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1. Introduction
Variational inequalities and inclusions are important and fascinating mathematical problems
that have been thoroughly investigated in recent years due to their wide range of applications
in optimization and control, physics, mechanics, economics and transportation, equilibrium
and engineering sciences, nonlinear programming, and so on (see, for example, [2–4, 6, 16]).
Many iterative methods for solving variational inequalities have been developed, but for
convergence, the underlying mapping over the feasible set must be strongly monotone.
Strong monotonicity is a stronger concept than cocoercivity. A Lipschitz continuous and
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strongly monotone mapping is cocoercive, whereas a cocoercive mapping is monotone but
not necessarily strongly or strictly monotone. When the underlying mapping is cocoercive and
affine, Marcotte and Wu [15], and Tseng [19] explored the convergence of iterative methods. Zhu
and Marcotte [21] investigated iterative schemes for solving nonlinear variational inequalities
under the cocoercivity assumptions.

To study different variational inequalities and variational inclusions, Zou and Huang [22]
presented and investigated in Banach spaces, the H(·, ·)-accretive mapping and its resolvent
operator, Ahmad et al. [1] presented and investigated H(·, ·)-cocoercive mapping and its resolvent
operator in real Hilbert spaces, Sahu et al. [18] proved the existence of solutions in semi-
inner product spaces for a family of nonlinear implicit variational inclusion problems. Using
the generalized resolvent technique, Bhat and Zahoor [5] recently introduced and analyzed
the (H,ϕ)-η-monotone mapping in semi-inner product space and discovered the existence
of solutions to generalized variational inclusion problems. They proposed an algorithm and
performed a sequence convergence analysis. Gupta and Singh [8, 9] recently developed and
analyzed H(·, ·, ·)-ϕ-η-cocoercive mapping in semi-inner product spaces, demonstrating the
existence of a solution to the set-valued variational-like inclusion and fixed point problem. Ram
and Iqbal [17] introduced and studied the H(·, ·, ·, ·)-ϕ-η-cocoercive operator and used it to solve
a variational-like inclusion including an infinite family of set-valued mappings in semi-inner
product spaces using the resolvent equation technique.

In light of recent exciting advances in this field, we investigate a mapping so-called H(·, ·, ·, ·)-
ϕ-η-cocoercive mapping in semi-inner product spaces. We define the H(·, ·, ·, ·)-ϕ-η-cocoercive
mapping’s resolvent operator and show that it is single-valued and Lipschitz continuous. Finally,
we use these new ideas to solve a variational inclusions problem in semi-inner product spaces,
and also provide an example to support the main finding.

First and foremost, we must review the following definitions and key ideas that will be used
throughout the paper.

Definition 1.1 ([13,18]). Consider the vector space E over the field F (= R or C). If a functional
[·, ·] : E×E → F meets the following criteria, it is called a semi-inner product:

(i) [a1 +a2,b1]= [a1,a1]+ [a2,b1], for all a1,a2,b1 ∈ E,

(ii) [αa1,b1]=α[a1,b1], for all α ∈ F , a1,b1 ∈ E,

(iii) [a1,a1]≥ 0, for a1 ̸= 0,

(iv) |[a1,b1]|2 ≤ [a1,a1][b1,b1], for all a1,b1 ∈ E.

The pair (E, [·, ·]) is referred as semi-inner product space.

We can claim that every semi-inner product space is a normed linear space because
∥a1∥ = [a1,a1]

1
2 is a norm on E. Every normed linear space, on the other hand, can be

transformed into a semi-inner product space in an unlimited number of ways. Giles [7]
demonstrated that defining a semi-inner product uniquely is possible if the underlying space E
is a uniformly convex smooth Banach space. Giles [7], Lumer [13], and Koehler [12] provide a
detailed research and foundational results on semi-inner product spaces.

Communications in Mathematics and Applications, Vol. 13, No. 2, pp. 477–491, 2022



Generalized Monotone Mappings with an Application to Variational Inclusions: T. Ram and M. Iqbal 479

Definition 1.2. [18, 20] Consider the real-Banach space E. The modulus of smoothness
ρE : [0,∞)→ [0,∞) of E is defined as

ρE(t)= sup
{∥a1 +b1∥+∥a1 −b1∥

2
−1 : ∥a1∥ = 1, ∥b1∥ = t, t > 0

}
.

E is considered to be uniformly smooth if lim
t→0

ρE(t)
t = 0.

For p > 1, E is said to be p-uniformly smooth if there exists a real constant c > 0 such that
ρE(t)≤ ctp .
If there is a real constant c > 0 such that ρE(t)≤ ct2, then E is said to be 2-uniformly smooth.

Lemma 1.3 ([18,20]). Let E be a smooth Banach space and p > 1 be a real number. The following
statements are identical in this case:

(i) E is 2-uniformly smooth.

(ii) There is a constant c > 0, such that the following inequality holds for every a1,b1 ∈ E.

