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Abstract. In the paper, we discuss applications of Homotopy Perturbation Method (HPM) related to
wave equations subjected to non-local conditions and the method is applied to two test problems in the
paper. The method was introduced by J.-H. He (Homotopy perturbation technique, Computer Methods
in Applied Mechanics and Engineering 178(3-4) (1999), 257 – 262) and the solutions are matched
against exact solutions as in the literature. The results indicate that the HPM produces accurate
solutions and faster converging with less computational effort.
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1. Introduction
The solution of nonlinear equations which are possessing strong non-linearity are normally
difficult using analytical methods. This can be easily obtained by using the program such
as MATLAB, MATHEMATICA, MAPPLE, or any other open source software. Most of the times,
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the convergence of the series solution is influenced by the physical parameters in case of semi-
analytical methods. Frequently the results obtained will be unsatisfactory, whenever there is
a strong nonlinearity. For this type of the problems the solution provides the opportunity to
control the convergence region and speed of the series solution as well. In many investigations
related to engineering and science, it is observed that the governing equations generate the
wave equation. Therefore, this condition has drawn in much thought, and obtaining the solution
of the equation has been one of the motivating assignments for mathematicians. For obtaining
the solution of the wave equation by analytical methods, it is noticed that the methods are much
limited and can be applied in very special cases so they cannot be applied to obtain solution of
equations related to numerous realistic situations. Most commonly numerical techniques are
applied in order to overcome the difficulties related to size of computational works required and
generally the round-off error results into the loss of exactness.

In the year 1999, J.-H. He [7] introduced a Homotopy Perturbation Method (HPM) and
is again revised by him in 2003. In many physical and engineering phenomena like wave
propagation and shallow water waves, it is a well-known fact that these can be modeled by a
system of Partial differential equations. From past many years, there is an active research need
to obtain accurate and efficient methods to solve a non-linear system of PDEs. The HPM is
resulting from Liu’s [13] artificial parameter method, and Liao’s [12] homotopy analysis method
and applicable to linear as well as nonlinear differential equations in producing analytical
solutions. For highly nonlinear problems, the analytical solutions can be found easily, this can
be regarded as an advantage of HPM. However, Liao [11] supported HPM a special case of the
homotopy analysis method. In various areas of nonlinear equations like fluid mechanics and
heat transfer HPM has found many applications. The HPM is applied in obtaining solution
of various problems related to theory of fluid flow such as Blasius equation in boundary layer
theory, He [6]. The researchers (see Barforoushi et al. [1], Biazar and Azimi [3], Ezzati and
Mousavi [4]) improved the earlier method to solve the nonlinear partial differential equations
later on.

For solving one dimensional hyperbolic equation, He [8] deliberated the HPM. Zhang and He
[22] obtained solution of the electrostatic potential differential equation. Jin [9] and Ghorbali et
al. [15] used the HPM in case to solve three dimensional parabolic and hyperbolic equations
possessing variable coefficients. To solve nonlinear parabolic and hyperbolic equations the same
application was continued by Roozi et al. [16].

The nonlocal problems play an important role in real life applications and they used in
various field of mathematical physics and in other fields. Karakostas and Tsamatas [10]
have studied the boundary value problems with nonlocal conditions. Bellin [2] highlighted
the existence of solution for one-dimensional wave equations under same conditions. Ma [14]
surveyed the recent developments in nonlocal boundary value problems. Waqas et al. [17] have
investigated the nonlinear stretched flow of MHD microploar liquid having mixed convection,
Joule heating, viscous dissipation, and convective condition. Based on a nonlinear stretched
sheet, there is a cause for flow. By employing homotopic procedure, we can achieve analytic
solutions. To analyze the convergence of the derived series solutions, numerical values can
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be presented. In the work of Waqas et al. [20], convergence series solutions are established
for arising governing set of coupled nonlinear ordinary differential equations by using the
homotopy analysis method in order to get the features of different pertinent parameters for
temperature and velocity distributions. Recently, Homotopy theory was employed to attain
convergent solutions in case of system of nonlinear ordinary differential (see Waqas et al. [18]).
Waqas et al. [21] have been approved the non-Fick’s theory of mass species and deliberated
the non-Fourier-Fick’s heat and mass diffusion theories to study the impact of Burgers’ liquid
over stretched sheet. Also, the notion of double stratification is involved in the analysis. The
governing mathematical model was treated by taking the aid of homotopic procedure. In order to
seek the convergent solutions, the created solution equations are confirmed with the assistance
of graphs and by numerical calculations. In Waqas et al. [19], Homotopy method has employed
for simulations of dimensionless nonlinear ordinary differential equations to get the convergent
series solutions.

