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1. Introduction
In the actual world, there are many different forms of uncertainties, yet few traditional
mathematical techniques are suited for modelling these uncertainties. Undefined data is at
the heart of many complex problems in economics, social science, engineering, medicine, and
other domains. These difficulties that one encounters in life cannot be solved with traditional
mathematical methods. A mathematical model of an object is devised in classical mathematics,
but the concept of the exact solution of this model is not yet specified. The exact solution cannot
be found because the standard mathematical model is too complex. There are a number of well-
known ideas that can be used to describe uncertainty. For example, Rosenfeld [11] presented the
notion of fuzzy subgroup in 1971, and Zadeh [12] inspired the theory of fuzzy sets. In addition,
Molodtsov [8] introduced the concept of soft sets in 1999. Maji et al. [6] presented the concept of
fuzzy soft sets in 2009, and Jacobson [3] introduced the concept of M-group M-subgroup.
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Aktaş and Çağman [1] provided an introduction to a novel concept of soft sets and soft
groups based on the inclusion relation and set intersection. Das [2] investigated fuzzy groups
and level subgroups in 1981. In 2012, Massa’deh [7] wrote about the M-N homomorphism and
M-N anti homomorphism of an over M-N fuzzy subgroups.

The M-homomorphism and M-anti homomorphism of an M-fuzzy subgroup and its level
M-subgroups were introduced by Muthuraj et al. in 2010 [10]. In [4,5], discussed the concept of
M-N fuzzy soft subgroups in previous work.

We have studied the concept of M-N homomorphism of fuzzy soft subgroups based on the
concept of fuzzy soft groups in this work. The basic definition, notations on M-N fuzzy soft
subgroups, and needed results on fuzzy soft subgroups were presented in Section 2. The M-N
homomorphism of a fuzzy soft set and the M-N level subsets of a fuzzy soft subgroup are defined
in Section 3. We have also gone over the M-N homomorphism of fuzzy soft group notion and
some of its basic features.

2. Preliminaries
Some basic definitions and findings are provided in this section. We have laid down the previous
topics that will be used in this article for your convenience.

Definition 2.1 ([12]). Let X be a non-empty set. A fuzzy subset A of X is a function
A : X → [0,1].

Example 2.2. Let X = {1,2,3,4,5} be a set. Then A = {(1,0.2), (2,0.4), (3,0.6), (4,0.7), (5,0.8)} is a
fuzzy subset of X .

Definition 2.3 ([7]). Let M, N be left and right operator sets of group G respectively, if
(mx)n = m(xn) for all x ∈G, m ∈ M, n ∈ N . Then G is said be an M-N group.

Definition 2.4 ([5]). Let G be a group and ( f , A) be an M-N fuzzy soft set over G. Then ( f , A) is
said to be a M-N fuzzy soft group over G iff for each a ∈ A and x, y ∈G,

(i) fa{m(xy)n}≥min{ fa(x), fa(y)},

(ii) fa{(mx−1)n}≥ fa(x) hold for each a ∈ A, m ∈ M, n ∈ N , fa is a M-N fuzzy soft subgroup of
a group G.

Definition 2.5 ([5]). Let G be an M-N group and ( f , A) be a fuzzy soft subgroup of G if

(i) fa(mx)≥ fa(x),

(ii) fa(xn) ≥ fa(x) hold for any x ∈G, m ∈ M, n ∈ N and a ∈ A, then ( f , A) is said be an M-N
fuzzy soft subgroup of G.

Example 2.6 ([5]). Let fa be a fuzzy soft subgroup of an M-N group G. a ∈ A is the parameters
of the set, then fa is defined by

fa(x)=
{

0.1 if x ∈G,
0.9 if x ∉G,
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where x = {1,2,3,4,5,6}, fa(1) = 0.1, fa(2) = 0.03, fa(3) = 0.06, fa(4) = 0.6, M = {1,2,3} and
N = {1,3,5}, here N ⊏ A and M ⊏ A where A is a natural numbers.

Definition 2.7 ([7]). A mapping f from a group G into a group GL is said be a homomorphism
if for all x, y ∈G, f (xy)= f (x) f (y).

Example 2.8. f : G →GL defined by f (x)= e for all x ∈G, e is the identity element in GL is a
trivial homomorphism.

Definition 2.9 ([10]). Let f : G →GL be a group homomorphism we say that f is an isomorphism
satisfied f is one-one and onto.