∥a1 +b1∥2 ≤ ∥a1∥2 +2〈b1, ga1〉+ c∥b1∥2, (1.1)

where ga1 ∈ J(a1) and J(a1) = {a1
∗ ∈ E∗ : 〈a1,a1

∗〉 = ∥a1∥2 and ∥a1
∗∥ = ∥a1∥} is the

normalized duality mapping, where E∗ denotes the dual space of E.

Remark 1.4 ([18]). Every normed linear space is a semi-inner product space (see [13]). Indeed,
according to the Hahn-Banach theorem, for each a1 ∈ E, there exists at least one functional
ga1 ∈ E∗ such that 〈a1, ga1〉 = ∥a1∥2. Given any such mapping g from E into E∗, we can verify
that [b1,a1] = 〈b1, ga1〉 defines a semi-inner product. As a result, the inequality (1.1) can be
written as

∥a1 +b1∥2 ≤ ∥a1∥2 +2[b1,a1]+ c∥b1∥2, for all a1,b1 ∈ E. (1.2)

The constant c is chosen to be the smallest possible value. We refer to c as the constant of
smoothness of E.

The rest part of the paper is laid out as follows:

We present several definitions in Section 2, which are essential for the subsequent sections.
We offer various definitions and assumptions in Section 3 to verify the Lipschitz continuity
of the resolvent operator. We prove lemmas and construct an algorithm to prove the strongly
convergence and uniqueness of the solutions of the resolvent equation corresponding to the
set-valued variational inclusion problem. As an application, an example demonstrating the
validity of the main result is provided in Section 4.

2. Preliminaries
Let E be a Banach space that is 2-uniformly smooth. ∥ ·∥ and E∗ are its norm and topological
dual space, respectively. The dual pair of E and E∗ is represented by the semi-inner product
[·, ·]. In order to proceed on the next level, we need to review some basic concepts that will be
useful in the subsequent sections.
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Definition 2.1 ([14, 18]). Let E represent a real 2-uniformly smooth Banach space, and
η : E×E → E and L : E → E represent single-valued mappings. Then L is said to be:

(i) (r,η)-strongly monotone, if there exists a constant r > 0 such that

[L(a)−L(b),η(a,b)]≥ r∥a−b∥2, for all a,b ∈ E,

(ii) (s,η)-cocoercive, if there exists a constant s > 0 such that

[L(a)−L(b),η(a,b)]≥ s∥L(a)−L(b)∥2, for all a,b ∈ E,

(iii) (s′,η)-relaxed cocoercive, if there exists a constant s′ > 0 such that

[L(a)−L(b),η(a,b)]≥−s′∥L(a)−L(b)∥2, for all a,b ∈ E,

(iv) α-expansive, if there exists constant α> 0 such that

∥L(a)−L(b)∥ ≥α∥a−b∥ , for all a,b ∈ E,

(v) η is said to be τ-Lipschitz continuous, if there exists constant τ> 0 such that

∥η(a,b)∥ ≤ τ∥a−b∥, for all a,b ∈ E.

Definition 2.2 ([11]). Let L, M, N,O : E → E, η : E×E → E, H : E×E×E×E → E are single-
valued mappings, then

(i) H(L, ·, ·, ·) is (µ1,η)-cocoercive with respect to L, if there exists constant µ1 > 0 such that

[H(La1,u,u,u)−H(La2,u,u,u),η(a1,a2)]≥µ1∥La1 −La2∥2, for all u,a1,a2 ∈ E,

(ii) H(·, M, ·, ·) is (µ2,η)-cocoercive with respect to M, if there exists constant µ2 > 0 such that

[H(u, Ma1,u,u)−H(u, Ma2,u,u),η(a1,a2)]≥µ2∥Ma1 −Ma2∥2, for all u,a1,a2 ∈ E,

(iii) H(·, ·, N, ·) is (γ,η)-relaxed cocoercive with respect to N , if there exists constant γ> 0 such
that

[H(u,u, Na1,u)−H(u,u, Na2,u),η(a1,a2)]≥−γ∥Na1 −Na2∥2, for all u,a1,a2 ∈ E,

(iv) H(·, ·, ·,O) is (δ,η)-strongly monotone with respect to O, if there exists constant δ> 0 such
that

[H(u,u,u,Oa1)−H(u,u,u,Oa2),η(a1,a2)]≥ δ∥a1 −a2∥, for all u,a1,a2 ∈ E,

(v) H(L, ·, ·, ·) is κ1-Lipschitz continuous with respect to L, if there exists constant κ1 > 0 such
that

∥H(La1,u,u,u)−H(La2,u,u,u)∥ ≤ κ1∥a1 −a2∥, for all u,a1,a2 ∈ E.

For other components, we can define the Lipschitz continuity for H(·, ·, ·, ·) in the same way.

Let Q : E → 2E be a set-valued mapping, and G (Q) = {(a,b) : b ∈ Q(a)} be the graph of Q.
The domain of Q is defined as

Dom(Q)= {a ∈ E : ∃ b ∈ E : (a,b) ∈G (Q)}.

