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Abstract. This article describes the magnetohydrodynamic radiative nano convective flow over a
cone. Brownian motion and thermophoresis effects in nanofluid transport R-K method is used to
compute the solutions to the governing non-dimensional partial differential conservation equations
and free stream boundary conditions. Numerous thermo-physical parameters were presented, There
is a detailed explanation of the simulations as well. Magnetic parameter increases, reduce velocity.
According to the findings, there are numerous applications for heat exchanger technology, including
geothermal energy storage and cooling, solar energy systems, and materials processing.
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1. Introduction
Traditional fluids including water, ethylene glycol, xylene, and motor oil are mixed with particle
size nanometers to create nanofluids. One of the most important properties of nanofluids
is that they have a greater thermal conductivity than traditional fluids. When compared to
permissioned fluids, Nanofluids high thermal conductivity is now the most intriguing feature.
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Choi and Eastman [5] created a novel liquid, called as Nanofluid on modern coolants
and refrigeration technologies. Many researchers [3,4,12] have been investigating Nanofluid
flow and heat transfer across various geometries while taking diverse physical and chemical
characteristics into account over the last few decades. Heat and mass transfer on Casson
nanofluid through a nonlinear stretching sheet under boundary profiles with slip conditions
were addressed by Rasool et al. [17]. The Keller-Box method was used by Rafique et al. [16],
aimed on the nano liquid flowing through a permeable stretched inclined surface. Unsteady
and steady MHD was compared by Sreedevi and Reddy [18] in their research article. Pal et al.
[15] investigated the effect of a heated stretched surface on a thin nanofluid sheet with thermal
radiation. Numerical simulation is done using a shooting method and the Runge-Kutta-Fehlberg
integration strategy. Williamson’s nanofluid flowed through a vertical narrow cylinder utilising
bvp4c in their study by Hussain et al. [9]. Al-Khaled and Kahn [1] modeled computationally
on microorganisms with changing and activation energy and viscosity. Viscosity and Casson
fluid parameters increased together with time, causing an oscillating wall shear force. To better
understand the effects of different heat sources and different thermal conductivities on MHD
nanofluid flows, Tarakaramu et al. [19]. Khan et al. [11] used the G.F.E.M to examine thermal
management.

In areas including magneto optical wave length optical fibres, pharmacological stimulation,
and electromagnetic cell imaging, MHD nano liquids have an extraordinary application. The
MHD nano liquid combines the best of liquids and magnetism in a single package. Using a
magnetic field has an impact on the dissolved particles, which may change the flow simulation
for heat transfer. Anwar et al. [2] analysed numerically the radiative MHD flow using the
Laplace transformation. Researchers [13,14,21] looked into non-newtonian fluid several slip
situations.

MHD nanofluid triple diffusion flows through a power law stretched surface were
investigated by Goyal et al. [6] using Galerkin finite element modelling. They discovered
that the nanomass, regular mass, and heat transport rates decreased when the magnetic
parameter was amplified owing to an increase in Lorentz drag force. In a partly heated right
trapezoidal enclosure, Khan et al. [10] addressed radiation impacts and heat augmentation of
wate-carbon nanotubes by utilising the Galerkin FEM method. Nanofluid flow across infinitely
parallel plates was shown by Usman et al. [20], using the modified Legendre wavelets technique
in MHD convection. Water-based carbon nanotube heat transfer and hydromagnetic flow were
studied by Hamid et al. [8] using the Galerkin FEM method in a partly heated rectangular
fin-shaped chamber. Chebyshev wavelets were used by Hamid et al. [7] to investigate the impact
of buoyancy forces on the Williamson nanofluid stagnation point flow.

There have been many literature publications on Nanofluid dynamics in a vertical cone from
different angles. Many experimental and hypothetical studies on tube-shaped body transport
wonders have been depicted in literature that deals with polymer frameworks’ procedure. Heat
transfer flow properties of commonly used base fluids such as water, oil, and so on are the
primary focus of all of these investigations. Nanofluid research has recently become a popular
topic of study because the thermal conductivity of fluids improves when nanoparticles are
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present. MHD convection fluxes of Nanofluid through a permeable cone are being investigated
in the current research. In both science and engineering, the MHD nanofluid flow analysis is
critical. The conservation dimensionless equations are made dimensionless by applying the
appropriate non-similar transformations to the data.

2. Modeling of the Problem
We look at a laminar magnetohydrodynamic flow of nano liquid through a cone in a steady state
in two dimensions that is incompressible. Figure 1 depicts the problem’s physical schematic
representation.

Figure 1. Geometry of the problem

• The cone’s surface is subjected to a powerful static magnetic field with a strength of B0.

• Cone coordinate systems have their origins at their vertex, x-coordinates along the slant
surface, and y-coordinates perpendicular to the cone’s surface.

• Also, is the cone’s radius, and A is the cone’s half-angle.

• Gravity’s acceleration, measured in units of g, is said to act downwardly.

• Due to the low magnetic Reynolds number, magnetic induction is often ignored.

• Due to the low intensity of the magnetic field, Hall current and ionslip effects are also
overlooked.

• Because the flow is so low, Alfven waves are completely ignored.