Definition 2.10 ([10]). Let f : G → GL be a group homomorphism we say that f is
monomorphism if f is one-one. We say that epimorphism if f is onto.

Definition 2.11 ([10]). A group homomorphism f : G →GL is isomorphism, then its called on
automorphism.

3. M-N Fuzzy Soft Subgroups of an M-N Group G under M-N
Homomorphism

We will define the M-N homomorphism of a fuzzy soft subgroup and the M-N level subsets of a
fuzzy soft subgroup in this section. We have also gone over the M-N homomorphism of fuzzy
soft group notion and some of its basic features.

Definition 3.1. Let G and GL be any two M-N groups. If ( f , A) is an fuzzy soft subgroup of
an M-N group G, then the function fa : G →GL is said be an M-N homomorphism of fuzzy soft
subgroup if

(i) fa(xy)= fa(x) fa(y) for all x, y ∈G, a ∈ A,

(ii) fa(mx)= mfa(x), for all x ∈G, a ∈ A and m ∈ M,

(iii) fa(yn)= mfa(y), for all y ∈G, a ∈ A and n ∈ N .

Note 3.2. If λ is a constant and ker fa is an M-N fuzzy soft subgroup, then

(i) fa(λ) fa(mx)=λ(mx)=λ(x), for all x ∈G, a ∈ A and m ∈ M,

(ii) fa(λ) fa(xn)=λ(xn)=λ(x), for all x ∈G, a ∈ A and n ∈ N .

Theorem 3.1. Let fa be an M-N homomorphism of fuzzy soft subgroup from an M-N group G
onto an M-N group GL. If λ is an M-N fuzzy subgroup of G and λ is an fa-soft invariant, then
fa(λ) is an M-N fuzzy soft subgroup of GL.

Proof. We know that λ is a constant and ker fa is an M-N fuzzy soft subgroup. Now

fa(λ)( fa(x) fa(y))= fa(λ)( fa(xy)), (for all x, y ∈G, a ∈ A)

=λ(xy), (since by note)

≥min{λ(x),λ(y)}
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≥min{ fa(λ)( fa(x), fa(λ) fa(y))}.

Therefore

fa(λ)( fa(x) fa(y))≥min{ fa(λ)( fa(x), fa(λ) fa(y))}

Clearly fa(λ) is an fuzzy soft subgroup of GL.
To prove that fa(λ) is an M-N fuzzy soft subgroup of GL.
Let fa(λ) ∈GL, then

(i) fa(λ)(mfa(x))= fa(λ)( fa(mx))

=λ(mx)

≥λ(x), (by the definition A(mx)≥ A(x))

= fa(λ) fa(x).

Therefore,
fa(λ)(mfa(x))= fa(λ) fa(x).

(ii) fa(λ)( fa(x)n)= fa(λ)( fa(xn))

=λ(xn)

≥λ(x) (by the definition A(xn)≥ A(x))

= fa(λ) fa(x).

Therefore
fa(λ)( fa(x)n)= fa(λ) fa(x).

Hence fa(λ) is an M-N fuzzy soft subgroup of GL.

Theorem 3.2. The M-N homomorphic pre- image of an M-N fuzzy soft subgroup of an M-N
group GL is an M-N fuzzy soft subgroup of an M-N group G.

Proof. Let fa : G →GL is said be an M-N homomorphism of fuzzy soft subgroup.
Let µ be an fuzzy set on the M-N fuzzy subgroup of GL.
Now

λ(xy)=µ( fa(xy)), (for all a ∈ A and x, y ∈G)

=µ( fa(x) fa(y)) (since fa is an homomorphism)

≥min{µ fa(x),µ fa(y)} (since µ is an fuzzy subgroup of GL)

=min{λ(x),λ(y)}.

That is,

λ(xy)≥min{λ(x),λ(y)},

Let x ∈G,

λ(X−L)=µ( fa(x−l))

=µ( fa(x)−i) (since fa is an homomorphism of fuzzy soft subgroup)
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=µ( fa(x)) (since µ is an M-N fuzzy subgroup of GL)

=λ(x)

λ(X−l)≥λ(x)

Clearly,

λ(mx)=µ( fa(mx)) (for some m ∈ M and x ∈G)

=µ(mfa(x)) (since fa is an M-N homomorphism of an fuzzy soft group)

≥µ fa(x) (since µ M-N fuzzy subgroup of G)

=λ(x) .