The Range of Q is defined as

Ran(Q)= {b ∈ E : ∃ a ∈ E : (a,b) ∈G (Q)}.
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The inverse of Q is defined as

Q−1 = {(b,a) : (a,b) ∈G (Q)}.

Let R and Q be any two set-valued mappings, and ρ is any real integer, we define

R+Q = {(a,b1 +b2) : (a,b1) ∈G (R), (a,b2) ∈G (Q)},

ρQ = {(a,ρb) : (a,b) ∈G (Q)}.

For any type of mapping A and Q : E → 2E , which is a set-valued mapping, we define

A+Q = {(a,b1 +b2) : Aa = b1, (a,b2) ∈G (Q)} . (see [5])

Definition 2.3 ([14,18]). A set-valued mapping Q : E → 2E is said to be (m,η)-relaxed monotone,
if ∃ a constant m > 0 such that

[a∗−b∗,η(a,b)]≥−m∥a−b∥2, for all a,b ∈ E, a∗ ∈Q(a), b∗ ∈Q(b).

Definition 2.4. Let G,η : E×E → E be the mappings. Then G(·, ·) is said to be:

(i) (t,η)-relaxed monotone with respect to first component, if there exist a constant t > 0 such
that

[G(a, z)−G(b, z),η(a,b)]≥−t∥a−b∥2, for all a,b, z ∈ E.

(ii) ϵ1-Lipschitz continuous with respect to first component, if there exist a constant ϵ1 > 0
such that

∥G(a, z)−G(b, z)∥ ≤ ϵ1∥a−b∥2, for all a,b, z ∈ E.

Definition 2.5 ([8]). The Hausdorff metric D (·, ·) on CB(E), is defined by

D (A,B)=max
{

sup
a∈A

inf
b∈B

d(a,b),sup
b∈B

inf
a∈A

d(a,b)
}

, A,B ∈ CB(E),

where d(·, ·) represents the induced metric on E and CB(E) represents the family of all nonempty
closed and bounded subsets of E.

Definition 2.6 ([8]). A set-valued mapping S : E → CB(E) is D -Lipschitz continuous with
constant λS > 0, if

D (Sa,Sb)≤λS∥a−b∥, for all a,b ∈ E.

3. Generalized H(·, ·, ·, ·)-ϕ-η-cocoercive Mapping
This section contains various definitions and assumptions which are used to prove main results
associated with the generalized H(·, ·, ·, ·)-ϕ-η-cocoercive operator.

Let E be a Banach space that is 2-uniformly smooth. Assume η : E×E → E, H : E×E×E×E →
E and ϕ,L, M, N,O : E → E represents single-valued mappings and Q : E → 2E represents a
set-valued mapping.

Definition 3.1. Let H(·, ·, ·, ·) is (µ1,η)-cocoercive with respect to L with non-negative constant
µ1, (µ2,η)-cocoercive with respect to M with non-negative constant µ2, (γ,η)-relaxed cocoercive
with respect to N with non-negative constant γ and (δ,η)-strongly monotone with respect to O
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with non-negative constant δ. Then Q is called generalized H(·, ·, ·, ·)-ϕ-η-cocoercive with respect
to L, M, N and O if

(i) ϕ◦Q is (m,η)-relaxed monotone,

(ii) (H(·, ·, ·, ·)+λϕ◦Q)(E)= E, λ> 0.

We now need to make the following assumptions:

(A1) Let H(·, ·, ·, ·) is (µ1,η)-cocoercive with respect to L with non-negative constant µ1, (µ2,η)-
cocoercive with respect to M with non-negative constant µ2, (γ,η)-relaxed cocoercive with
respect to N with non-negative constant γ and (δ,η)-strongly monotone with respect to O
with non-negative constant δ with µ1,µ2 > γ.

(A2) Let L is α1-expansive, M is α2-expansive and N is β-Lipschitz continuous with α1,α2 >β.

(A3) Let η is τ-Lipschitz continuous.

(A4) Let Q is generalized H(·, ·, ·, ·)-ϕ-η-cocoercive operator with respect to L, M, N and O.

Theorem 3.2. Suppose Assumptions (A1), (A2) and (A3) hold good with ℓ = µ1α1
2 +µ2α2

2 −
γβ2 +δ> mλ, then (H(L, M, N,O)+λϕ◦Q)−1 is single-valued.

Proof. Let v,w ∈ (H(L, M, N,O)+λϕ◦Q)−1(u) for any given u ∈ E. It is obvious that{
−H(Lv, Mv, Nv,Ov)+u ∈λϕ◦Q(v),
−H(Lw, Mw, Nw,Ow)+u ∈λϕ◦Q(w).

