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1. Introduction
U. M. Swamy and G. C. Rao [10] introduced the concept of an Almost Distributive Lattice (ADL)
as a common abstraction of lattice and ring theoretic generalizations of a Boolean algebra. In [10]
it was proved that the commutativity of ∨, the commutativity of ∧, the right distributivity of
∨ over ∧ and the absorption law (x∧ y)∨ x = x are all equivalent to each other and whenever
any one of these properties holds, an ADL becomes a distributive lattice. The notion of a
pseudo-complementation of an ADL is introduced by Swamy et al. [11].
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The concepts of Stone ADL and its characterization in terms of its ideals are studied by
Swamy et al. [11]. Rafi et al. [6] studied δ-ideals in Pseudo-complemented ADLs.

A bounded distributive lattice that satisfies the property of dual endomorphism is called
an Ockham algebra [3]. Berman in [2] introduced an Ockham algebras which contains an
algebra called MS-algebras. The subclass of Ockham algebra that generalizes both de-Morgan
algebras and Stone algebras is called an MS-algebra, which is introduced by Blyth and Varlet
[3]. The class of all MS-algebras forms an equational class. The subvarieties of MS-algebras
is characterized by Blyth and Varlet [4], and Rao [8] studied about β-filter of MS-Algebra.
Furthermore, the concept of MS-ADL M is introduced by Addis [1].

Motivated by these results we introduce the notions of boosters and β-filters in M. The fact,
the class of boosters in M is a bounded distributive lattice is proved. Characterization of β-filters
of M in terms of boosters, and a dual homomorphism of M and the set of all boosters in M is
established. Further, it is shown that any maximal filter in M is a β-filter. Finally, the conditions
on which the lattice of boosters is a relatively complemented lattice are established.

2. Preliminaries
In the sequel, we use the following results:

Definition 2.1 ([10]). An almost distributive lattice is an algebra A = (A,∨,∧,0) satisfying
the following conditions:

(i) 0∧ r = 0,

(ii) r∨0= r,

(iii) r∧ (s∨ t)= (r∧ s)∨ (r∧ t),

(iv) r∨ (s∧ t)= (r∨ s)∧ (r∨ t),

(v) (r∨ s)∧ t = (r∧ t)∨ (s∧ t),

(vi) (r∨ s)∧ s = s,

for all r, s and t ∈ A.

Let x, y ∈ A, we read x is less than or equal to y and we write x ≤ y if x∧ y= x, equivalently
x∨ y= y. An element m ∈ A is maximal if m ≤ x implies m = x.

Lemma 2.2 ([7]). Consider an ADL A and m, s ∈ A, where m is maximal. The following are
equivalent:

(i) m is maximal with respect to ≤,

(ii) m∨ s = m,

(iii) m∧ s = s,

(iv) s∨m is maximal.
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Definition 2.3 ([7]). Let F be a nonempty subset of an ADL A. Then F is called a filter of A, if
for all p, q ∈ F and t ∈ A; p∧ q ∈ F and t∨ p ∈ F .

Definition 2.4 ([3]). Let (A,∨,∧,0,1) be a bounded distributive lattice and ◦ is a unary operation
that satisfies:

(i) 1◦ = 0,

(ii) (p∧ q)◦ = p◦∨ q◦,

(iii) p ≤ p◦◦,

for all p, q ∈ A. Then an algebra (A,∨,∧,◦ ,0,1) of type (2,2,1.0.0) is called an MS-algebra.

Lemma 2.5 ([4]). Let A be an MS-algebra and p, q ∈ A. Then

(i) 0◦ = 1,

(ii) p ≤ q ⇒ q◦ ≤ p◦,

(iii) p◦◦◦ = p◦,

(iv) (p∨ q)◦ = p◦∧ q◦,

(v) (p∨ q)◦◦ = p◦◦∨ q◦◦,

(vi) (p∧ q)◦◦ = p◦◦∧ q◦◦.