• Electron and thermo-electric pressures are also neglected in this equation.

• The applied magnetic field B0 is produced by running a constant current parallel to the
cone’s longitudinal axis.

The governing equations may be written as follows:
∂u
∂x

+ ∂v
∂y

= 0 , (2.1)
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u
∂u
∂x

+v
∂u
∂y

= ν∂
2u
∂y2 + g[(1−C∞)ρ fβ(T −T∞)− (ρp −ρ f∞)(C−C∞)]cosφ

− σB2
0

ρ f
u− µ

K∗ u , (2.2)

u
∂T
∂x

+v
∂T
∂y

=αm
∂2T
∂y2 +τ

[
DB

∂C
∂y

∂T
∂y

+
(

DT

T∞

)(
∂T
∂y

)2]
− 1
ρCp

∂qr

∂y
, (2.3)

u
∂C
∂x

+v
∂C
∂y

= DB
∂2C
∂y2 +

(
DT

T∞

)
∂2T
∂y2 −Kr(C−C∞), (2.4)

where αm = km
(ρc) f

, and τ= (ρc)p
(ρc) f

.
The relevant boundary conditions are:

u = 0, v = 0, −k
∂T
∂y

= h f (T f −T), C = Cw at y= 0 , (2.5)

u → 0, T → T∞, C → C∞ at y→∞ (2.6)

From eqn. (2.1) the stream function ψ is

ru = ∂ψ

∂y
and rv =−∂ψ

∂x
. (2.7)

Introducing dimensionless quantities:

η= y
x

Ra
1
4
x , f (η)= ψ

α Ra
1
4
x

,

θ(η)= T −T∞
T f −T∞

, φ(η)= C−C∞
Cw −C∞

,

Rax =
gβρ f∞(Tw −T∞)(1−C∞)cosγx3

µα
, Nr = (ρp −ρ f∞)(Cw −C∞)

ρ f∞β(Tw −T∞)(1−C∞)
,

Nb = τDB(Cw −C∞)
α

, Nt = τDT(Tw −T∞)
αT∞

,

K = x2

k∗ Ra
1
2
x

, Le = ν

DB
,

Cr = Kr

a
, Pr = ν

α
,

R = 16T3∞σ∗

3K∗k
, M = σβ2

ox

ρRa
1
2
x

,

B1= h f x

kRa
1
2
x

.



(2.8)

The obtaining set of non-linear ODEs:

f ′′′− ( f ′)2 + f f ′′+ (θ−Nr φ)− (M+K) f ′ = 0 , (2.9)

(1+R)θ′′+Pr f θ′+Nbθ′φ′+Nt(θ′)2 = 0 , (2.10)

φ′′+Le fφ′−Le ·Cr ·φ+ Nt
Nb

θ′′ = 0 . (2.11)
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The transformed boundary situations are

η= 0, f = 0, f ′ = 1, θ′(0)=−B1(1−θ(0)), φ= 1 , (2.12)

η→∞, f ′ = 0, θ = 0, φ= 0. (2.13)

The C f , Nux and Shx are:

C f =
2τw

ρ
, Nux =

xqw

k(Tw −T∞)
, Shx = xJw

DB(Cw −C∞)
, (2.14)

τw =µ
(
∂u
∂y

)
y=0

, qw =−k
(
∂T
∂y

)
y=0

, Jw =−DB

(
∂C
∂y

)
y=0

. (2.15)

The dimensionless skin friction coefficient, wall temperature and diffusion rates are
demarcated as

C f = 2Ra
3
4
x f ′′(0), Nux =−Ra

1
4
xθ

′(0), Shx =−Ra
1
4
xφ

′(0) . (2.16)

3. Numerical Method of Solution
The transformed governing ordinary differential equations (2.12)-(2.14) are highly non-linear.
The solution of these equations is more complex due to nonlinearity while solution will get to
reduce the complexity. With the 4th order R-K technique we obtained the outcomes.

4. Results and Discussion
Complete calculations are conducted for diverse values of the non-dimensional parameters and
the outcomes are illustrated graphically. We considered the following parameter values for entire
graphs: M = 5; B1 = Ra = 0.1; Le = 1; Pr = 7; R = 0.5; Cr = 1; K = 0.5, Nb = Nt = Nr = 0.5.

Figure 2 shows the impact of the magnetic field parameter on boundary layer velocity
drawings. Clearly, when M increases, the hydrodynamic boundary layer thickness decreases (as
shown in the image) as indicated. As can be seen in Figure 3, the distribution of velocities differs
depending on the chemical reaction parameter. This graph show that when Cr increased, the
velocity distribution slowed. To illustrate the influence of Biot number on temperature boundary
layer, see Figure 4. As the value of B1 increases, it seems that the temperature distribution is
becoming hotter. On the other hand, Brownian motion and temperature scatterings are shown
in Figure 5. The temperature distribution seems to be increased from this figure with increasing
values of Nb. Boundary layer temperature drawings in Figure 6 show the strength of buoyancy
ratio parameter. As can be seen from this figure, the fluid’s heat sketch temperature decreases
as the value of Nr increases. Figure 7 shows the temperature scatterings for a wide range of
Prandtl numbers. As seen from the figure, the temperature scatterings become slower as Pr
gets higher. Figure 8 shows the impact of the thermal radiation parameter on temperature
diagrams. Thus, in the boundary layer region, the temperature distribution was enhanced by
increasing R intensities. Figure 9 shows the impact of the Lewis number solutal boundary layer.
Concentration scatterings seem to improve as Lewis value increases. On the concentration
drawings in the boundary layer region, Figure 10 shows buoyancy ratio parameter. As the value
of Nr increases, the concentration distributions improve across the fluid region.
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Figure 2. Influence of M on Velocity Figure 3. Influence of Cr on Velocity