Since ϕ◦Q is (m,η)-relaxed monotone in the first component, we have

−mλ∥v−w∥2 ≤ [−H(Lv, Mv, Nv,Ov)+u− (−H(Lw, Mw, Nw,Ow)+u),η(v,w)]

= [−H(Lv, Mv, Nv,Ov)+H(Lw, Mw, Nw,Ow),η(v,w)]

=−[H(Lv, Mv, Nv,Ov)−H(Lw, Mv, Nv,Ov),η(v,w)]

− [H(Lw, Mv, Nv,Ov)−H(Lw, Mw, Nv,Ov),η(v,w)]

− [H(Lw, Mw, Nv,Ov)−H(Lw, Mw, Nw,Ov),η(v,w)]

− [H(Lw, Mw, Nw,Ov)−H(Lw, Mw, Nw,Ow),η(v,w)].

Since Assumption (A1) holds, we have

−mλ∥v−w∥2 ≤−µ1∥Lv−Lw∥2 −µ2∥Mv−Mw∥2 +γ∥Nv−Nw∥2 −δ∥v−w∥2 .

Since Assumption (A2) holds, we have

−mλ∥v−w∥2 ≤−µ1α1
2∥v−w∥2 −µ2α2

2∥v−w∥2 +γβ2∥v−w∥2 −δ∥v−w∥2

=−(µ1α1
2 +µ2α2

2 −γβ2 +δ)∥v−w∥2 ,

0≤−(ℓ−mλ)∥v−w∥2 ≤ 0, where ℓ=µ1α1
2 +µ2α2

2 −γβ2 +δ.

Since µ1,µ2 > γ, α1,α2 > β, δ > 0, it follows that ∥v−w∥ ≤ 0 and hence v = w. Therefore,
(H(L, M, N,O)+λϕ◦Q)−1 is single-valued.
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Definition 3.3. Let Assumptions (A1), (A2) and (A4) hold good with ℓ=µ1α1
2+µ2α2

2−γβ2+δ>
mλ, then the resolvent operator RH(·,·,·,·)−η

Q,λ,ϕ : E → E is given as

RH(·,·,·,·)−η
Q,λ,ϕ (a)= (H(L, M, N,O)+λϕ◦Q)−1(a), for all a ∈ E. (3.1)

The next step is to show that the resolvent operator defined by (3.1) is Lipschitz continuous.

Theorem 3.4. Suppose Assumptions (A1)-(A4) hold good with ℓ=µ1α1
2 +µ2α2

2 −γβ2 +δ> mλ,
and η is τ-Lipschitz, then RH(·,·,·,·)−η

Q,λ,ϕ : E → E is τ
ℓ−mλ

-Lipschitz continuous, that is,∥∥∥RH(·,·,·,·)−η
Q,λ,ϕ (v)−RH(·,·,·,·)−η

Q,λ,ϕ (w)
∥∥∥≤ τ

ℓ−mλ
∥v−w∥ , for all v,w ∈ E.

Proof. Suppose v,w ∈ E be any given points, then from (3.1), we have

RH(·,·,·,·)−η
Q,λ,ϕ (v)= (H(L, M, N,O)+λϕ◦Q)−1(v),

RH(·,·,·,·)−η
Q,λ,ϕ (w)= (H(L, M, N,O)+λϕ◦Q)−1(w).

Let a0 = RH(·,·,·,·)−η
Q,λ,ϕ (v) and a1 = RH(·,·,·,·)−η

Q,λ,ϕ (w).{
λ−1 (v−H (L(a0), M(a0), N(a0),O(a0))) ∈ϕ◦Q(a0),
λ−1 (w−H (L(a1), M(a1), N(a1),O(a1))) ∈ϕ◦Q(a1).

Since ϕ◦Q is (m,η)-relaxed monotone in the first component, we have

[(v−H(L(a0), M(a0), N(a0),O(a0)))− (w−H(L(a1), M(a1), N(a1),O(a1))),η(a0,a1)]

≥−mλ∥a0 −a1∥2,

which implies

[v−w,η(a0,a1)]≥ [H(L(a0), M(a0), N(a0),O(a0))

−H(L(a1), M(a1), N(a1),O(a1)),η(a0,a1)]−mλ∥a0 −a1∥2.

Now, we have

∥v−w∥∥η(a0,a1)∥ ≥ [v−w,η(a0,a1)]

≥ [H(L(a0), M(a0), N(a0),O(a0))−H(L(a1), M(a1), N(a1),O(a1)),η(a0,a1)]

−mλ∥a0 −a1∥2.

Since Assumption (A1), (A2), (A3) hold and η is τ-Lipschitz continuous, we have

∥v−w∥τ∥a0 −a1∥ ≥ (ℓ−mλ)∥a0 −a1∥2 or∥∥∥RH(·,·,·,·)−η
Q,λ,ϕ (v)−RH(·,·,·,·)−η

Q,λ,ϕ (w)
∥∥∥≤ τ

ℓ−mλ
∥v−w∥, for all v,w ∈ E.

Hence, we get the required result.