Definition 2.6 ([1]). Let (M,∨,∧,0) be an ADL with maximal elements and a unary operation
t 7→ t◦ on M satisfying the following:

(i) p◦◦∧ p = p,

(ii) (p∨ q)◦ = p◦∧ q◦,

(iii) (p∧ q)◦ = p◦∨ q◦,

(iv) m◦ = 0

for a maximal element m and p, q ∈ M. Then the algebra (M,∨,∧,◦ ,0) of type (2,2,1,0) is called
an MS-almost distributive lattice (MS-ADL).

Lemma 2.7 ([1]). For any elements r and s of an MS-ADL M the following conditions hold:

(i) 0◦ is maximal,

(ii) r ≤ s ⇒ s◦ ≤ r◦,

(iii) r◦◦◦ = r◦,

(iv) (r∧ s)◦◦ = r◦◦∧ s◦◦,

(v) (r∨ s)◦◦ = r◦◦∨ s◦◦,

(vi) (r∧m)◦ = r◦,

(vii) (r∧ s)◦ = (s∧ r)◦.

Let D be a filter of an MS-algebra A. Rao in [8] defined that D is said to be an e-filter of A
whenever D = De , where De = {s ∈ A | t◦∧ s◦ = s◦ for some t ∈ A}.
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Definition 2.8. Let D be a filter in an MS-ADL M. Define De = {r ∈ M | so ∧ ro = ro for some
s ∈ M}.

Theorem 2.9. Consider a filter D of an MS-ADL M. The following are equivalent:

(i) D is an e-filter,

(ii) For r ∈ M, roo ∈ D implies r∧m ∈ D,

(iii) For all r, s ∈ M, ro = so and r ∈ D implies s ∈ D.

The concept of β-filter of MS-algebra is given by Rao [8]. Next, we extend the concept of this
filter to β-filters of MS-ADLs. We consider an MS-ADL that contains more than one maximal
elements and define its booster. In MS-ADL the commutativity of “∨ and ∧”, and the right
distributivity of “∨” over “∧” do not hold. That is why even if some of the results seems to be
similar, the proofs are not.

3. β-Filters of MS-ADLs

The idea of boosters and β-filters in MS-ADL M are introduced in this section. Characterization
of β-filters of M in terms of boosters is also given.

Throughout the sequel M represents an MS-ADL.

Definition 3.1. For any r ∈ M, the booster of r is defined as follows:

(r)+ = {s ∈ M | ro ∨ s is maximal in M}.

Clearly, (0)+ = M and (m)+ = {s ∈ M | s is maximal in M}.

Lemma 3.2. For any t ∈ M, (t)+ is a filter of M.

Proof. Assume n be a maximal element in M. Using Lemma 2.2(iv) for any r ∈ M, r ∨ n
is a maximal element of M. Now, for any t ∈ M, to ∨ n is maximal. Hence n ∈ (t)+. That is
(t)+ is non empty. Let r, s ∈ (t)+, then to ∨ r and to ∨ s are maximal. Thus, we obtain that
to ∨ (r∧ s) = (to ∨ r)∧ (to ∨ s) = to ∨ s so that to ∨ (r∧ s) is maximal. Hence r∧ s ∈ (t)+. Now, let
r,u ∈ M, and s ∈ (t)+. Consequently we get

[to ∨ (r∨ s)]∧u = [(to ∨ r)∨ s]∧u

= [(to ∨ r)∧u]∨ (s∧u)

= [(r∨ to)∧u]∨ (s∧u)

= [(r∨ to)∨ s]∧u

= [r∨ (to ∨ s)]∧u

= u.

So that to ∨ (r∨ s) is maximal and hence r∨ s ∈ (t)+. Therefore, (t)+ is a filter in M.
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Lemma 3.3. Let r, s, t ∈ M. Then the following conditions hold:

(i) (s∨ t)+ = (t∨ s)+,

(ii) (s∧ t)+ = (t∧ s)+,

(iii) s ≤ t ⇒ (t)+ ⊆ (s)+,

(iv) so = to ⇒ (s)+ = (t)+,

(v) (s∨ t)+ = (s)+∩ (t)+,

(vi) (s)+ = (t)+ ⇒ (s∧ r)+ = (t∧ r)+ for all r ∈ M,

(vii) (s)+ = (t)+ ⇒ (s∨ r)+ = (t∨ r)+ for all r ∈ M,

(viii) (r)+ = M iff r = 0.