Figure 4. Influence of B1 on Temperature Figure 5. Influence of Nb on Temperature

Figure 6. Influence of Nr on Temperature Figure 7. Influence of Pr on Temperature
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Figure 8. Influence of R on Temperature Figure 9. Influence of Le on Concentration

Figure 10. Influence of Nr on Concentration

From Table 1, we have seen Skin-friction increases with increasing of M, Nb, Ra and K
while decreases with increasing of B1, Nt and R. From Table 2, we have seen Nusselt number
rises with the amount of B1 and Ra while falls with the amount of M, Nb, Nt, R and K . From
Table 3, we have seen Sherwood increases with increasing of B1, Nb, Nt and R while decreases
with increasing of M, Ra and K .

5. Conclusions
MHD convection fluxes of Nanofluid through a permeable cone are being investigated in the
current research. The conservation dimensionless equations are made dimensionless by applying
the appropriate non-similar transformations to the data.
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Table 1. C f for various parameter values

M B1 Nb Nt Ra R K C f

1
2
3
4

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.786066
0.935588
1.062726
1.175541

5
5
5
5

0.2
0.3
0.4
0.5

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

1.276562
1.274983
1.273385
1.271768

5
5
5
5

0.1
0.1
0.1
0.1

0.1
0.2
0.3
0.4

0.5
0.5
0.5
0.5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

1.277820
1.278047
1.278105
1.278122

5
5
5
5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.1
0.2
0.3
0.4

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

1.278231
1.278204
1.278176
1.278148

5
5
5
5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.5
1.0
1.5
2.0

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

1.292516
1.311968
1.332261
1.352683

5
5
5
5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.1
0.1
0.1
0.1

0.5
1.0
1.5
2.0

0.5
0.5
0.5
0.5

1.278120
1.278038
1.277988
1.277956

5
5
5
5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

1
3
5
7

1.326637
1.503703
1.662018
1.806412

Table 2. Nu for various parameter values

M B1 Nb Nt Ra R K Nu
1
2
3
4

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.105137
0.099326
0.094169
0.089658

5
5
5
5

0.2
0.3
0.4
0.5

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.167248
0.244827
0.318592
0.388704

5
5
5
5

0.1
0.1
0.1
0.1

0.1
0.2
0.3
0.4

0.5
0.5
0.5
0.5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.109666
0.103522
0.097492
0.091548

5
5
5
5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.1
0.2
0.3
0.4

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.087454
0.087011
0.086570
0.086131

5
5
5
5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.5
1.0
1.5
2.0

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.087970
0.089954
0.091326
0.092305

5
5
5
5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.1
0.1
0.1
0.1

0.5
1.0
1.5
2.0

0.5
0.5
0.5
0.5

0.085695
0.072194
0.063402
0.057245

5
5
5
5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

1
3
5
7

0.083890
0.077630
0.072571
0.068394

Table 3. Sh for various parameter values

M B1 Nb Nt Ra R K Sh
1
2
3
4

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

1.021001
0.949505
0.914947
0.894974

5
5
5
5

0.2
0.3
0.4
0.5

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.902899
0.926651
0.953293
0.982672

5
5
5
5

0.1
0.1
0.1
0.1

0.1
0.2
0.3
0.4

0.5
0.5
0.5
0.5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.868089
0.875201
0.889498
0.891341

5
5
5
5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.1
0.2
0.3
0.4

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.868157
0.871467
0.874911
0.878486

5
5
5
5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.5
1.0
1.5
2.0

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.838956
0.800054
0.774713
0.761416

5
5
5
5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.1
0.1
0.1
0.1

0.5
1.0
1.5
2.0

0.5
0.5
0.5
0.5

0.882192
0.886815
0.887822
0.887396

5
5
5
5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5

0.1
0.1
0.1
0.1

0.5
0.5
0.5
0.5

1
3
5
7

0.877442
0.864769
0.857734
0.853498
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The following observations were found:

• The hydrodynamic boundary layer thickness diminishes with higher values of M.

• The velocity distributions decelerated with the higher values of Cr.

• The velocity distribution elevate as the values of Ra rises.

• The temperature distribution is elevates as the values of B1 rises.

• With the increasing values of Nb on the temperature distribution elevated.

• The heat sketches of the fluid declines with rising values of Nr.

• The temperature scatterings is retards with the rising values of Pr.

• The temperature distribution enriched with the intensifying values of R.

• The concentration sketches improve in the boundary layer area.
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