Communications in Mathematics and Applications Volume 4 (2013), Number 2, pp. 141–144 © RGN Publications

On the *n*-th Derivative of the Exponential Integral Functions

Banyat Sroysang

Abstract In this paper, we present inequalities involving the *n*-th derivative of the exponential integral functions.

1. Introduction

For any $n \in \mathbb{N}_0$, the exponential integral function E_n (see [1]) is defined by

$$E_n(x) = \int_1^\infty t^{-n} e^{-xt} dt$$

for all x > 0.

For any $n \in \mathbb{N}_0$, $k \in \mathbb{N}$, the derivative of E_n , denoted by $E_n^{(k)}$, is given by

$$E_n^{(k)}(x) = (-1)^k \int_1^\infty t^{k-n} e^{-xt} dt$$

for all x > 0.

In 2012, Sulaiman [2] presented inequalities involving the *n*-th derivative of the exponential integral functions as follows.

For any x, y > 0, $p > 1 = \frac{1}{p} + \frac{1}{q}$, $m + n, pm, qn \in \mathbb{N}_0$, and k is an even integer such that k > m + n,

$$E_{m+n}^{(k)}\left(\frac{x}{p} + \frac{y}{q}\right) \le \left(E_{pm}^{(k)}(x)\right)^{1/p} \left(E_{qn}^{(k)}(y)\right)^{1/q}.$$
(1.1)

For any x > 0, $0 < y \le 1$, $n \in \mathbb{N}_0$, p > 1, 0 < r < 1 and $\frac{1}{p} + \frac{1}{q} = 1 = \frac{1}{r} + \frac{1}{s}$, and k is an even integer such that k > n,

$$E_n^{(k)}(xy) \ge \left(E_n^{(k)}\left(\frac{rx^p}{p}\right)\right)^{1/r} \left(E_n^{(k)}\left(\frac{sy^q}{q}\right)\right)^{1/s}.$$
(1.2)

In this paper, we present the generalizations for inequalities (1.1) and (1.2).

²⁰¹⁰ Mathematics Subject Classification. 26D15.

Key words and phrases. Derivative; Exponential integral function; Inequality .

2. Results

Theorem 2.1. Assume that $n - 1 \in \mathbb{N}$, $x_1, x_2, ..., x_n > 0$, $p_1, p_2, ..., p_n > 1$, $\sum_{i=1}^{n} \frac{1}{p_i} = 1$, $m = \sum_{i=1}^{n} m_i$, $p_1 m_1, p_2 m_2, ..., p_n m_n$, $m \in \mathbb{N}_0$, and k is an even integer such that k > m. Then

$$E_m^{(k)}\left(\sum_{i=1}^n \frac{x_i}{p_i}\right) \le \prod_{i=1}^n \left(E_{p_i m_i}^{(k)}(x_i)\right)^{1/p_i}$$

Proof. We obtain that

$$E_m^{(k)}\left(\sum_{i=1}^n \frac{x_i}{p_i}\right) = (-1)^k \int_1^\infty t^{k-m} e^{-t \sum_{i=1}^n \frac{x_i}{p_i}} dt$$
$$= \int_1^\infty t^{k \sum_{i=1}^n \frac{1}{p_i} - \sum_{i=1}^n m_i} e^{-t \sum_{i=1}^n \frac{x_i}{p_i}} dt$$
$$= \int_1^\infty t^{\sum_{i=1}^n \left(\frac{k}{p_i} - m_i\right)} e^{-t \sum_{i=1}^n \frac{x_i}{p_i}} dt$$
$$= \int_1^\infty \prod_{i=1}^n t^{\frac{k}{p_i} - m_i} e^{-t \frac{x_i}{p_i}} dt.$$

By the generalized Hölder inequality,

$$E_m^{(k)}\left(\sum_{i=1}^n \frac{x_i}{p_i}\right) \le \prod_{i=1}^n \left(\int_1^\infty t^{k-p_i m_i} e^{-x_i t} dt\right)^{1/p_i}$$
$$= \prod_{i=1}^n \left(E_{p_i m_i}^{(k)}(x_i)\right)^{1/p_i}.$$

Corollary 2.2. Assume that $n - 1 \in \mathbb{N}$, $x_1, x_2, \dots, x_n > 0$, $p_1, p_2, \dots, p_n > 1$, $\sum_{i=1}^{n} \frac{1}{p_i} = 1$, $m \in \mathbb{N}_0$, and k is an even integer such that k > m. Then

$$E_m^{(k)}\left(\sum_{i=1}^n \frac{x_i}{p_i}\right) \le \prod_{i=1}^n \left(E_m^{(k)}(x_i)\right)^{1/p_i}$$

Proof. This follows from Theorem 2.1 in case $m_1 = \frac{m}{p_1}, m_2 = \frac{m}{p_2}, \dots, m_n = \frac{m}{p_n}$.