Proof. (i) Let p, q ∈ M. Then

p ∈ (s∨ t)+ ⇔ (s∨ t)o ∨ p is maximal

⇔ [(s∨ t)o ∨ p]∧ q = q

⇔ [(so ∧ to)∨ p]∧ q = q

⇔ [(so ∨ p)∧ (to ∨ p)]∧ q = q

⇔ [(to ∨ p)∧ (so ∨ p)]∧ q = q

⇔ [(p∨ to)∧ (p∨ so)]∧ q = q

⇔ [p∨ (to ∧ so)]∧ q = q

⇔ [(to ∧ so)∨ p]∧ q = q

⇔ [(t∨ s)o ∨ p]∧ q = q

⇔ [(t∨ s)o ∨ p] is maximal

⇔ p ∈ (t∨ s)+.

Hence (s∨ t)+ = (t∨ s)+.

(ii) Apply the same procedure as (i).

(iii) Let s ≤ t and x ∈ (t)+. Then to ≤ so and to ∨ x is maximal. It is important to note that to ≤ so

does not imply to∨x ≤ so∨x. But (so∨x)∧(to∨x)= ((so∨x)∧to)∨((so∨x)∧x)= ((so∧to)∨(x∧to))∨x =
(to∨(x∧ to))∨x = ((to∨x)∧ to)∨x = ((x∨ to)∧ to)∨x = to∨x which indicates that so∨x is maximal.
Therefore x ∈ (s)+.

(iv) It is direct.

(v) Clearly, s ≤ s∨ t, but it is not necessarily true that t ≤ s∨ t. For the former case by (iii)
it is obvious that (s∨ t)+ ⊆ (s)+. Since t ≤ t∨ s we have (t∨ s)+ ⊆ t+. From (i) we obtain that
(s∨ t)+ = (t∨ s)+ ⊆ t+. Hence (s∨ t)+ ⊆ t+. Therefore (s∨ t)+ ⊆ (s)+∩ (t)+.

Let x ∈ (s)+∩ (t)+. Then so ∨ x and to ∨ x are maximal elements of M.Then for any y ∈ M, we
get ((s∨ t)o∨ x)∧ y= ((so∧ to)∨ x)∧ y= ((so∨ x)∧ (to∨ x))∧ y= (to∨ x)∧ y= y. Hence (s∨ t)o∨ x is
maximal and therefore x ∈ (s∨ t)+. That indicates that (s)+∩ (t)+ ⊆ (s∨ t)+.
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(vi) Let (s)+ = (t)+ and x ∈ (s ∧ r)+. Then (s ∧ r)o ∨ x is maximal. Thus, for any y ∈ M,
[(s ∧ r)o ∨ x] ∧ y = [(so ∨ ro) ∨ x] ∧ y = y. Next, for any e, f , g,h ∈ M we apply one of the
most important properties of an ADL, i.e., [(e∨ f )∨ g]∧ h = [e∨ ( f ∨ g)]∧ h and we obtain
[so ∨ (ro ∨ x)]∧ y = [(so ∨ ro)∨ x]∧ y = y. This shows that so ∨ (ro ∨ x) is maximal and thus
ro ∨ x ∈ (s)+ = (t)+. This in turn implies that to ∨ (ro ∨ x) is maximal. Now take d ∈ M, we get
[to ∨ (ro ∨ x)]∧d = d. Consequently, we get [(t∧ r)o ∨ x]∧d = [(to ∨ ro)∨ x]∧d = d which shows
that (t∧ r)o ∨ x is maximal and x ∈ (t∧ r)+. Hence (s∧ r)+ ⊆ (t∧ r)+. Also, (t∧ r)+ ⊆ (s∧ r)+ so
that (s∧ r)+ = (t∧ r)+.

