
Communications in Mathematics and Applications
Vol. 13, No. 1, pp. 171–181, 2022
ISSN 0975-8607 (online); 0976-5905 (print)
Published by RGN Publications http://www.rgnpublications.com

DOI: 10.26713/cma.v13i1.1696

Research Article

2D Hexagonal Finite Fuzzy Cellular Automata
M. Rajasekar*1 , Lekha Susan Jacob2 and R. Anbu3

1Mathematics Section-FEAT, Annamalai University, Annamalainagar, Tamilnadu, India
2Department of Mathematics, Annamalai University, Annamalainagar, Tamilnadu, India
3Department of Mathematics, Bharath Institute of Higher Education and Technology, Selaiyur,

Chennai, Tamilnadu, India
*Corresponding author: mdivraj1962@gmail.com

Received: October 10, 2021 Accepted: December 7, 2021

Abstract. In this paper, 2D hexagonal finite fuzzy cellular automata defined by fuzzy transition of
local rules based on hexagonal cell structure are studied. The inverse problem of 2D hexagonal finite
fuzzy cellular automata is also studied.

Keywords. Two dimensional hexagonal fuzzy cellular automta, Matrix algebra, Null boundary
condition, Periodic boundary condition

Mathematics Subject Classification (2020). 37B15, 94D05, 68Q45

Copyright © 2022 M. Rajasekar, Lekha Susan Jacob and R. Anbu. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

1. Introduction
Cellular automata are discrete dynamical that exhibit a variety of dynamical behaviors,
although they are formed by simple basic components. Cellular automata (CA) were first
used for modelling various physical, biological process and on computer science. The concept of
cellular automata was initiating the early 1950’s by John Von Neumann and Stanislaw Ulam.
John Von Neumann [8] showed that a cellular automaton (CA) can be universal.

Cellular automata are also called Cellular Space, Tessellation Automata, Homogeneous
structures, Cellular structure, Tessellation structures and Iterative arrays [14].

The study of CA has received remarkable attention in the last few years because CA
have been widely investigated in many disciplines (e.g., mathematics, simulation of natural
phenomena, pseudo-random number generation, image processing, analysis of universal model
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of computations, cryptography). Most of the work for CA is done for one-dimensional (1-D) cases.
Recently, two dimensional (2-D) CA have attracted much of the interest.

A cellular automata is a model of a system of “cell” objects with the following characteristics.

• The cell live on a grid.

• Each cell has a state. The number of state possibilities is typically finite. The simplest
example has the two possibilities of 1 and 0 (otherwise referred to as “ON” and “OFF” (or)
“alive” and “dead”).

• Each cell has a neighborhood. This can be defined in any number of ways, but it is typically
a list of adjacent cells.

In a cellular automaton all cells typically begin in state 0, except for a finite number that are
in other states. The nonzero patterns that occur while a cellular automaton is running are
called ‘configurations’. At each tick of the clock, many of the cells enter a new state and a new
configuration develops. It is natural to refer to the sequence of configurations that develop as
‘generations’.

Zadeh [15] introduced the notion of fuzzy subset of a set as a tool for representing uncertainty.
His ideas have been applied to wide range of scientific areas. Wee [13] applied the ideas of
Zadeh in automata theory and language theory. A fuzzy automata is generalization of non
deterministic automata. Fuzzy approach has been applied to automata theory in the very early
age of fuzzy set theory. The basic idea in the formulation of a fuzzy automata is that, unlike
the classical case, the automata switch from one state to another one to certain degree. Santos
[9] proposed fuzzy automata as a model of pattern recognition and control systems. Mordeson
and Malik [6] gave a detailed account of fuzzy automata and languages in their book (2002).
Staimnn and Adalassing [11] dealt with applications of fuzzy automata in the field of clinical
monitoring.

The hexagonal finite cellular automata (shortly HFCA) are two dimensional (2D) cellular
automata whose cells are of form of a hexagonal. Morita et al. [7] introduced this type of cellular
automata (CA) and they called it hexagonal partitioned CA (HPCA).

The notation of fuzziness in cellular automata was first applied by Andrew I. Adamatzky [1].
He divide a set of fuzzy cellular automata into 14 classes.

