that Bv= Av, we have

dθ(Aun, Av)≤ θ(Aun, Av)dθ(Aun, Av)

≤ψ
(
[dθ(Bun,Bv)]κ[dθ(Bun, Aun)]β[dθ(Bv, Av)]γ

.
[

dθ(Bun, Av)+dθ(Bv, Aun)
2θ

]1−κ−β−γ)
<

(
[dθ(Bun,Bv)]κ[dθ(Bun, Aun)]β[dθ(Bv, Av)]γ

.
[

dθ(Bun, Av)+dθ(Bv, Aun)
2θ

]1−κ−β−γ)
. (3.28)

Thus
1
θ

dθ(t, Av)≤
(
[θdθ(t,Bv)]κ[θ2dθB(t,t)]β[dθ(Bv, Av)]γ

[
dθ(t, Av)+dθB(v,t)

2

]1−κ−β−γ)
= 0.

which is a contradiction. Thus Av= t= Bv, i.e., t is the coincidence point of A and B.

Example 3.2. Consider a graph Ĝ= (V (Ĝ),E(Ĝ)) which contains loops. Consider a set Å= [0,∞)
and dθ : Å×Å→ [0,∞) defined by

dθ(u,v)=
{

(u+v)2, if u ̸= v,
0, if u= v.

Then (Å,dθ) is complete extended b-metric space. Define the self maps A and B on Å as
B(u)=u2, for all u ∈Å and

A(u)=
{

1, u ∈ [0,2],
e−u u ∈ (2,∞).

A is b-interpolative Hardy-Rogers type contraction map with κ= 0.3, β= 0.6, γ= 0.4, ψ(t)= 3
5t2 ,

for all t ∈ [0,∞). Now, we discuss the following cases:

Case I: If u,v in [0,2] or u= v for all u ∈ [0,∞), this is trivial.

Case II: If u in [0,2]−1 and v in (2,∞) then

dθ(Au, Av)≤ θ(Au, Av)dθ(Au, Av)

≤ψ
(
[dθ(Bu,Bv)]κ[dθ(Bu, Au)]β[dθ(Bv, Av)]γ

.
[

dθ(Bu, Av)+dθ(Bv, Au)
2θ

]1−κ−β−γ)
=

(
(u2 +v2)2κ(u2 +1)2β(v2 + e−v)2γ

[
(u2 + e−u)2 + (v2 +1)2

4

]1−κ−β−γ)
≥ψ

(
42κ12β42γ

[
52

4

]1−κ−β−γ)
=ψ(41.75−0.6)
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= 3.43.45−2.2 ≥ (1+ e−2)2, (3.29)

where dθ(Au, Av)= (1+ e−v)2 ≤ (1+ e−2)2.
Thus

θ(Au, Av)dθ(Au, Av)≤ψ
(
[dθ(Bu,Bv)]κ[dθ(Bu, Au)]β[dθ(Bv, Av)]γ

·
[

dθ(Bu, Av)+dθ(Bv, Au)
2θ

]1−κ−β−γ)
. (3.30)

Case III: If u ∈ (2,∞) and v ∈ [0,2]−1, we obtain

dθ(Au, Av)= (1+ e−v)2 ≤ (1+ e−2)2, (3.31)

dθ(Au, Av)≤ θ(Au, Av)dθ(Au, Av)

≤ψ
(
[dθ(Bu,Bv)]κ[dθ(Bu, Au)]β[dθ(Bv, Av)]γ[
dθ(Bu, Av)+dθ(Bv, Au)

2θ

]1−κ−β−γ)
=

(
(u2 +v2)2κ(u2 + e−u)2β(v2 +1)2γ

[
(u2 +1)2 + (v2 + e−u)2)

4

]1−κ−β−γ)
≥ψ

(
42κ42β12γ

[
52

4

]1−κ−β−γ)
= 3.44.25−2.2 ≥ (1+ e−2)2. (3.32)

Thus

θ(Au, Av)dθ(Au, Av)≤ψ
(
[dθ(Bu,Bv)]κ[dθ(Bu, Au)]β[dθ(Bv, Av)]γ

·
[

dθ(Bu, Av)+dθ(Bv, Au)
2θ

]1−κ−β−γ)
. (3.33)

Case IV: If u,v in (2,∞) and u ̸= v, we get

dθ(Au, Av)= (e−u+ e−v)2 ≤ 2e−4, (3.34)

dθ(Au, Av)≤ θ(Au, Av)dθ(Au, Av)

≤ψ
(
[dθ(Bu,Bv)]α[dθ(Bu, Au)]β[dθ(Bv, Av)]γ

·
[

dθ(Bu, Av)+dθ(Bv, Au)
2θ

]1−κ−β−γ)
=

(
(u2 +v2)2α(u2 + e−u)2β(v2 + e−v)2γ

[
(u2 + e−v)2 + (v2 + e−u)2)

4

]1−κ−β−γ)
≥ψ

(
82κ42β42γ

[
42 +42

4

]1−κ−β−γ)
= 3

5
29.8 ≥ 2e−4 . (3.35)
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This implies

θ(Au, Av)dθ(Au, Av)≤ψ
(
[dθ(Bu,Bv)]κ[dθ(Bu, Au)]β[dθ(Bv, Av)]γ

·
[

dθ(Bu, Av)+dθ(Bv, Au)
2θ

]1−κ−β−γ)
(3.36)

for all u,v ∈Å−1, A and B met Definition 3.2. Further 1 is the coincidence point of A and B.