(vii) Let (s)+ = (t)+ and x ∈ (s∨r)+. Then (s∨r)o∨x is maximal. So, for any y ∈ M, [(s∨r)o∨x]∧y=
[(so ∧ ro)∨ x]∧ y = y. Then [(so ∨ x)∧ (ro ∨ x)]∧ y = y. Thus (so ∨ x)∧ (ro ∨ x) is maximal. From
the fact that x ∧ y is maximal implies y is maximal we get ro ∨ x is maximal. Also, as
[(ro ∨ x)∧ (so ∨ x)]∧ y= [(so ∨ x)∧ (ro ∨ x)]∧ y= y, (ro ∨ x)∧ (so ∨ x) is maximal and we get so ∨ x
is also maximal. Thus x ∈ (s)+ = (t)+ which shows that to ∨ x is maximal. Hence for any z ∈ M,
[(to ∨ x)∧ (ro ∨ x)]∧ z = z. So [(to ∧ ro)∨ x]∧ z = z, which implies that [(t∨ r)o ∨ x]∧ z = z. Thus
(t∨r)o∨x is maximal and hence x ∈ (t∨r)+. Therefore, (s∨r)+ ⊆ (t∨r)+. Likewise, (t∨r)+ ⊆ (s∨r)+

so that (s∨ r)+ = (t∨ r)+.

(viii) It is clear.

In the next theorem we showed that the collection B0(M) of all boosters in M is a distributive
lattice.

Theorem 3.4. B0(M) is a bounded distributive lattice.

Proof. Obviously, B0(M) is a poset with respect to “⊆”. Let (e)+ and ( f )+ are boosters of M.
From (v) of Lemma 3.3 we have (e)+∩ ( f )+ = (e∨ f )+ which shows that (e∨ f )+ is the lower
bound of both (e)+ and ( f )+ Now define the operations ⊔ by (e)+⊔ ( f )+ = (e∧ f )+. Let (c)+

be a lower bound for both (e)+ and ( f )+. Let x ∈ (c)+. Clearly, x ∈ (e)+ and x ∈ ( f )+. Then
eo ∨ x and f o ∨ x are maximal. Hence for any y ∈ M, (eo ∨ x)∧ y = y and ( f o ∨ x)∧ y = y. Then
[(e∨ f )o ∨ x]∧ y = [(eo ∧ f o)∨ x]∧ y = [(eo ∨ x)∧ ( f o ∨ x)]∧ y = y. This shows that (e∨ f )o ∨ x is
maximal. Hence x ∈ (e∨ f )+ so that (c)+ ⊆ (e∨ f )+. Therefore, (e∨ f )+ is the infimum of (e)+ and
( f )+. Clearly, (e∧ f )+ is the upper bound of both (e)+ and ( f )+. Let (c)+ be an upper bound for
both (e)+ and ( f )+. Let (e)+ ⊆ (c)+, ( f )+ ⊆ (c)+ and x ∈ (e∧ f )+. Thus (eo ∨ f o)∨ x = (e∧ f )o ∨ x is
maximal. Hence for any y ∈ M, [ f o∨(eo∨x)]∧y= [(eo∨ f o)∨x]∧y= y. Consequently, f o∨(eo∨x) is
maximal which indicates that eo∨x ∈ ( f )+ ⊆ (c)+. Thus co∨(eo∨x) is maximal and for any y ∈ M,
[eo ∨ (co ∨ x)]∧ y= [co ∨ (eo ∨ x)]∧ y= y. Thus eo ∨ (co ∨ x) is maximal and so co ∨ x ∈ (e)+ ⊆ (c)+.
Hence co ∨ (co ∨ x) is maximal. Then, for any y ∈ M, (co ∨ x)∧w = [co ∨ (co ∨ x)]∧w = w so that
co∨ x is maximal and x ∈ (c)+. Hence (e∧ f )+ is supremum of (e)+ and ( f )+ in B0(M). Therefore,
(B0(M),∩,⊔, (m)+, M) is a bounded lattice.
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Consider elements m and t of an MS-ADL M, where m is maximal. Clearly, to ∨ m is
maximal and hence m ∈ t+. Following this, we have the next result.