Corollary 2.3. Assume that $n - 1 \in \mathbb{N}$, $x_1, x_2, \dots, x_n > 0$, $m \in \mathbb{N}_0$, and k is an even integer such that k > m. Then

$$\left(E_m^{(k)}\left(\sum_{i=1}^n \frac{x_i}{n}\right)\right)^n \le \prod_{i=1}^n \left(E_m^{(k)}(x_i)\right).$$

Proof. This follows from Corollary 2.2 in case $p_1 = p_2 = \ldots = p_n = n$.

We note on Theorem 2.1 that if n = 2 then we obtain the inequality (1.1).

Theorem 2.4. Assume that $n \in \mathbb{N}$, $x_1, ..., x_n > 0$, $0 < y \leq 1$, $m \in \mathbb{N}_0$, $p_1, ..., p_n > 1$, $0 < r_1, ..., r_n < 1$, $\left(\sum_{i=1}^n \frac{1}{p_i}\right) + \frac{1}{q} = 1 = \left(\sum_{i=1}^n \frac{1}{r_i}\right) + \frac{1}{s}$, and k is an even integer such that k > m. Then

$$E_m^{(k)}\left(y\prod_{i=1}^n x_i\right) \ge \left(E_m^{(k)}\left(\frac{sy^q}{q}\right)\right)^{1/s}\left(\prod_{i=1}^n E_m^{(k)}\left(\frac{r_ix_i^{p_i}}{p_i}\right)\right)^{1/r_i}.$$

Proof. For any x > 0,

$$E_m^{(k+1)}(x) = (-1)^{k+1} \int_1^\infty t^{k+1-m} e^{-xt} dt = -\int_1^\infty t^{k+1-m} e^{-xt} dt \le 0.$$

Thus, $E_m^{(k)}$ is non-increasing.

We note that

$$y \prod_{i=1}^{n} x_i \le \frac{y^q}{q} + \sum_{i=1}^{n} \frac{x_i^{p_i}}{p_i}.$$

It follows that

$$E_m^{(k)}\left(y\prod_{i=1}^n x_i\right) \ge E_m^{(k)}\left(\frac{y^q}{q} + \sum_{i=1}^n \frac{x_i^{p_i}}{p_i}\right)$$

= $(-1)^k \int_1^\infty t^{k-m} e^{-t\left(\frac{y^q}{q} + \sum_{i=1}^n \frac{x_i^{p_i}}{p_i}\right)} dt$
= $\int_1^\infty t^{k-m} e^{-\frac{y^q}{q}t + \sum_{i=1}^n \left(-\frac{x_i^{p_i}}{p_i}t\right)} dt$
= $\int_1^\infty t^{\frac{k-m}{s}} e^{-\frac{y^q}{q}t} \prod_{i=1}^n t^{\frac{k-m}{r_i}} e^{-\frac{x_i^{p_i}}{p_i}t} dt$.

By the generalized reverse Hölder inequality,

$$E_m\left(y\prod_{i=1}^n x_i\right) \ge \left(\int_1^\infty t^{k-m} e^{\frac{-sy^q}{q}} dt\right)^{\frac{1}{s}} \prod_{i=1}^n \left(\int_1^\infty t^{k-m} e^{\frac{-r_i x_i^{p_i}}{p_i}} dt\right)^{\frac{1}{r_i}}$$
$$= \left(E_m^{(k)}\left(\frac{sy^q}{q}\right)\right)^{1/s} \left(\prod_{i=1}^n E_m^{(k)}\left(\frac{r_i x_i^{p_i}}{p_i}\right)\right)^{1/r_i}.$$

Corollary 2.5. Assume that $n \in \mathbb{N}$, $x_1, \ldots, x_n > 0$, $m \in \mathbb{N}_0$, and k is an even integer such that k > m. Then

$$E_m^{(k)}\left(\prod_{i=1}^n x_i\right) \ge \left[E_m^{(k)}\left(\frac{1}{(n+1)^2}\right)\prod_{i=1}^n E_m^{(k)}\left(\frac{x_i^{n+1}}{(n+1)^2}\right)\right]^{n+1}$$

Proof. This follows from Theorem 2.4 in case $p_1 = p_2 = \ldots = p_n = n + 1$, $r_1 = r_2 = \ldots = r_n = \frac{1}{n+1}$ and y = 1.

Banyat Sroysang

We note on Theorem 2.4 that if n = 1 then we obtain the inequality (1.2).

References

- [1] M. Aabromowitz and I.A. Stegun, *Handbook of Mathematical Functions with Formulas*, Dover Publications, New York, 1965.
- [2] W.T. Sulaiman, Turan inequalities for the exponential integral functions, *Commun. Optim. Theory* 1 (2012), 35–41.

Banyat Sroysang, Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Pathumthani 12121 Thailand. E-mail: banyat@mathstat.sci.tu.ac.th

Received	December 4, 2012
Accepted	December 23, 2012