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Abstract. We consider the co-axial cylindrical structure as a composite submerged solid cylinder above
a special bottom undulation, i.e., a circular plate at the impermeable horizontal bottom. We consider
the diffraction problem of the proposed structure in water of finite depth. This diffraction problem can
be expressed as a wave energy converter. The variables of separation and eigenfunction expansion
methods are utilized to determine the analytical solutions for the diffraction problem in their identified
sub-domains. By using the methods of expansion of eigenfunction and the orthogonality of Bessel
functions to the expression of the diffracted velocity potentials. We achieve a system of linear equations
after suitably truncated to the obtain infinite series. This work may be helpful to the wave designer to
design appropriate device so that one can extract maximum wave energy. The created wave energy
may be used in many applications of conventional energy.
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1. Introduction
The interaction of water waves due to the different geometrical shapes have been investigated
by a number of researchers on basis of the linear water waves theory. Here, the current study is
also affiliated to the water waves diffraction by composite cylinder and bottom-mounted cylinder.
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We consider a semi-submerged composite cylindrical structure in presence of coaxial bottom-
mounted cylindrical plate in a uniform water depth. This proposed device can be considered a
one of the wave energy device. Appropriate positioning of this wave device help us to generate
maximum energy. Such wave device assumes vital acceptation in the application of water waves.
An exact prognosis of the exerted wave power by the proposed device is prime importance in
order to frame most suitable energy device.

In this research field, there are few related works have been done by a number of researchers.
Bhatta and Rahman [2] evaluated the wave forces corresponding to the translational and
rotational motions of the cylinder in water having finite depth. Garrett [3] has determined
and shown the various forces on basis of Galerkin’s method for the solution of the problem
numerically. Hassan and Bora [4] discussed the wave loads due to two coaxial cylinders
demonstrated the wave forces for various parameters of the device. Rahman and Bhatta [6]
investigated non linear wave forces exerted by cylinders on basis of theorem of Graf’s addition of
Bessel functions. Shen et al. [7] investigated wave loads of a rectangular structure under bottom
sill. Siddorn and Taylor [8] discussed the encounter of waves of water with a series of cylinders
and evaluated wave forces, hydrodynamic coefficients to the cylinders Wu et al. [9,10] discussed
the water wave problems for two solid cylinders and determined the respective potentials with
the help of the expansion method of eigenfunction and discuss the effect of the caisson. The
radiation and diffraction forces were shown for different ratios of radii of cylinders. Zhang et
al. [11] discuss the water wave problems by two cylinders in uniform depth and determine the
solution of the problems, and evaluated radiation force under some particular cases. As far as a
composite coaxial floating cylinder above a bottom-mounted cylinder placed in uniform water
depth is exercised, the authors did not find any analysis that has used an analytical solution
based on separation of variable and eigenfunction expansion methods. Since the proposed device
can be assume as one of the wave energy device. The derived solutions of the proposed problem
of diffraction for the coaxial composite cylinder above a bottom mounted cylinder and it is
assumed to help the designer and engineer for selecting physical variables of the proposed
model, so that one can extract maximum energy.

2. Formulation of the Problem
Let us consider the motion is irrotational and the fluid incompressible then we formulate
this diffraction problem with the help of the theory of linear water waves. The depth of the
ocean assume to a height h. The system of Cartesian co-ordinate is identified along with the
undisturbed free surface is z = 0 and z-axis measured positive in the upwards direction. The
propagating wave is along the direction of the x-axis. Let us consider the radii of cylinders are
R′ and R, as shown in Figure 1. The drafts of the cylinders are denoted by h1, h2 and h3.

Let the velocity potential to be Φ(r,θ, z, t)=ℜ[φ(r,θ, z) e−iωt] here, ω is denoting the angular
frequency, Re stands the real part, and the spatial part φ(r,θ, z) obeys Laplace’s equation:

1
r
∂

∂r

(
r
∂φ

∂r

)
+ 1

r2
∂2φ

∂θ2 + ∂2φ

∂z2 = 0. (2.1)
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The potential φ is divided into the diffracted φd and the incident potential φi due to the
consideration of diffraction problem only.

Since the fluid domain is fractionated into four subdomains, so let the diffraction potentials
be φ1, φ2, φ3 and φ4 in the identified sub-domains I, II, III and IV, respectively as exhibit in
Figure 1. The potential of incident wave having angular frequency ω and of unit amplitude,
coming from the positive x-direction is written by (MacCamy and Fuchs [5])

φi =− ig
ω

coshk(z+h)
cosh(kh)

∞∑
n=0

µnJn(kr)cosnθ, (2.2)

where i =p−1, g are purely imaginary number and the gravitational acceleration, respectively,
k denotes the wavenumber which to be obtained by using the dispersion equation ω2 =
gk tanh(k ·h); Jn(·) be Bessel function of order n, whereas µn can be expressed as

µn =
{

2in n > 0,
1 n = 0.