Corollary 3.5. An MS-ADL M has a maximal element if and only if B0(M) has a smallest
element. Also, M is dual homomorphic to B0(M).

Proof. Let m be a maximal element of M. Then (m)+ = {m} ⊆ (b)+ for any (b)+ ∈ B0(M).
Conversely, if we assume that (s)+ is the smallest element of B0(M), there exists t ∈ (s)+

such that so ∨ t is maximal in M. Conversely, assume that the class B0(M) of all boosters of an
MS-ADL M has a smallest element. For any b ∈ M define a map α : M → B0(M) by α(b)= (b)+.
Clearly, α(0)= (0)+ = M and for any s, t ∈ M, α(s∨ t)= (s∨ t)+ = (s)+∩ (t)+ =α(s)∩α(t). Similarly,
α(s∧ t)= (s∧ t)+ = (s)+⊔ (t)+ =α(s)⊔α(t). Then α is a dual homomorphism.

Definition 3.6. Let F be a filter of M and I be an ideal of B0(M). Define operators β and
←−
β

respectively by

β(F)= {(r)+ | r ∈ F} and
←−
β (I)= {r ∈ M | (r)+ ∈ I}.

Lemma 3.7. For any filters D, J and K of M, and for any ideals I and J of B0(M), the following
conditions hold:

(i) β(J∩K)=β(J)∩β(K),

(ii)
←−
β (I ∩ J)=←−

β (I)∩←−
β (J),

(iii)
←−
ββ(J∩K)=←−

ββ(J)∩←−
ββ(K),

(iv) β(D) is an ideal of B0(M),

(v)
←−
β (I) is a filter of M,

(vi) β and
←−
β are isotone.

Proof. (1) Suppose J and K are filters of M. For any (t)+ ∈ β(J)∩β(K) we obtained that
(d)+ = (t)+ ∈ β(J) for some d ∈ J and (e)+ = (t)+ ∈ β(K) for some e ∈ K . Clearly, d ∨ e ∈ J ∩K .
Thus (t)+ = (d)+∩ (e)+ = (d∨ e)+ ∈ β(J ∩K). Hence β(J)∩β(K) ⊆ β(J ∩K). On the other hand,
take (t)+ ∈β(J∩K) so that (t)+ = (d)+ for some d ∈ J∩K . Thus (T)+ = (d)+ for some d ∈ J and
d ∈ K . So, (t)+ ∈β(J) and (t)+ ∈β(K). Hence (t)+ ∈β(J)∩β(K). Therefore β(J∩K)⊆β(J)∩β(K).

(2) For any t ∈←−
β (I ∩ J), (t)+ ∈ I ∩ J. Thus by (1) we obtain that (t)+ ∈ β(I ∩ J) = β(I)∩β(J) so

that (t)+ = (i)+ and (t)+ = ( j)+ for some i ∈ I and j ∈ J . Then (t)+ ∈β(I) and (t)+ ∈β(J). Therefore
t ∈←−

β (I) and t ∈←−
β (J) so that t ∈←−

β (I)∩←−
β (J). The converse follows in a similar way.

(3) For any p ∈←−
ββ(J∩K), (p)+ ∈β(J∩K). From (1) we have (p)+ ∈β(J)∩β(K). Since β(J) and

β(K) are ideals of B0(M), we have p ∈←−
ββ(J) and

←−
ββ(K). Then p ∈←−

ββ(J)∩←−
ββ(K). Whence←−

ββ(J∩K)⊆←−
ββ(J)∩←−

ββ(K). Following the same procedure one can easily show the converse
holds.
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(4) Take a filter D in M. Since m ∈ D, (m)+ ∈ β(D). Take (s)+, (t)+ ∈ β(D). Then s, t ∈ D so
that s∧ t ∈ D. It follows that (s)+⊔ (t)+ = (s∧ t)+ ∈ β(D). For any r ∈ M we have r∨ s ∈ D and
(r)+ ∈ B0(M). Then using Lemma 3.3(1), (s)+∩ (r)+ = (s∨ r)+ = (r∨ s)+ ∈β(D). Therefore, β(D) is
an ideal in B0(M).