4. Formulation of the Problem and Existence of Solution
In this section, our main aim is to formulate a generalized set-valued variational inclusion
problem and establish the existence of a solution by using generalized H(·, ·, ·, ·)-ϕ-η-cocoercive
operator, under certain assumptions.
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Let E be 2-uniformly smooth Banach space. Let V ,T : E → CB(E) be the set-valued
mappings, and let L, M, N,O, g,ϕ : E → E, η,G : E×E → E and H(·, ·, ·, ·) : E×E×E×E → E be
single-valued mappings. Suppose that the set-valued mapping Q : E → 2E be a generalized
H(·, ·, ·, ·)-ϕ-η-cocoercive operator with respect to L, M, N and O and Ran(g)∩DomQ ̸=φ. We
consider the following generalized set-valued variational inclusion problem:

Find a ∈ E, b ∈V (a) and z ∈ T(a) such that

0 ∈G(b, z)+Q(g(a)). (4.1)

If E is a real Hilbert space and Q is a maximal monotone operator, then the problem (4.1) is
identical to that investigated by Huang et al. [10].

Lemma 4.1. Let us consider the mapping ϕ : E → E such that ϕ(b + z) = ϕ(b)+ϕ(z) and
Ker(ϕ)= {0}, where Ker(ϕ)= {b ∈ E :ϕ(b)= 0}. Then (a,b, z), where a ∈ E, b ∈V (a) and z ∈ T(a)
is a solution of problem (4.1) if and only if (a,b, z) satisfies the following relation:

g(a)= RH(·,·,·,·)−η
Q,λ,ϕ [H(L(ga), M(ga), N(ga),O(ga))−λϕ◦G(b, z)]. (4.2)

The resolvent equation corresponding to generalized set-valued variational inclusion
problem (4.1).

ϕ◦G(b, z)+λ−1JH(·,·,·,·)−η
Q,λ,ϕ (x)= 0, (4.3)

where λ> 0,

JH(·,·,·,·)−η
Q,λ,ϕ (x)= [I −H(L(RH(·,·,·,·)−η

Q,λ,ϕ (x)), M(RH(·,·,·,·)−η
Q,λ,ϕ (x)), N(RH(·,·,·,·)−η

Q,λ,ϕ (x)),O(RH(·,·,·,·)−η
Q,λ,ϕ (x)))],

I is the identity mapping and

H(L, M, N,O)[RH(·,·,·,·)−η
Q,λ,ϕ (x)]

= H(L(RH(·,·,·,·)−η
Q,λ,ϕ (x)), M(RH(·,·,·,·)−η

Q,λ,ϕ (x)), N(RH(·,·,·,·)−η
Q,λ,ϕ (x)),O(RH(·,·,·,·)−η

Q,λ,ϕ (x))).

Now, we show that the problem (4.1) is equivalent to the resolvent equation problem (4.3).

Lemma 4.2. (a,b, z), where a ∈ E, b ∈ V (a) and z ∈ T(a) is a solution of problem (4.1) if and
only if the resolvent equation problem (4.3) has a solution (x,a,b, z) with x,a ∈ E, b ∈V (a) and
z ∈ T(a), where

g(a)= RH(·,·,·,·)−η
Q,λ,ϕ (x) (4.4)

and x = H(L(ga), M(ga), N(ga),O(ga))−λϕ◦G(b, z).

Proof. Let (a,b, z) be the solution of problem (4.1), and from Lemma 4.1 using the fact that

JH(·,·,·,·)−η
Q,λ,ϕ = [I −H(L(RH(·,·,·,·)−η

Q,λ,ϕ ), M(RH(·,·,·,·)−η
Q,λ,ϕ ), N(RH(·,·,·,·)−η

Q,λ,ϕ ),O(RH(·,·,·,·)−η
Q,λ,ϕ ))],

JH(·,·,·,·)−η
Q,λ,ϕ (x)= JH(·,·,·,·)−η

Q,λ,ϕ

[
H(L(ga), M(ga), N(ga),O(ga))−λϕ◦G(b, z)

]
= [I −H(L(RH(·,·,·,·)−η

Q,λ,ϕ ), M(RH(·,·,·,·)−η
Q,λ,ϕ ), N(RH(·,·,·,·)−η

Q,λ,ϕ ),O(RH(·,·,·,·)−η
Q,λ,ϕ ))]

· [H(L(ga), M(ga), N(ga),O(ga))−λϕ◦G(b, z)]

= [H(L(ga), M(ga), N(ga),O(ga))−λϕ◦G(b, z)]
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− (H(L(RH(·,·,·,·)−η
Q,λ,ϕ ), M(RH(·,·,·,·)−η

Q,λ,ϕ ), N(RH(·,·,·,·)−η
Q,λ,ϕ ),O(RH(·,·,·,·)−η

Q,λ,ϕ )))

· (H(L(ga), M(ga), N(ga),O(ga))−λϕ◦G(b, z))

= [H(L(ga), M(ga), N(ga),O(ga))−λϕ◦G(b, z)]

−H(L(ga), M(ga), N(ga),O(ga))

=−λϕ◦G(b, z).

This implies that

ϕ◦G(b, z)+λ−1JH(·,·,·,·)−η
Q,λ,ϕ (x)= 0.