This paper is organized as follows. In Section 2, the concept used in the paper are formally
defined. In Section 3, the principle of fuzzy cellular automata is given [1]. We obtain fuzzy
transition matrix of the 2D hexagonal fuzzy cellular automata. We fuzzify the neighborhood
and local transition rule of a 2D hexagonal finite cellular automata. In Section 4, we obtain the
fuzzy matrix of inverse of T0

R , if the number of columns of T0
R are even. We also present some

example for the explaining the concepts.

2. Preliminaries
Definition 2.1 ([5]). A periodic boundary CA is the one in which the extreme cells are adjacent
to each other.
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Definition 2.2 ([5]). A null boundary CA is the one in which the extreme cells are connected to
logic zero state.

The state of the cell (i, j) at time t is denoted by X t
(i, j). The state of the cell (i, j) at time t+1

is denoted by X (t+1)
(i, j) =Y (t)

(i, j).

In [10] Irfan Siap, consider the hexagonal information matrix C(t) =

 X (t)
11 · · · X (t)

1n
... . . . ...

X (t)
m1 · · · X (t)

mn

.

The matrix C(t) is called the configuration of the 2D finite CA at time t. He associate planar
hexagonal presentations with row vectors by transforming them from C(t) to ([X ]1×mn) =
(X (t)

11, X (t)
12, · · · , X (t)

1n, · · · , X (t)
m1, · · · , X (t)

mn).
He consider the transition matrix TR such that [X ]1×mn · (TR)mn×mn = [Y ]mn×1, where
([Y ]mn×1)= (Y (t)

11 ,Y (t)
12 , · · · ,Y (t)

1n , · · · ,Y (t)
m1, · · · ,Y (t)

mn).

Figure 1. Two configurations of the HCA

If j is an even positive integer, then, we have

Y (t)
(i, j) = aX (t)

(i+1, j) +bX (t)
(i+1, j−1) + cX (t)

(i, j−1) +dX (t)
(i−1, j) + eX (t)

(i, j+1) + f X (t)
(i+1, j+1) mod 3 (2.1)

If j is an odd positive integer, then, we have

Y (t)
(i, j) = aX (t)

(i+1, j) +bX (t)
(i+1, j−1) + cX (t)

(i−1, j−1) +dX (t)
(i−1, j) + eX (t)

(i−1, j+1) + f X (t)
(i, j+1) mod 3 (2.2)

where a,b, c,d, e, f ∈ Z∗
3 = Z3\{0}= {1,2} and X (t)

(i, j) ∈ Z3.
The matrix spaces Ct of order m × n with co-efficient in Z3 denoted by Mn×m Z3 are

isomorphic to Zmn
3 as vectors spaces. This Zmn

3 is a matrix of row space.

3. Fuzzy Transition Matrix of the 2D Hexagonal Fuzzy Cellular Automata
In [10], they obtain the rule matrix of 2D finite CA with hexagonal rule over the field Z3 under
the Null Boundary Condition. This rule matrix [3] T0

R which takes the tth finite hexagonal
configuration Ct of order m×n to the (t+1)th state Ct+1.

By using [10], we generalize the CA into FCA.
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In this section, we define the fuzzy cellular automata and obtain the fuzzy membership
matrix of the rule matrix T0

R .

Definition 3.1 (Fuzzy Cellular Automata). A fuzzy cellular automata (FCA) is defined by the
tuple (A,Q,u,F, M), where

• m dimensional array A of cell.

• Q is a finite set of cell states.

• The neighborhood u is a K -tuple of state of cells.

• F = { f | f : Qk →Q} is a set of local transition rule.

• M = {µ |µ : Qk ×F → [0,1]} is a set of grades of the local transition.

Theorem 3.1. Let M = (A,Q,u,F, M) be a fuzzy cellular automata and a,b, c,d, e, f ∈ Z∗
3 , m ≥ 3

and n be an even positive integer. Then, the rule matrix F = T0
R from Zmn

3 to Zmn
3 which takes

the tth finite hexagonal configuration C(t) of order m×n to the (t+1)th state C(t+1) is given. We
will prove that corresponding fuzzy matrix of grades of the local transition is given by

F =


t11 t12 · · · t1,n−1 t1n
t21 t22 · · · t2,n−1 t2n
...

