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On the n-th Derivative of the Exponential

Integral Functions

Banyat Sroysang

Abstract In this paper, we present inequalities involving the n-th derivative of

the exponential integral functions.

1. Introduction

For any n ∈ N0, the exponential integral function En (see [1]) is defined by

En(x) =

∫ ∞

1

t−ne−x t d t

for all x > 0.

For any n ∈ N0, k ∈ N, the derivative of En, denoted by E(k)
n

, is given by

E(k)
n
(x) = (−1)k

∫ ∞

1

tk−ne−x t d t

for all x > 0.

In 2012, Sulaiman [2] presented inequalities involving the n-th derivative of

the exponential integral functions as follows.

For any x , y > 0, p > 1 = 1

p
+ 1

q
, m+ n, pm,qn ∈ N0, and k is an even integer

such that k > m+ n,

E
(k)
m+n

�

x

p
+

y

q

�

≤

�

E(k)
pm
(x)
�1/p �

E(k)
qn
(y)
�1/q

. (1.1)

For any x > 0, 0< y ≤ 1, n ∈ N0, p > 1, 0 < r < 1 and 1

p
+ 1

q
= 1 = 1

r
+ 1

s
, and

k is an even integer such that k > n,

E(k)
n
(x y)≥

�

E(k)
n

�

r x p

p

��1/r �

E(k)
n

�

s yq

q

��1/s

. (1.2)

In this paper, we present the generalizations for inequalities (1.1) and (1.2).
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2. Results

Theorem 2.1. Assume that n − 1 ∈ N, x1, x2, . . . , xn > 0, p1, p2, . . . , pn > 1,
n
∑

i=1

1

pi

= 1, m =
n
∑

i=1

mi , p1m1, p2m2, . . . , pnmn, m ∈ N0, and k is an even integer

such that k > m. Then

E(k)
m

 

n
∑

i=1

x i

pi

!

≤

n
∏

i=1

�

E(k)
pimi
(x i)

�1/pi

.

Proof. We obtain that

E(k)
m

 

n
∑

i=1

x i

pi

!

= (−1)k
∫ ∞

1

tk−me
−t

n
∑

i=1

xi
pi d t

=

∫ ∞

1

t
k

n
∑

i=1

1

pi
−

n
∑

i=1

mi

e
−t

n
∑

i=1

xi
pi d t

=

∫ ∞

1

t

n
∑

i=1

�

k

pi
−mi

�

e
−t

n
∑

i=1

xi
pi d t

=

∫ ∞

1

n
∏

i=1

t
k

pi
−mi e

−t
xi
pi d t .

By the generalized Hölder inequality,

E(k)
m

 

n
∑

i=1

x i

pi

!

≤

n
∏

i=1

�∫ ∞

1

tk−pimi e−x i t d t

�1/pi

=

n
∏

i=1

�

E(k)
pimi
(x i)

�1/pi

. �

Corollary 2.2. Assume that n − 1 ∈ N, x1, x2, . . . , xn > 0, p1, p2, . . . , pn > 1,
n
∑

i=1

1

pi

= 1, m ∈ N0, and k is an even integer such that k > m. Then

E(k)
m

 

n
∑

i=1

x i

pi

!

≤

n
∏

i=1

�

E(k)
m
(x i)
�1/pi

.

Proof. This follows from Theorem 2.1 in case m1 =
m

p1

, m2 =
m

p2

, . . . , mn =
m

pn

. �

Corollary 2.3. Assume that n− 1 ∈ N, x1, x2, . . . , xn > 0, m ∈ N0, and k is an even

integer such that k > m. Then
 

E(k)
m

 

n
∑

i=1

x i

n

!!n

≤

n
∏

i=1

�

E(k)
m
(x i)
�

.

Proof. This follows from Corollary 2.2 in case p1 = p2 = . . . = pn = n. �

We note on Theorem 2.1 that if n= 2 then we obtain the inequality (1.1).
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Theorem 2.4. Assume that n ∈ N, x1, . . . , xn > 0, 0 < y ≤ 1, m ∈ N0,

p1, . . . , pn > 1, 0 < r1, . . . , rn < 1,

�

n
∑

i=1

1

pi

�

+ 1

q
= 1 =

�

n
∑

i=1

1

ri

�

+ 1

s
, and k is

an even integer such that k > m. Then

E(k)
m

 

y

n
∏

i=1

x i

!

≥

�

E(k)
m

�

s yq

q

��1/s
 

n
∏

i=1

E(k)
m

�

ri x
pi

i

pi

�
!1/ri

.

Proof. For any x > 0,

E(k+1)
m

(x) = (−1)k+1

∫ ∞

1

tk+1−me−x t d t = −

∫ ∞

1

tk+1−me−x t d t ≤ 0 .

Thus, E(k)
m

is non-increasing.

We note that

y

n
∏

i=1

x i ≤
yq

q
+

n
∑

i=1

x
pi

i

pi

.

It follows that

E(k)
m

 

y

n
∏

i=1

x i

!

≥ E(k)
m

 

yq

q
+

n
∑

i=1

x
pi

i

pi

!

= (−1)k
∫ ∞

1

tk−me
−t

�

yq

q
+

n
∑

i=1

x
pi
i
pi

�

d t

=

∫ ∞

1

tk−me
−

yq

q
t+

n
∑

i=1

�

−
x

pi
i
pi

t

�

d t

=

∫ ∞

1

t
k−m

s e
−

yq

q
t

n
∏

i=1

t
k−m

ri e
−

x
pi
i
pi

t
d t .

By the generalized reverse Hölder inequality,

Em

 

y

n
∏

i=1

x i

!

≥

�∫ ∞

1

tk−me
−s yq t

q d t

� 1

s n
∏

i=1

�∫ ∞

1

tk−me
−ri x

pi
i

t

pi d t

�
1

ri

=

�

E(k)
m

�

s yq

q

��1/s
 

n
∏

i=1

E(k)
m

�

ri x
pi

i

pi

�
!1/ri

. �

Corollary 2.5. Assume that n ∈ N, x1, . . . , xn > 0, m ∈ N0, and k is an even integer

such that k > m. Then

E(k)
m

 

n
∏

i=1

x i

!

≥



E(k)
m

�

1

(n+ 1)2

� n
∏

i=1

E(k)
m

�

xn+1
i

(n+ 1)2

�




n+1

.

Proof. This follows from Theorem 2.4 in case p1 = p2 = . . . = pn = n + 1,

r1 = r2 = . . . = rn =
1

n+1
and y = 1. �
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We note on Theorem 2.4 that if n= 1 then we obtain the inequality (1.2).
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