In the first instance tried to describe the HPM in the paper, in continuation method applied
to solve the four numerical examples with special reference to nonlocal conditions. Moreover,
the solutions of some real life applications are obtained via HPM.

Nomenclature
HPM : Homotopy perturbation method
∂ : the partial derivative
f : function of (x, t)
p : embedding parameter
R : set of all real numbers
w0 : initial approximation
r1, r2 : given functions
Ω : boundary of the domain of x and t
u, v, w : functions of (x, t)
τ : limiting value

2. Description of the Method
In HPM, we introduce a new form of technique pertaining to perturbation coupled with the
homotopy. In topology two continuous functions from one topological space (TS) to another is
known as “homo-topic”. A homotopy among two continuous functions f as well as g from a TS X
to a TS Y is termed as continuous function

H : X × [0,1]→Y

So as

H(x,0)= f (x) and H(x,1)= g(x), for all x ∈ X .

The HPM is independent of a small parameter in the equation. In topology homotopy is raised
with an embedding parameter p ∈ [0,1] in consideration, which is as a small parameter.

Let us consider one-dimension wave equation
∂2u(x, t)
∂t2 − ∂2u(x, t)

∂x2 = f (x, t), x, t ∈Ω . (1)
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Along with initial conditions

u(x,0)= r1(x), 0≤ x ≤ ℓ , (2)
∂u(x, t)
∂t

∣∣∣∣
t=0

= r2(x), 0≤ x ≤ ℓ . (3)

The non-homogeneous Neumann condition
∂u(x, t)
∂t

∣∣∣∣
t=0

= L(t), 0≤ t ≤ T (4)

and nonhomogeneous non-local condition∫ L

0
u(x, t)dx =β(t), 0≤ t ≤ T, (5)

where f is function of x as well as t, Ω = {(x, t)/0 < x < l, 0 ≤ t ≤ T}, r1, r2 and β are given
functions which will satisfy the following:

r1
1(0)=α(0), r2

1(0)=α′(0),∫ ℓ

0
r1(x)dx =β(0) and

∫ ℓ

0
r1(x)dx =β′(0) . (6)

To solve this non-local problem by the HPM, we first convert this non-local problem into another
non-local problem along with homogeneous Neumann condition and a homogeneous non-local
condition.

For this, we apply the transformation (see He [7])

w(x, t)= u(x, t)− z(x, t), x, t ∈Ω
wherein

z(x, t)= L(t)
[

x− ℓ

2

]
+ β(t)

ℓ

there upon
∂2u(x, t)
∂t2 = ∂2w(x, t)

∂t2 + ∂2z(x, t)
∂t2 with

∂2w(x, t)
∂t2 = ∂2w(x, t)

∂x2 .

Therefore, the non-local problem given by equation is converted to the 1-dimensional non-
homogeneous equation

∂2w(x, t)
∂t2 = ∂2w(x, t)

∂x2 + g(x, t)x, t ∈Ω (7)

regarding the underlying conditions

w(x,0)= 0, q1(x)= 0, 0≤ x ≤ l , (8)
∂u(x, t)
∂t

∣∣∣∣
r=0

= q2(x), 0≤ x ≤ l . (9)

The homogeneous Neumann and the homogenous non-local conditions are
∂u(x, t)
∂t

∣∣∣∣
x=0

= 0, t ≥ 0 , (10)∫ 1

0
w(x, t)dx = 0, t ≥ 0 , (11)
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wherein

g(x, t)= f (x, t)− ∂2z(x, t)
∂t2

∣∣∣∣
x=0

, q(x)= r2(x)− z(x,0), q2(x)= r2(x)− ∂z(x, t)
∂t

∣∣∣∣
t=0

.

In order to solve the nonlocal problem, we formulate a homotopy V :Ω× [0,1]→ R satisfies

H(v, p)= ∂2v(x, t, p)
∂t2 − ∂2w0(x, t)

∂t2 + p
∂2w0(x, t)

∂t2 + p
[
∂2v(x, t, p)

∂x2 − g(x, t)
]
= 0, (12)

where p ∈ [0,1], R and w0 to (7) satisfies the conditions (8)-(11).
By using the equation (12), it follows that

H(v,0)= ∂2v(x, t,0)
∂t2 − ∂2w0(x, t)

∂t2 = 0 ,

H(v,1)= ∂2v(x, t,1)
∂t2 − ∂2v(x, t,1)

∂x2 − g(x, t)= 0 .