... · · · ...
...

tm1 tm2 · · · tm,n−1 tmn


m×n

.

Figure 2. Hexagonal fuzzy cellular automata of order m×n
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Proof. Let M = (A,Q,u,F, M) be a fuzzy cellular automata, where
A = 2 dimensional array of cells,
Q = {X i, j}, i = 1,2,3, . . . ,m and j = 1,2,3, . . . ,n is a finite set of cell state,
u is a neighborhood of state of cells, if j is an even then the neighborhood of X i j is given in
eq. (2.1), if j is an odd then the neighborhood of X i j is given in eq. (2.2),
f : Q6 ×Q be a local transition rule,
µ is the set of grades of the local transition µ : Q6 ×F → [0,1] is given by

µ((aX(2,1), f X(1,2)), f ((aX(2,1), f X(1,2)), (y(1,1))))=
y(1,1)

100
= t(1,1)

µ((aX(2,2),bX(2,1), cX(1,1), eX(1,3), f X(2,3)), f ((aX(2,2),bX(2,1), cX(1,1), eX(1,3), f X(2,3)), (y(1,2))))

= y(1,2)

100
= t(1,2)

µ((aX(2,3),bX(1,2), f X(1,4)), f ((aX(2,3),bX(1,2), f X(1,4)), (y(1,3))))=
y(1,3)

100
= t(1,3)

...

µ((aX(2,n−1),bX(1,n−2), f X(1,n)), f ((aX(2,n−1),bX(1,n−2), f X(1,n)), (y(1,n−1))))=
y(1,n−1)

100
= t(1,n−1)

µ((aX(2,n),bX(2,n−1), cX(1,n−1)), f ((aX(2,n),bX(2,n−1), cX(1,n−1)), (y(1,n))))=
y(1,n)

100
= t(1,n)

Consider 2≤ k ≤ m−1

µ((aXk+1,1,dXk−1,1, eXk−1,2, f Xk,2), f ((aXk+1,1,dXk−1,1, eXk−1,2, f Xk,2), (y(k,1))))=
yk,1

100
= t(k,1)

µ((aXk+1,2,bXk+1,1, cXk,1,dXk−1,2, eXk,3, f Xk+1,3),

f ((aXk+1,2,dXk+1,1, cXk,1,dXk−1,2, eXk,3, f Xk+1,3), (yk,2)))= y(k,2)

100
= t(k,2)

...

µ((aXk+1,n−1,bXk,n−2, cXk−1,n−2,dXk−1,n−1, eXk−1,n, f Xk,n),

f ((aXk+1,n−1,bXk,n−2, cXk−1,n−2,dXk−1,n−1, eXk−1,n, f Xk,n), (yk,n−1)))= y(k,n−1)

100
= t(k,n−1)

µ((aXk+1,n,bXk+1,n−1, cXk,n−1,dXk−1,n),

f ((aXk+1,n,bXk+1,n−1, cXk,n−1,dXk−1,n)))= y(k,n)

100
= t(k,n)

µ((dXm−1,1, eXm−1,2, f Xm,2), f ((dXm−1,1, eXm−1,2, f Xm,2), (ym,1)))= y(m,1)

100
= t(m,1)

µ((cXm,1,dXm−1,2, eXm,3), f ((cXm,1,dXm−1,2, eXm,3), (ym,2)))= y(m,2)

100
= t(m,2)

...

µ((bXm,n−2, cXm−1,n−2,dXm−1,n−1, eXm−1,n, f Xm,n),

f ((bXm,n−2, cXm−1,n−2,dXm−1,n−1, eXm−1,n, f Xm,n), (ym,n−1)))= y(m,n−1)

100
= t(m,n−1)

µ((cXm,n−1,dXm−1,n), f ((cXm,n−1,dXm−1,n), (ym,n)))= y(m,n)

100
= t(m,n)
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Theorem 3.2. Let M = (A,Q,u,F, M) be a fuzzy cellular automata and a,b, c,d, e, f ∈ Z∗
3 , m ≥ 3

and n be an odd positive integer. Then, the rule matrix T1
R from Zmn

3 to Zmn
3 which takes the tth

finite hexagonal configuration C(t) of order m×n to the (t+1)th state C(t+1) is given. We will
prove that corresponding fuzzy matrix of grades of the local transition is given by

F =


t11 t12 · · · t1,n−1 t1n

t21 t22 · · · t2,n−1 t2n

...
... · · · ...