Conversely, let (x,a,b, z) is a solution of resolvent equation problem (4.3), then

JH(·,·,·,·)−η
Q,λ,ϕ (x)=−λϕ◦G(b, z)[
I −H(L(RH(·,·,·,·)−η

Q,λ,ϕ ), M(RH(·,·,·,·)−η
Q,λ,ϕ ), N(RH(·,·,·,·)−η

Q,λ,ϕ ),O(RH(·,·,·,·)−η
Q,λ,ϕ ))

]
(x)=−λϕ◦G(b, z)

x−H(L(ga), M(ga), N(ga),O(ga))=−λϕ◦G(b, z).

This implies that

x = H(L(ga), M(ga), N(ga),O(ga))−λϕ◦G(b, z).

Hence (a,b, z) is a solution of variational inclusion problem (4.1).

From numerical point of view, Lemma 4.1 and Lemma 4.2 are quite essential. They allow us
to propose an iterative algorithm for finding the approximate solution of (4.3) as follows:

Algorithm 1 (Iterative Algorithm).
For any given (x0,a0,b0, z0), we can choose x0,a0 ∈ E, b0 ∈V (a0),
and z0 ∈ T(a0) and 0< ϵ< 1 such that sequences {xn}, {an}, {bn},
and {zn} satisfy

g(an)= RH(·,·,·,·)−η
Q,λ,ϕ (xn),

bn ∈V (an), ∥bn −bn+1∥ ≤D (V (an),V (an+1))+ϵn+1∥an +an+1∥,
zn ∈ T(an), ∥zn − zn+1∥ ≤D (T(an),T(an+1))+ϵn+1∥an −an+1∥,
xn+1 = H(L(gan), M(gan), N(gan),O(gan))−λϕ◦G(bn, zn),

where λ> 0, k ≥ 0 and D (·, ·) is a Hausdorff metric on CB(X ).

Next, we find the convergence of the iterative algorithm for the resolvent equation problem
(4.3), which corresponds to the generalized set-valued variational inclusion problem (4.1).

Theorem 4.3. Let us consider the problem (4.1) with Assumptions (A1)-(A4) and ϕ : E → E be a
single-valued mapping with ϕ(b+ z)=ϕ(b)+ϕ(z) and Ker(ϕ)= {0}. Assume that

(i) V and T are λV and λT D -Lipschitz continuous, respectively,

(ii) ϕ◦G is (t,η)-relaxed monotone with respect to first component,

(iii) ϕ◦G is ϵ1, ϵ2-Lipschitz continuous with respect to first and second component, respectively,

(iv) H(L, M, N,O) is κ1, κ2, κ3, κ4-Lipschitz continuous with respect to L, M, N and O,
respectively,
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(v) g is r-strongly monotone and λg-Lipschitz continuous,

(vi) 0<
√

{λg
2κ2 +2tλλV

(
λgκ+τλV

)+ϵ12λ2λV
2}< (1−

√
1−2r+λg

2)(ℓ−mλ)
τ

−ϵ2λλT ,
where κ= κ1 +κ2 +κ3 +κ4.

Then the iterative sequences {xn}, {an}, {bn} and {zn} generated by Algorithm 1 converges strongly
to the unique solution (x,a,b, z) of the resolvent equation problem (4.3).

Proof. Using λV ,λT -D Lipschitz continuity of V , T and Algorithm 1 , we have

∥bn −bn−1∥ ≤D (V (an),V (an−1))+ϵn∥an −an−1∥ ≤ {λV +ϵn}∥an −an−1∥, (4.5)

∥zn − zn−1∥ ≤D (T(an),T(an−1))+ϵn∥an −an−1∥ ≤ {λT +ϵn}∥an −an−1∥, (4.6)

where n = 1,2,3, . . ..
We now compute

∥xn+1 − xn∥ = ∥H(L(gan), M(gan), N(gan),O(gan))

−H(L(gan−1), M(gan−1), N(gan−1),O(gan−1))

−λ(ϕ◦G(bn, zn)−ϕ◦G(bn−1, zn−1))∥
≤ ∥H(L(gan), M(gan), N(gan),O(gan))

−H(L(gan−1), M(gan−1), N(gan−1),O(gan−1))

−λ(ϕ◦G(bn, zn)−ϕ◦G(bn−1, zn))∥
+λ∥∥ϕ◦G(bn−1, zn)−ϕ◦G(bn−1, zn−1)

∥∥ . (4.7)

∥H(L(gan), M(gan), N(gan),O(gan))−H(L(gan−1), M(gan−1), N(gan−1),O(gan−1))