Now, we approximate the solution of equation as

w(x, t, p)=
∞∑

i=0
pivi(x, t) . (13)

Accordingly, the approximated solution of the problem (7) is

w(x, t)= lim
p→1

v(x, t, p)=
∞∑

i=0
vi(x, t) . (14)

Substitute equation (15) into (12), then

H(v, p)=
∞∑

i=0
pi ∂

2v0(x, t)
∂t2 − ∂2v0(x, t,1)

∂t2 + p
∂2w0(x, t, )

∂t2 + p

[
−

∞∑
t=0

pi ∂
2v0(x, t)
∂x2 − g(x, t)

]
= 0 .

Then equating like order of p, we have

p0 :
∂2v0(x, t)

∂t2 − ∂2w0(x, t)
∂t2 = 0 (15)

p1 :
∂2v(x, t)
∂t2 − ∂2w0(x, t)

∂t2 − ∂2v0(x, t)
∂t2 − g(x, t)= 0 (16)

p j :
∂2v j(x, t)

∂t2 − ∂2v j−1(x, t)

∂x2 = 0, j = 2,3, . . . . (17)

For simplifying, we choose v0(x, t)= w0(x, t). So equation (15) is satisfied automatically.
Consider w0(x, t)= q1(x)+ q2(x) thereupon

w0(x,0)= q1(x), 0≤ x ≤ ℓ,

∂w0(x,0)
∂t

∣∣∣∣
t=0

=


q2(x), 0≤ x ≤ ℓ,
r′1(0)−L(0)+ r′2(0)t−L′(0)t, 0≤ t ≤ T,
β(0)−β(0)+β′(0)t−β′(0), t = 0 .

The w0 satisfied the conditions given in (8)-(11).
Consequently, by putting t = 0 in (14), we get

w(x,0)=
∞∑

i=0
vi(x,0) .
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But

v0(x,0)= q1(x) and w(x,0)= q1(x)

hence vi(x,0)= 0, i = 1,2,3, . . ..
By using v0(x, t)= w0(x, t)= q1(x)+ q2(x) t in (16) , we get
∂2v1(x, t)

∂t2 = q′′
1(x)+ tq′′

2(x)+ g(x, t) .

By integrating twice for above differential equation with respect to t with initial conditions

v1(x,0)= 0 and
∂v1(x, t)

∂t

∣∣∣∣
t=0

= 0 .

We get

v1(x, t)= t2

2
q′′

1(x)+ t3

6
q′′

2(x)+
∫ t

0

∫ 5

0
g(x, t)dt .

By substituting v1 into equation (17) and by solving the resulting equation with conditions

v2(x,0)= 0 and
∂v2(x, t)

∂t
|t=0 = 0.

One can get v2(x, t). In a similar manner we obtain vi(x, t), i = 3,4, . . . by putting vi(x, t),
i = 3,4, . . . in (16), we get the approximation solution w of equations (7).

Therefore, from the equation (6), we have

u(x, t)= w(x, t)+ z(x, t)=
∞∑

i=0
vi(x, t)+ z(x, t), x, t ∈Ω. (18)

This is the required solution of original non-local problem (1) and it is clarifying through two
numerical problems in subsequent section.

3. Numerical Problems
(1) Consider the homogeneous wave equation

∂2u(x, t)
∂t2 − ∂2u(x, t)

∂x2 = 0, 0< x < 1, t > 0 (19)

with the initial conditions

u(x,0)= cos(x), 0≤ x ≤π, (20)
∂u(x, t)
∂t

∣∣∣∣
t=0

=−cos(x), 0≤ x ≤π . (21)

The homogeneous Neumann and non-local conditions are
∂u(x, t)
∂t

∣∣∣∣
t=0

= 0, 0≤ t ≤ 1, (22)∫ π

0
u(x, t)dx = 0, 0≤ t ≤ 1 . (23)

For checking the compatibility conditions are satisfied for this nonlocal problem, we use the
HPM

v0(x, t)= u0(x, t)= u(x,0)+ ∂u(x, t)
∂t

∣∣∣∣
t=0

t = cos(x)− tcos(x).
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From equation (16) and by the initial conditions
∂v1(x, t)

∂t

∣∣∣∣
t=0

= v1(x,0)= 0

one can have

v1(x, t)= 1
2!

t2 cos(x)− 1
3!

t3 cos(x) .