Definition 3.3. Let (Å,dθ) be an extended b-metric space and Ĝ= (V (Ĝ),E(Ĝ)) represents a
graph which contains loops. For a self map A on Å is said to be generalized interpolative weakly
contractive mapping type Ćirić-Reich-Rus, if it satisfied the following conditions:

(i) There exists κ,β ∈ (0,1) such that imply κ,β ∈ E(G).

(ii) θ(u,v)ζ(dθ(Au, Av))≤ ζ(S(u,v))−φ(S(u,v))

for any u,v ∈Å−Fix(A) imply (u,v) ∈ E(G), where Fix(A)= {u ∈Å : Au=u}.

S(u,v)= [dθ(u,v)]κ[dθ(u, Au)]β[dθ(v, Av)]1−κ−β and φ,ζ are the functions on [0,∞) which
are lower semi continuous and continuous monotone nondecreasing function respectively
and φ(t), ζ(t)= 0⇔ t= 0.

Theorem 3.3. Consider an extended b-metric space (Å,dθ) which is complete that represents
graph Ĝ= (V (Ĝ),E(Ĝ)) containing loops. If a self map A on Å satisfied generalized interpolative
weakly contractive mapping type Ćirić-Reich-Rus, then A has a fixed point.

Proof. Choose a point u0 along with a sequence {un} given by u0 =u and un+1 = Aun for n in
N

⋃
{0}. If there exists n0 with un0 =un0+1 then un0 is a fixed point of A. Replaces un =u and

v=un−1 in (ii) of Definition 3.3, we obtain

ζ(dθ(un+1,un))≤ θ(un+1,un)ζ(dθ(un+1,un)) . (3.37)

Now

ζ([dθ(un,un−1)]κ[dθ(un,un+1)]β[dθ(un−1,un)]1−κ−β)

−φ([dθ(un,un−1)]κ[dθ(un,un+1)]β[dθ(un−1,un)]1−κ−β) .

This implies

θ(un+1,un)ζ(dθ(un+1,un))

≤ ζ([dθ(un,un−1)]1−κ[dθ(un,un+1)]β)−φ([dθ(un,un−1)]1−κ[dθ(un,un+1)]β). (3.38)

Using the axiom of ζ and (3.37), we obtain

dθ(un,un−1)≤ ([dθ(un,un−1)]1−κ[dθ(un,un+1)]β). (3.39)
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This implies

[dθ(un+1,un)]1−κ ≤ [dθ(un,un−1)]1−κ . (3.40)

So, we can write

[dθ(un+1,un)]≤ [dθ(un,un−1)]1−κ, for all n≥ 1. (3.41)

Thus the positive sequence {dθ(un+1,un)} is a decreasing sequence consequently there exists
h ≥ 0 such that lim

n→∞dθ(un+1,un)= h. As n →∞ in (3.38) and using (3.37), we get

ζ(h)≤ ζ(h)−φ(h) . (3.42)

We conclude that h = 0 consequently

lim
n→∞dθ(un,un−1)= 0 . (3.43)

We observe that {un} is a Cauchy sequence. If not then there exists a real number ϵ≥ 0 for all
i ∈N, and ni, mi ≥ i such that

dθ(umi ,uni)≥ ϵ and dθ(umi−1,umi)< ϵ . (3.44)

Substituting u=uni−1 and v=umi−1 imply (u,v) ∈ inE(Ĝ) (3.35) and using (ii) of Definition 3.3
and using (3.42) we write

θ(u,v)ζ(ϵ)≤ θ(u,v)ζ(dθ(Au, Av)≤ ζ(S(u,v))−φ(S(u,v)), (3.45)

S(umi−1,uni−1)[dθ(umi−1,uni−1)]κ[dθ(umi−1,umi)]
β[dθ(uni−1,uni)]

1−κ−β (3.46)

and

dθ(umi−1,uni−1)≤ dθ(umi−1,umi)+dθ(uni ,uni−1)≤ ϵ+dθ(uni−1,uni−1) (3.47)

As n→∞ and using (3.43), we obtain

lim
n→∞S(umi−1,uni−1)= 0 . (3.48)

This implies

θ(u,v)ζ(ϵ)≤ ζ(0)−φ(0)= 0 . (3.49)