(5) Consider an ideal I of B0(M), r ∈ M and s, t ∈ ←−
β (I). Thus (s)+, (t)+ ∈ I . Then (s∧ t)+ =

(s)+⊔ (t)+ ∈ I . Hence s∧ t ∈←−
β (I). Also, (r∨ s)+ = (s∨ r)+ = (s)+∩ (r)+ ∈ I . So r∨ s ∈←−

β (I). So,
←−
β (I)

is a filter of M.

(6) Take two ideals J and K of M so that J ⊆ K . Let j ∈←−
β (J). Then ( j)+ ∈ J ⊆ K . It follows that

j ∈←−
β (K) and hence

←−
β (J)⊆←−

β (K). Which shows that
←−
β is an isotone. The same is true for β.

Lemma 3.8. Consider the lattice of filters in MS-ADL M. Let D and E are filters in M. Then
the map D 7→←−

ββ(D) is a closure operator. That is,

(i) D ⊆←−
ββ(D),

(ii) F ⊆ E implies
←−
ββ(D)⊆←−

ββ(E),

(iii)
←−
ββ{

←−
ββ(D)}=←−

ββ(D).

The intersection of filters is a filter and for any filter D of M, r∨ s ∈ D if and only if s∨ r ∈ D.
Following this we have the next theorem:

Theorem 3.9. β is a homomorphism between the lattice of filters of M and the lattice of ideals of
B0(M).

Proof. Let D and E are filters of M. Clearly, from Lemma 3.7 β(D ∩E) = β(D)∩β(E) and
β(D)⊔β(E)⊆β(D∨E). On the other hand, if (s)+ ∈β(D∨E), then (s)+ = (t)+ for some t ∈ D∨E.
Hence, t = d∧ e for some d ∈ D and e ∈ E. Thus (s)+ = (t)+ = (d∧ e)+ = (d)+⊔ (e)+ ∈β(D)⊔β(E).
So, β(D∨E)⊆β(D)⊔β(E). Therefore, β is a homomorphism between the lattice of filters(ideals)
of M(B0(M)).

Definition 3.10. Any filter D in M is called β-filter whenever
←−
ββ(D)= D.

Theorem 3.11. Every maximal filter is a β-filter.

Proof. Let N be a maximal filter in M. Then from (1) of Lemma 3.8 we get N ⊆←−
ββ(N). Now, let

y ∈←−
ββ(N). Then (y)+ ∈β(N). Thus (y)+ = (n)+ for some n ∈ N . Suppose y ∉ N . Then N∨ [y)= M

and hence b∧ y = 0 for some b ∈ N . Thus y∧ b = 0 so that yo ∨ bo = (y∧ b)o = 0o is maximal,
which yields that bo ∈ (y)+ = (n)+. Therefore no ∨bo is maximal. Hence boo ∧noo = (bo ∨no)o =
(no ∨bo)o = 0. Since boo,noo ∈ N , we get 0= boo ∧noo ∈ N , which is a contradiction. Hence y ∈ N .
Thus

←−
ββ(N)⊆ N . This proves the theorem.

Corollary 3.12. A maximal β-filter in M is a maximal filter.
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Proof. For a maximal β-filter D and any β-filter E, D ⊆ E ⇒ D = E. Hence D is a maximal
filter.

Theorem 3.13. A filter D of M is a β-filter iff for all s, t ∈ M, (s)+ = (t)+ and s ∈ D implies t ∈ D.

Proof. If D is a β-filter of M and s, t ∈ M be such that (s)+ = (t)+. Suppose s ∈ D. Then
(t)+ = (s)+ ∈ β(D). Since β(D) is an ideal of B0(M), t ∈←−

ββ(D) = D. Conversely, for any s, t ∈ M,
let (s)+ = (t)+ and s ∈ D implies t ∈ D. Then D ⊆←−

ββ(D). Now, let s ∈←−
ββ(D). Then (s)+ ∈ β(D).