That is ,

λ(mx)≥λ(x).

Then

λ(xn)=µ( fa(xn)) (for some n ∈ N and x ∈G)

=µ(nfa(x)) (since fa is an M-N homomorphism of an fuzzy soft group)

≥µ fa(x) (since µ M-N fuzzy subgroup of G)

=λ(x).

That is

λ(xn)≥λ(x).

Hence λ is an M -N fuzzy subgroup of G.

Theorem 3.3. If fa : G →GL is an M-N homomorphism of an fuzzy soft subgroup of a group G,
then,

(i) fa(e)= eL, where eL is the unity element of GL,

(ii) fa(x−l)= fa(x)−l for all x ∈G.

Proof. Given that fa : G →GL is an M-N homomorphism of an fuzzy soft subgroup of a group G,

(i) ⇒ Suppose

fa(mx)eL = fa(mx)= fa(x) (for some m ∈ M, a ∈ A and x ∈G)

= fa(xe) (since e is an identity element in G)

= fa(x) fa(e) (since fa is an homomorphism of

an fuzzy soft subgroup)

fa(x)eL = fa(x) fa(e) (by left cancellation law)

Therefore, fa(e)= eL.

Similarly, we can prove that

fa(xn)eL = fa(xn)= fa(x). (for some n ∈ N, a ∈ A and x ∈G)
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That implies fa(e)= eL.

(ii) We know that

eL = fa(me) (since A(mx)≥ A(x))

= fa(e)

= fa(xx−l)

= fa(x) fa(x−l) (since fa is an homomorphism of

an fuzzy soft subgroup)

eL( fa(x))−l = fa(x−l)

( fa(x))−l = fa(x−l).

Similarly, we can prove that

eL = fa(en) (since A(xn)≥ A(x)).

That implies

( fa(x))−l = fa(x−l).

Hence the proof.

Definition 3.3. Let µ be an M-N fuzzy subgroup of an M-N group G. Then M-N subgroup µt for
t ∈ [0,1] and t ≥µ(e), are called level M-N subgroup of µ.

Theorem 3.4. The M-N homomorphic image of a level M-N subgroup of an M-N fuzzy subgroup
µ of an M-N group G is a level M-N subgroup of an M-N fuzzy soft subgroup fa(µ) of an M-N
soft subgroup GL, where µ is fa-soft invariant.

Proof. Let G and GL be any two M-N group.
Let fa : G →GL be an M-N homomorphism of an fuzzy soft subgroup of a group G.
Let µ be an M-N fuzzy subgroup of G.
Clearly, fa(µ) is an M-N fuzzy soft subgroup of GL.
Let µt be a level M-N subgroup of an M-N fuzzy subgroup µ of G.
Since fa is an M-N homomorphism fuzzy soft subgroup, fa(µ) is an M-N soft subgroup fa(µ) of
GL and fa(µt)= ( fa(µ))t.
Hence ( fa(µ))t is a level M-N soft subgroup fa(µ) of GL.

Theorem 3.5. The M-N homomorphism pre-image of a level M-N soft subgroup of an M-N fuzzy
subgroup µ of an M-N group GL is a level M-N subgroup of an M-N fuzzy soft subgroup f −l

a (µ)
of an M-N group G.

Proof. Let a ∈ A, m ∈ M and n ∈ N .
Let G and GL be any two M-N group.
Let fa : G →GL be an M-N homomorphism of an fuzzy soft subgroup of a group G.
Let µ be an M-N fuzzy subgroup of GL.
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Clearly, f −l
a (mµ)= f −l

a (µ) and f −l
a (µn)= f −l

a (µ) is an M-N fuzzy soft subgroup of G.
Let µt be a level M-N subgroup of an M-N fuzzy subgroup µ of GL.
Since fa is an M-N homomorphism fuzzy soft subgroup, f −l

a (µt) is an M-N soft subgroup of
f −l
a (µ) of G and f −l

a (µt)= ( f −l
a (µ))t is an M-N soft subgroup of an M-N fuzzy soft subgroup f −l

a (µ)
of G.
That is ( f −l

a (µ))t is a level M-N subgroup of an M-N fuzzy soft subgroup f −l
a (µ) of G.

Hence the proof.

4. Conclusion
The primary findings in this paper are based on the concept of fuzzy soft subgroups under M-N
homomorphism [7,10]. We also defined the M-N level subsets of the fuzzy soft subgroup and
highlighted some of its basic features.
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