This leads to a contradiction since θ(u,v)ζ(ϵ)> 0. So {un} is a cauchy sequence along with (Å,dθ)
so there exists t ∈ Å imply (t,t) in E(Ĝ) such that lim

n→∞dθ(un,t) = 0 and let us assume that
At ̸= t, we obtain

θ(un,u)ζ(dθ(un+1, At))≤ ζ(S(un,t))−φ(S(un,t), for all n (3.50)

where

S(un,t)= [dθ(un,t)]κ[dθ(un,un+1)]β[(dθ)(t, At)]1−κ−β . (3.51)

Using (3.43), we get

S(un,t)= 0 . (3.52)

As n→∞ in (3.50), we get

θ(un,v)ζ(dθ(n+1, At))≤ ζ(S(n,t))−φ(S(n,t))= 0 . (3.53)

This leads us to a contradiction so At= t.
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Example 3.3. Let Ĝ= (V (Ĝ),E(Ĝ)) represents a graph, where V (Ĝ)= [0,5] and E(Ĝ)= [(u,v) :
u,v ∈ [0,5]] which contains loops. Consider a set Å = [0,5] and a function dθ : Å×Å → [0,∞)
defined as:

dθ(u,v)=


0, if u= v,
5, if u,v ∈ [0,1],
3, otherwise

and θ : Å×Å → [1,∞) = 1+ log
(
1+ u+v

50

)
. Then (Å,dθ) is a complete extended b-metric space.

Define the self map A on Å as:

A(u)=
{

0, u ∈ [0,1),
3, u ∈ [1,5).

Consider t2 = ζ(t) and t
3 =φ(t) be two functions defined, for all t ∈ [0,∞), takes κ= 0.4, β= 0.3,

then the following cases arises:

Case I: If u= v or u,v ∈ (0,1) or u,v ∈ [1,5]−3 imply (u,v) ∈ E(Ĝ) such that u ̸=u, this is true.

Case II: If u in (0,1) and v in [1,5]−3 imply (u,v) ∈ E(Ĝ) we obtain

ζ(dθ(Au, Av))= ζ(dθ(0,3))= ζ(3)= 9, (3.54)

θ(u,v)≤ 1.079, (3.55)

ζ([dθ(u,v)]κ[dθ(u, Au)]β[dθ(v, Av)]1−κ−β))−φ([dθ(u,v)]κ[dθ(u, Au)]β[dθ(v, Av)]1−κ−β)

=
(
5
3

)κ[
9.

(
5
3

)κ
−1

]
≥ 9= ζ(3)= ζ(dθ(0,3)). (3.56)

Case III: If v ∈ (0,1) and u ∈ [1,5]−3 imply (u,v) ∈ E(Ĝ) we observe

ζ(dθ(Au, Av)= ζ(dθ(3,0))= 9, (3.57)

ζ([dθ(u,v)]κ[dθ(u, Au)]β[dθ(v, Av)]1−κ−β))−φ([dθ(u,v)]κ[dθ(u, Au)]β[dθ(v, Av)]1−κ−β)

=
(
3
5

)κ+β[
25.

(
3
5

)κ+β
− 5

3

]
≥ 9= ζ(3)= ζ(dθ(Au, Av)). (3.58)

Hence all the cases:

θ(u,v)ζ(dθ(Au, Av))≤ ζ(S(u,v))−φ(S(u,v)), (3.59)

for any u,v ∈Å− [0,5] imply (u,v) ∈ E(G) . (3.60)

Thus, we observe A has two fixed points, 0 and 3.

Corollary 3.2. Let Ĝ= (V (Ĝ),E(Ĝ)) be a graph containing loops and (Å,dθ) is complete extended
b-metric space. Consider a map A on Å that meets the following requirements:

(i) For κ,β in (0,1) imply κ,β ∈ E(Ĝ).

(ii) θ(u,v)dθ(Au, Av)
≤ [dθ(u,v)]κ[dθ(u, Au)]β[dθ(v, Av]1−κ−β−φ([dθ(u,v)]κ[dθ(u, Au)]β[dθ(v, Av]1−κ−β,
for all v,u ∈Å imply (u,v) in E(Ĝ) and Au ̸=u, Av ̸=v, where φ is same as Theorem 3.3
then A possesses the fixed point.
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Figure 2. Graph of a fixed point for A

Using the φ(t)= (1−µ)t for κ,β ∈ (0,1) in Corollary 3.2 we get the following corollary:

Corollary 3.3. Let Ĝ= (V (Ĝ),E(Ĝ)) be a graph containing loops and (Å,dθ) is complete extended
b-metric space. Consider a map A on Å that meets the following requirements:

(i) For κ,β ∈ (0,1) imply κ,β ∈ E(Ĝ).

(ii) θ(u,v)dθ(Au, Av)≤µ[dθ(u,v)]κ[dθ(u, Au)]β[dθ(v, Av)]1−κ−β,
for all u,v ∈Å imply (u,v) ∈ E(Ĝ) and Au ̸=u, Av ̸= v.

4. Conclusion
In this paper, we generalized the concepts of Errai et al. [16] in the framework of complete
extended b-metric space endowed with a graph. We also showed a variety of cases are connected
to our findings. Our findings are critical in the existing literature on fixed point theory.
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