−λ(ϕ◦G(bn, zn)−ϕ◦G(bn−1, zn))∥2

≤ ∥H(L(gan), M(gan), N(gan),O(gan))−H(L(gan−1), M(gan−1), N(gan−1),O(gan−1))∥2

−2λ[ϕ◦G(bn, zn)−ϕ◦G(bn−1, zn),η(bn,bn−1)]+2λ∥ϕ◦G(bn, zn)−ϕ◦G(bn−1, zn)∥
× {∥H(L(gan), M(gan), N(gan),O(gan))−H(L(gan−1), M(gan−1), N(gan−1),O(gan−1))∥
+∥η(bn,bn−1)∥}+λ2∥ϕ◦G(bn, zn)−ϕ◦G(bn−1, zn)∥2. (4.8)

Since H(L, M, N,O) is κ1,κ2,κ3,κ4-Lipschitz continuous with respect to L, M, N,O, respectively,
we have

∥H(L(gan), M(gan), N(gan),O(gan))−H(L(gan−1), M(gan−1), N(gan−1),O(gan−1))∥2

≤λg
2κ2∥an −an−1∥2, (4.9)

where κ= κ1 +κ2 +κ3 +κ4.
Since ϕ◦G is (t,η)-relaxed monotone, then we have

[ϕ◦G(bn, zn)−ϕ◦G(bn−1, zn),η(bn,bn−1)]≥−t{λV +ϵn}2∥an −an−1∥2. (4.10)

As ϕ◦G(·, ·) is ϵ1,ϵ2-Lipschitz continuous in the first, second components, respectively and using
(4.5), (4.6), we have

∥ϕ◦G(bn, zn)−ϕ◦G(bn−1, zn)∥ ≤ ϵ1{λV +ϵn}∥an −an−1∥, (4.11)

∥ϕ◦G(bn−1, zn)−ϕ◦G(bn−1, zn−1)∥ ≤ ϵ2{λT +ϵn}∥an −an−1∥. (4.12)
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By using Assumption (A3) and (4.9)-(4.12) in (4.8), we have

∥H(L(gan), M(gan), N(gan),O(gan))−H(L(gan−1), M(gan−1), N(gan−1),O(gan−1))

−λ(ϕ◦G(bn, zn)−ϕ◦G(bn−1, zn))∥
≤

√
[λg

2κ2+2tλ{λV+ϵn}2+2ϵ1λ{λV+ϵn}{λgκ+τ{λV+ϵn}}+ϵ12λ2{λV+ϵn}2]

×∥an−an−1∥. (4.13)

Using (4.12) and (4.13) in (4.7), we have

∥xn+1 − xn∥ ≤
[√[

λg
2κ2 +2tλ{λV +ϵn}2 +2ϵ1λ{λV +ϵn}

{
λgκ+τ{λV +ϵn}

}+ϵ12λ2{λV +ϵn}2
]

+ϵ2λ{λT +ϵn}
]×∥an −an−1∥. (4.14)

By Lipschitz continuity of resolvent operator and condition (v), we have

∥an −an−1∥ = ∥an −an−1 − (g(an)− g(an−1))+RH(·,·,·,·)−η
Q,λ,ϕ (xn)−RH(·,·,·,·)−η

Q,λ,ϕ (xn−1)∥
≤ ∥an −an−1 − (g(an)− g(an−1))∥+ τ

(ℓ−mλ)
∥xn − xn−1∥ , (4.15)

∥an −an−1 − (g(an)− g(an−1))∥2 ≤ (1−2r+λg
2)∥an −an−1∥2. (4.16)

Using (4.16) in (4.15), we have

∥an −an−1∥ ≤
√

1−2r+λg
2∥an −an−1∥+ τ

(ℓ−mλ)
∥xn − xn−1∥

∥an −an−1∥ ≤
[

τ

(1−
√

1−2r+λg
2)(ℓ−mλ)

]
∥xn − xn−1∥ (4.17)

Using (4.17) in (4.14), then (4.14) becomes

∥xn+1 − xn∥ ≤Ψ(ϵn)∥xn − xn−1∥, (4.18)

where

Ψ(ϵn)=

(
τ
√

{λg
2κ2 +2tλ{λV +ϵn}2 +2ϵ1λ{λV +ϵn}

(
λgκ+τ{λV +ϵn}

)+ϵ12λ2{λV +ϵn}2}
+τϵ2λ{λT +ϵn}

)
(
1−

√
1−2r+λg

2)(ℓ−mλ)
.

Since 0< ϵ< 1, this implies that Ψ(ϵn)→Ψ as n →∞, where

Ψ=
τ
[√

{λg
2κ2 +2tλλV

2 +2ϵ1λλV
(
λgκ+τλV

)+ϵ12λ2λV
2}+ϵ2λλT

]
(
1−

√
1−2r+λg

2)(ℓ−mλ)
.

From condition (vi), Ψ< 1, then {xn} is a Cauchy sequence in Banach space E, hence xn → x as
n →∞.
From (4.17), {an} is also a Cauchy sequence in Banach space E, then there exist a such that
an → a.
From (4.5)-(4.6) and Algorithm 1, the sequences {bn} and {zn} are also Cauchy sequences in
Banach space E. Thus, there exists b and z such that bn → b and zn → z as n →∞.