(2.3)

Figure 1. Diagram of the device

3. Boundary-value Problems
We split the whole fluid domain of the proposed device into four sub-domains as identified.
Therefore, we can formulate the four boundary value problems as follows:
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The total diffracted potential Φ is revealed as Φ= Re[φ(r,θ, z)e−iωt], here φ is the spatial part
with 0≤ θ < 2π and satisfy the following governing equation:

∇2φ= 0; (0< r <∞, −h < z < 0, or, −h1 < z < 0, or, −h < z <−h2, −h3 < z <−h2). (3.1)

3.1 The Boundary-Value Problem for Sub-domain I
For this particular sub-domain the diffraction potential Φ1 is revealed in the form of Φ =
Re[φ1(r,θ, z)e−iωt], heree φ1 is the spatial part along with 0 ≤ θ < 2π, executes the following
boundary-value problem:

∇2φ1 = 0 ; (R < r <∞, −h < z < 0 ), (3.2)

∂φ1

∂z
− ω2

g
φ1 = 0 ; (at z = 0), (3.3)

∂φ1

∂z
= 0 ; (at z =−h), (3.4)

∂(φ1 +φi)
∂r

= 0 ; (−h2 < z <−h1, at r = R). (3.5)

The condition which is called far-field condition which is valid in the sub-domain I only as it is
unbounded sub-domain and given by

lim
r→∞

p
r
(
∂φ1

∂r
− ikφ1

)
= 0. (3.6)

3.2 The Boundary-Value Problem for Sub-domain II
For this sub-domain the diffracted velocity potential Φ2 with 0 ≤ θ ≤ 2π can be revealed as
Φ=Re[φ2(r,θ, z)e−iωt], here the spatial part φ2 which excutes to the boundary-value problem:

∇2φ2 = 0 ; (R′ < r < R, −h1 < z < 0), (3.7)

∂φ2

∂z
− ω2

g
φ2 = 0 ; (at z = 0), (3.8)

∂φ2

∂z
= 0 ; (R′ < r < R, at z =−h1), (3.9)

∂(φ2 +φi)
∂r

= 0 ; (−h1 < z < 0, at r = R′). (3.10)

3.3 The Boundary-Value Problem for Sub-domain III
For this sub-domain the diffracted velocity potential Φ3 along with 0 ≤ θ ≤ 2π is revealed as
Φ= Re[φ3(r,θ, z)e−iωt], here φ3 is the spatial part which executes the following boundary-value
problem:

∇2φ3 = 0 ; (R′ < r < R, −h < z <−h2), (3.11)
∂φ3

∂z
= 0 ; (R′ < r < R, at z =−h), (3.12)

∂φ3

∂z
= 0 ; (at z =−h2 R′ < r < R), (3.13)
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∂(φ3 +φi)
∂r

= 0 ; (−h < z <−h3, at r = R′). (3.14)

3.4 The Boundary-Value Problem for Sub-domain IV
As same way, for this sub-domain also, the diffracted potential Φ4 is revealed as Φ =
Re[φ4(r,θ, z)e−iωt], here also φ4 with 0≤ θ < 2π which executes to the boundary-value problem
as:

∇2φ4 = 0 ; (0< r < R′, −h3 < z <−h2), (3.15)
∂φ4

∂z
= 0 ; (0< r < R′, at z =−h3), (3.16)

∂φ4

∂z
= 0 ; (0< r < R′, at z =−h2). (3.17)

We can find the solutions of the respective boundary-value problems in each specified sub-
domain. In the above equations, φ1, φ2, φ3 and φ4 are representing the respective diffraction
potentials in sub-domains I, II, III and IV, respectively.

4. Solution to the Boundary Value Problems
Diffracted Potentials
With the help of the method of variables of separation in each sub-domain, we can determine the
diffracted potentials in respective sub-domains by utilizing variables of separation method. Since
the obtained expressions are in the infinite series of orthogonal functions. As the continuity
of pressure and fluid flow must be preserved, so we apply this continuity at the interface of
physical and virtual boundary between the sub-domains, in order to use it, apply the matching
conditions at the interface between the virtual and physical boundary at r = R and r = R′,
respectively. Hence, the expression of diffraction potentials in respective sub-domain from Wu
et al. [10], can be given by

φ1 =
∞∑

p=0

∞∑
q=1

Ap,q
Zp(αqr)
Zp(αqR)

cos[αq(z+h)]cos pθ, (4.1)

φ2 =−φi +
∞∑

p=0

∞∑
q=1

[
Bp,q

Rp(βqr)
Rp(βqR′)

+Cp,q
Sp(βqr)

Sp(βqR′)

]
cos[βq(z+h1)]cos pθ, (4.2)

φ3 =−φi +
∞∑

p=0

[
Dp,1rp +

∞∑
q=2

Dp,q
Ip(γqr)

Ip(γqR′)
+

∞∑
q=2

Ep,q
Kp(γqr)

Kp(γqR′)