Hence, (s)+ = (t)+ for some t ∈ D. From the given assumption, we get s ∈ D so that
←−
ββ(D)⊆ D.

This shows that D is a β-filter of M.

It is obvious that an MS-algebras are MS-ADLs. Next, we illustrate an e-filter of an MS-ADL
is not necessarily a β-filter.

Example 3.14. Consider an MS-algebra M = {r, s, t,u,v,1} on which the binary operations ∨
and ∧ are defined by Table 1a, and Table 1b respectively, and the unary operation o is defined
by Table 1c as follows:

∨ 0 r s t u v 1
0 0 r s t u v 1
r r r s t u v 1
s s s s t u v 1
t t t t t v v 1
u u u u v u v 1
v v v v v v v 1
1 1 1 1 1 1 1 1

(a)

∧ 0 r s t u v 1
0 0 0 0 0 0 0 0
r 0 r r r r r r
s 0 r s s s s s
t 0 r s t s t t
u 0 r s s u u u
v 0 r s t u v v
1 0 1 1 1 1 1 1

(b)

0 r s t u v 1
◦ 1 v v t u s 0

(c)

Table 1. Binary and unary operations defined on M

One can simply observe that, a set A = {1,v}, is e-filter of M, but not a β-filter of M.

Using the above Theorem, we show the relation between e-filters and β-filters of an MS-ADL.

Theorem 3.15. Every β-filter in M is an e-filter.

Proof. Let D be a β-filter in M. Then
←−
ββ(D) = D. Claim: D is e-filter in M. If s◦◦ ∈ D then

s◦◦ ∈←−
ββ(D). This implies (s◦◦)+ = (t)+ for some t ∈ D. Since (s∧m)+ = (s◦◦)+, (s∧m)+ = (t)+ for

some t ∈ D. Thus s∧m ∈ D. Hence D is an e-filters in M.

Theorem 3.16. Consider the set

F= {J | B ⊆ J,B is a β-filter, J is a prime filter of M }.

If J ∈F is minimal, then J is a β-filter.
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Proof. Let J ∈F be minimal and B ⊆ J for some β-filter B of M. If J is not β-filter, then there
exist d, e ∈ M so that (d)+ = (e)+,d ∈ J and e ∉ J. Consider I = (M − J)∨ (d∨ e]. So I ∩B = ;.
On the other hand if we take a ∈ I ∩B. Then a = b∨ c for some b ∈ M− J and c ∈ (d∨ e]. Then
b∨c = b∨[(d∨e)∧c]= (b∨d∨e)∧(b∨c). Since b∨c ∈ B we have b∨d∨e = (b∨d∨e)∨(b∨c) ∈ B.
From (d)+ = (e)+, we can get (b∨ e)+ = (b∨d∨ e)+. Since B is a β-filter and b∨d∨ e ∈ B, we
get b∨ e ∈ B ⊆ J. It follows that b ∈ J or e ∈ J, a contradiction. Thus I ∩B =;. Hence for some
prime filter P , I ∩P =; and B ⊆ P . Since I ∩P =;, one can get P ⊆ J. Further e∨d ∉ P and
e∨d ∈ J . It shows that P ⊂ J . Hence J is not minimal in F containing B, a contradiction. So J
is a β-filter in M.

Corollary 3.17. The set Fβ(M) of all β-filters of M forms a distributive lattice.

Lemma 3.18. For any ideal J of B0(M),β
←−
β (J)= J .

Proof. Let J be an ideal of B0(M). If (s)+ ∈ J, then s ∈ ←−
β (J) so that (s)+ ∈ β

←−
β (J). Thus

J ⊆β
←−
β (J). Conversely, if (s)+ ∈β←−β (J), then we get (s)+ = (t)+ for some t ∈←−

β (J). Also, t ∈←−
β (J)

implies that (s)+ = (t)+ ∈ J so that β
←−
β (J)⊆ J . Hence β

←−
β is a constant mapping on B0(M).