Next we prove that b ∈V (a). Since bn ∈V (a), then

d(b,V (a))≤ ∥b−bn∥+d(bn,V (a))
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≤ ∥b−bn∥+D (V (an),V (a))

≤ ∥b−bn∥+λV∥an −a∥→ 0, as n →∞,

which gives d(b,V (a))= 0. Since V (a) ∈ CB(E), we have b ∈V (a). Similarly, we can show that
z ∈ T(a).

By the continuity of RH(·,·,·,·)−η
Q,λ,ϕ , L, M, N, O, V , T, ϕ◦G, g, η and Q and Algorithm 1, we

know that a, b, z and x satisfy

xn+1 = [H(L(gan), M(gan), N(gan),O(gan))−ϕ◦G(bn, zn)],

→ x = [H(L(ga), M(ga), N(ga),O(ga))−ϕ◦G(b, z)] as n →∞
RH(·,·,·,·)−η

Q,λ,ϕ (xn)= g(an)→ g(a)= RH(·,·,·,·)−η
Q,λ,ϕ (x) as n →∞.

Now by using Lemma 4.2, we have

ϕ◦G(b, z)+λ−1(x−H(L(RH(·,·,·,·)−η
Q,λ,ϕ (x)), M(RH(·,·,·,·)−η

Q,λ,ϕ (x)), N(RH(·,·,·,·)−η
Q,λ,ϕ (x)),O(RH(·,·,·,·)−η

Q,λ,ϕ (x))))= 0.

Thus, we have

ϕ◦G(b, z)+λ−1JH(·,·,·,·)−η
Q,λ,ϕ (x)= 0. (4.19)

Hence (x,a,b, z) is a solution of the problem (4.3).

Example 4.4. Let E = R2 with usual inner product. Let V ,T : R2 → 2R2
are defined by

V a = Ta =
{( 1

n a1

1
n a2

)
: for all n ∈ N, a = (a1,a2) ∈ R2

}
.

Then, it is easy to check that

(i) V and T are 1
10 D -Lipschitz continuous for n=10.

Let ϕ : R2 → R2 be defined by

ϕ(a)=
( 1

5 a1

1
5 a2

)
, for all a = (a1,a2) ∈ R2

and G : R2 ×R2 → R2 be defined by

G(a1,a2)=
( 1

2 ai
1

1
2 ai

2

)
, i = 1,2, for all a1 = (a1

1,a1
2), a2 = (a2

1,a2
2) ∈ R2.

Then it is easy to show that

(ii) ϕ◦G is ( 1
10 ,η)-relaxed monotone with respect to first component,

(iii) ϕ ◦ G is 1
10 , 1

10 -Lipschitz continuous with respect to first and second component,
respectively.

Let L, M, N,O, g : R2 → R2 be defined by

L(a)=
( 1

20 a1

1
20 a2

)
, M(a)=

( 1
21 a1

1
21 a2

)
, N(a)=

( 1
22 a1

1
22 a2

)
,

O(a)=
( 1

23 a1

1
23 a2

)
, g(a)=

( 1
20 a1

1
20 a2

)
, for all a = (a1,a2) ∈ R2.
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Suppose that H : R2 ×R2 ×R2 ×R2 → R2 is defined by

H(La, Ma, Na,Oa)= La+Ma+Na+Oa, for all a ∈ R2.

Then, it is easy to check that

(iv) H(L, M, N,O) is 1
20 , 1

21 , 1
22 , 1

23 -Lipschitz continuous with respect to L, M, N and O,
respectively,

(v) g is 1
20 -strongly monotone and 1

20 -Lipschitz continuous.

Next, it is easy to check that

(vi) 0<
√

{λg
2κ2 +2tλλV

(
λgκ+τλV

)+ϵ12λ2λV
2}< (1−

√
1−2r+λg

2)(ℓ−mλ)
τ

−ϵ2λλT ,
where κ= 1

20 + 1
21 + 1

22 + 1
23 = 0.18.

Therefore, for the constants ℓ= 3, m = 2, r = λg = 1
20 , λV = λT = ϵ1 = ϵ2 = t = 1

10 , κ1 = 1
20 ,

κ2 = 1
21 , κ3 = 1

22 , κ4 = 1
23 , τ= 10, obtained in (i)-(vi), all the hypotheses of Theorem 4.3 are

satisfied for λ= 0.01.

5. Conclusion
The goal of this paper is to develop a novel mapping called H(·, ·, ·, ·)-ϕ-η-cocoercive mapping
that combines cocoercive and monotone mappings and defines its resolvent operator. We further
show that the resolvent operator associated with H(·, ·, ·, ·)-ϕ-η-cocoercive mapping is Lipschitz
continuous and single-valued. Finally, we establish an existence and convergence result for
a generalized set-valued variational inclusion problem using these ideas. An example is also
developed to support our findings. The obtained results generalize the majority of the findings in
the literature, implying a broad range of potential applications in future research on sensitivity
analysis, variational inequality problems, and variational inclusion problems in Banach spaces.
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