]
cos[γq(z+h)]cos pθ,

(4.3)

φ4 =−φi +
∞∑

p=0

[
Fp,1rp +

∞∑
q=2

Fp,q
Ip(ηqr)

Ip(ηqR′)
cos[ηq(z+h2)]

]
cos pθ, (4.4)

where Ap,q, Bp,q, Cp,q, Dp,q, Ep,q and Fp,q are the undetermined coefficients and αn, βn and
γn are determined from the following dispersion relations which are given as:{

αq =−ik, ω2 = gk tanh(kh), q = 1,
ω2 =−gαq tan(αqh), q = 2,3, . . . ,

(4.5)
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{
βq =−ik′, ω2 = gk′ tanh(k′h1), q = 1,
ω2 =−gβq tan(βqh1), q = 2,3, . . . ,

(4.6)

γq = (q−1)π
h−h2

, q = 1,2,3, . . . , (4.7)

and

ηq = (q−1)π
h3 −h2

, q = 1,2,3, . . . , (4.8)

along with k, k′ respectively, denoting the wave numbers in the sub-domains I and II,
respectively.

The functions Zp(·), Rp(·) and Sp(·) are expressed as:

Zp(αqr)= H(1)
p (iα1r)= H(1)

p (kr), n = 1, (4.9)

Zp(αqr)= Kp(αqr), n = 2,3, . . . , (4.10)

Rp(βqr)= H(1)
p (k′r), n = 1, (4.11)

Rp(βqr)= Kp(βqr), n = 2,3, . . . , (4.12)

Sp(βqr)= H(2)
p (k′r), n = 1, (4.13)

Tp(βqr)= Ip(βqr), n = 2,3, . . . . (4.14)

Here, H(1)
p (·) stands Hankel functions of order p, of first kind, H(2)

p (·) denotes Hankel
functions of order p, of second kind, and Ip(·) and Kp(·) are, the modified Bessel functions of
order p.

All Matching Conditions
For the continuity of the flow, i.e., the continuity of the pressure and velocity at the interface
between sub-domains must be ensured. So, we apply matching conditions along the interface of
virtual and physical boundary as mentined in Figure 1. Along the interface of physical and the
virtual boundary at r = R, between sub-domains I and II, and I and III, we have

φ1 =φ2, (−h1 ≤ z ≤ 0), (4.15)

φ1 =φ3, (−h ≤ z ≤−h2), (4.16)

∂φ1

∂r
=


∂φ2
∂r , (−h1 ≤ z ≤ 0),

−∂φi
∂r , (−h2 ≤ z ≤−h1)

∂φ3
∂r , (−h ≤ z ≤−h2).

(4.17)

Along the interface of the physical and the virtual boundary at r = R′, between sub-domains
III and IV, we have

φ3 =φ4, (−h3 ≤ z ≤−h2), (4.18)

∂φ3

∂r
=

{∂φ4
∂r (−h3 ≤ z ≤−h2),

−∂φi
∂r (−h ≤ z ≤−h3).

(4.19)
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We use this matching conditions to obtain the unknown coefficients of the diffracted potential.
Therefore, we put the expressions of diffracted potential in the matching conditions and
subsequently, by using the orthogonality of cosine functions in the range −h < z < 0. Hence, we
have a system of linear equations after truncating appropriately to a finite number (N = 30) to
all obtained infinite series. The obtain linear system’ of equations is of the form

ZmXm =Ym, (4.20)

where Xm = [A i1, A i2, . . . , A iN ,Bi1,Bi2, . . . ,BiN ,Ci1,Ci2, . . . ,CiN ,D i1,D i2, . . . ,D iN ,E i1,E i2, . . .,
E iN ,Fi1,Fi2, . . . ,FiN]T , are the unknown coefficients, Zm is square matrix which contains
coefficients and this coefficients are evaluated on basis of [1], and Ym is the column vectors. One
can evaluate all unknown coefficients by using numerical tool to this system of linear equations,
e.g., Matlab tool. The obtained solutions of this current problem for the proposed energy device
is anticipated to assist the engineer in finding the appropriate parameters of the device so that
maximum energy can be taken out.

5. Conclusions
On the basis of linear water and potential wave theory, we have formulated and solved the
diffraction problem due to the encounter of water waves with a composite cylinder above a
co-axial bottom mounted circular cylinder in uniform water depth. We divided the whole fluid
domain into four sub-domains and formulated respective boundary value problem for each sub-
domain. Hence, with the help of variables of separation and matched eigenfunction expansion,
we have derived the respective diffracted velocity potentials of the boundary-value problem
in each sub-domain. On application of matched eigenfunction expansion method due to the
continuity of fluid velocity and pressure, we leads to the system of equations in linear form
and then by using numerical technique to solve system of algebraic equations. The obtained
solutions of this current problem for the proposed energy device is anticipated to assist the
engineer in finding the appropriate parameters of the model in order to take maximum power.
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