Next we show that the set of β-filters of M (denoted by Fβ(M)) is isomorphic to the set of
ideals of B0(M) (denoted by I(B0(M))).

Theorem 3.19. There is an isomorphism of Fβ(M) onto I(B0(M)).

Proof. Assume α is the restriction of β to Fβ(M). It follows that α is one-to-one. Take J be an
ideal of B0(M) so that

←−
β (J) is a filter of M. From Lemma 3.18 we get

←−
ββ{

←−
β (J)}=←−

β {β
←−
β (J)}=←−

β (J) which indicates
←−
β (J) is a β-filter of M. Thus α(

←−
β (J))=β

←−
β (J)= J and hence α is onto.

Let J and K are β-filters in M. We obtain that α(J∩K)=β(J∩K)=β(J)∩β(K)=α(J)∩α(K)
and

α{
←−
ββ(J∨K)}=β{

←−
ββ(J∨K)}

=β(J∨K)

=β(J)⊔β(K)

=α(J)⊔α(K).

Therefore α is an isomorphism of Fβ(M) onto B0(M).

Consequently, we have the next corollary.

Corollary 3.20. Prime β-filters in M are in correspondence with the prime ideals in B0(M).

Theorem 3.21. Every proper β-filter in M is the intersection of all prime β-filters containing it.

Proof. For a proper β-filter D in M consider the set

D0 =∩{P | P is a prime β-filter and D ⊆ P}.

Communications in Mathematics and Applications, Vol. 13, No. 3, pp. 1169–1180, 2022



Boosters and Filters in MS-Almost Distributive Lattices: Y. M. Gubena and T. G. Alemayehu 1179

Obviously, D ⊆ D0. Let d ∉ D and Γ= {E | E is a β-filter,D ⊆ E,d ∉ E}. One can simply observe
that D ∈ Γ and Γ contains a maximal element, say N . Let a,b ∈ M be such that a ∉ N and
b ∉ N . Then N ⊂ N ∨ [a) ⊆ ←−

ββ{N ∨ [a)} and N ⊂ N ∨ [b) ⊆ ←−
ββ{N ∨ [b)}. Since N is maximal,

we obtain that d ∈ ←−
ββ{N ∨ [a)} and d ∈ ←−

ββ{N ∨ [b)} so that d ∈ ←−
ββ{N ∨ [a)}∩←−

ββ{N ∨ [b)} =←−
ββ{[N ∨ [a)]∩ [M ∨ [b)]} = ←−

ββ{N ∨ [a ∨ b)}. If a ∨ b ∈ N , then d ∈ ←−
ββ(N) = N , which is a

contradiction. This shows that N is a prime β- filter such that d ∉ N and hence d ∉ D0.

Next, we give equivalent conditions on which the lattice B0(M) is relatively complemented.
First we need to remember the following result.

Lemma 3.22 ([7]). An ADL is relatively complemented iff each prime ideal is maximal.

Theorem 3.23. The following conditions are equivalent on M.

(i) B0(M) is relatively complemented,

(ii) every prime β-filter is a maximal filter,

(iii) every prime β-filter is minimal.

Corollary 3.24. If B0(M) is relatively complemented, then each β-filter is an intersection of all
maximal filters.

4. Conclusion
The concepts of boosters and β-filters in MS-almost distributive lattices is introduced. We
investigate the class of boosters in an MS-almost distributive lattice is a bounded distributive
lattice. Characterization of β-filters of an MS-almost distributive lattice in terms of boosters is
established. We derived a dual homomorphism between an MS-almost distributive lattice and
the set of all boosters in MS-almost distributive lattice. Further, it is shown that any maximal
filter in an MS-almost distributive lattice is a β-filter. Finally, the conditions on which the
lattice of boosters is a relatively complemented lattice are given. We hope in the future, we
study on boosters and filters on skew lattices and Heyting almost distributive lattices.
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