Hence

v0(x, t)+v1(x, t)=
[
1− t+ 1

2
t2 − 1

6
t3

]
cos(x) .

From equation (17) one can get

v2(x, t)=
∫ t

0

∫ τ

0

∂2v1(x, s)
∂x2 dsdT

and this implies

u(x, t)=
2∑

i=0
vi(x, t)=

[
1− t+ 1

2
t2 − 1

3!
t3 + 1

4!
t4 − 1

5!
t5

]
cos(x)

and by proceeding as such one can have

u(x, t)=
∞∑

i=0
vi(x, t)= e−t cos(x). (24)

This is the required exact solution and graph of this solution is shown in Figure 1.

Figure 1

Communications in Mathematics and Applications, Vol. 13, No. 2, pp. 691–701, 2022



698 The Homotopy Perturbation Method to Solve a Wave Equation: P.M. Gouder et al.

(2) Consider one dimensional in homogeneous wave equation
∂2u(x, t)
∂t2 − ∂2u(x, t)

∂x2 =−xsin(t)−4e−2x, 0≤ x ≤ π

2
, 0≤ t ≤ 1 (25)

subjected to conditions

u(x,0)= e−2x, 0≤ x ≤ π

2
, (26)

∂u(x, t)
∂x

∣∣∣∣
t=0

= x, 0≤ x ≤ π

2
, (27)

∂u(x, t)
∂x

∣∣∣∣
t=0

= sin(t)−2, 0≤ t ≤ 1, (28)∫ π
2

0
u(x, t)dx = 1

8
π2 sin(t)− 1

2
e−π+ 1

2
, 0≤ t ≤ 1 . (29)

Now it is clear that the conditions (6) are satisfied for this nonlocal problem, we apply the
method discussed above. To solve this, use the conversion given by (6).

In this case

z(x, t)= (sin(t)−2)
(
x− 1

4
π

)
+ 1
π

[
2

(
1
8
π2 sin(t)− 1

2

)
e−π+1

]
. (30)

Accordingly, the nonlocal problem given by (25) is converted to the 1-d non-homogeneous wave
equation

∂2w(x, t)
∂t2 = ∂2w(x, t)

∂x2 −4e−2x, 0≤ t ≤ 1, 0≤ x ≤ π

2
with the initial conditions

w(x,0)= e−2x +2x− π

2
− 1
π

[1− e−π], 0≤ x ≤ π

2
,

∂w(x, t)
∂t

∣∣∣∣
t=0

= 0, 0≤ x ≤ π

2
and the homogeneous Neumann and nonlocal conditions

∂w(x, t)
∂t

∣∣∣∣
t=0

= 0, 0≤ t ≤ 1,∫ π
2

0
w(x, t)dx = 0, 0≤ t ≤ 1.

For getting solution of the problem, employ the same method, let

v0(x, t)= w0(x, t)= q1(x)+ q2(x)t = 1
2π

[2πe−2x +4πx−π2 +2e−π−2] .

From equation v1 (x, t)= t2

2 q′′
1(x)+ t3

6 q′′
2(x)+∫ t

0
∫ s

0 g(x, t)dt one can have:

v1(x, t)= t2

2
q′′

1 (x)+ t3

6
q′′

2 (x)+
∫ t

0

∫ s

0
g (x,τ)dτds = 0 .

Thus vi(x, t)= 0, i = 1,2,3, . . .

w(x, t)= w0(x, t)

= 1
2π

[2πe−2x +4πx−π2 +2e−π−2] (31)

is the accurate solution of the above nonlocal problem.
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Hence it’s an exact solution as in the literature

u(x, t)= w0(x, t)+ z(x, t)= e−2x + xsin(t) .

The graph of solution is shown in Figure 2.

Figure 2

4. Conclusion
This paper demonstrated in revealing the HPM with optimum computational time. This method
had employed on two test problems and obtained exact solutions as compared to the existing
results. This technique is used in direct way by avoiding difficulties arose in other methods and
it does not require any linearization, discretization or assumptions. Finally, it is clear that – it
is a promising tool for wave equations with non-local conditions.
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