...

tm1 tm2 · · · tm,n−1 tmn


m×n

.

Proof. The proof of Theorem 3.2 can be obtained by following similar steps as in the proof of
Theorem 3.1.

Example 3.1. Let m = 3 and n = 4 the fuzzy matrix of 2D finite fuzzy CA with hexagonal rule
over Z3 be as follows.

F =


t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

 ,

where a,b, c, f = 1 and d, e = 2 then X11 = X14 = X23 = X31 = X33 = 1, X12 = X21 = X22 = X24 =
X34 = 2, X13 = X32 = 0.

Figure 3. Information matrix of the HFFCA under NBC for m = 3, n = 4
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Solution. By using Theorem 3.1, we have the following fuzzy matrix of grades of the local
transition is given by

µ((aX21,0,0,0,0, f X12), f ((aX21,0,0,0,0, f X12), (y11)))= y11

100
= t11

µ((2,0,0,0,0,2), f ((2,0,0,0,0,2), (4)))= 4
100

= 0.04

µ((aX22,bX21, cX11,0, eX13, f X23), f ((aX22,bX21, cX11,0, eX13, f X23), (y11)))= y12

100
= t12

µ((2,2,1,0,0,1), f ((2,2,1,1), (6)))= 6
100

= 0.06

µ((aX23,bX12,0,0,0, f X14), f ((aX23,bX12,0,0,0, f X14), (y13)))= y13

100
= t13

µ((1,2,0,0,0,1), f ((1,2,1), (5)))= 5
100

= 0.05

µ((aX24,bX23, cX13,0,0,0), f ((aX24,bX23, cX13,0,0,0), (y14)))= y14

100
= t14

µ((2,1,1,0,0,0), f ((2,1,1), (4)))= 4
100

= 0.04

µ((aX31,0,0,dX11, eX12, f X22), f ((aX31,0,0,dX11, eX12, f X22), (y21)))= y21

100
= t21

µ((1,0,0,2,4,2), f ((1,2,4,2), (9)))= 9
100

= 0.09

µ((aX32,bX31, cX21,dX12, eX23, f X33), f ((aX32,bX31, cX21,dX12, eX23, f X33), (y22)))= y22

100
= t22

µ((0,1,2,4,2,2), f ((1,2,4,2,2), (11)))= 11
100

=0.11

µ((aX33,bX22, cX12,dX13, eX14, f X24), f ((aX33,bX22, cX12,dX13, eX14, f X24), (y23)))= y23

100
= t23

µ((1,2,2,0,2,2), f ((1,2,2,2,2), (9)))= 9
100

= 0.09

µ((aX34,bX33, cX23,dX14,0,0), f (aX34,bX33, cX23,dX14,0,0), (y24)))= y24

100
= t24

µ((2,1,1,2,0,0), f ((2,1,1,2), (6)))= 6
100

= 0.06

µ((0,0,0,dX21, eX22, f X32), f ((0,0,0,dX21, eX22, f X32), (y31)))= y31

100
= t31

µ((0,0,0,4,4,0), f ((4,4), (8)))= 8
100

= 0.08

µ((0,0, cX31,dX22, eX33,0), f ((0,0, cX31,dX22, eX33,0), (y32)))= y32

100
= t32

µ((0,0,1,4,2,0), f ((1,4,2), (7)))= 7
100

= 0.07

µ((0,bX32, cX22,dX23, eX24, f X34), f ((0,bX32, cX22,dX23, eX24, f X34), (y33)))= y33

100
= t33

µ((0,0,2,2,4,2), f ((2,2,4,2), (10)))= 10
100

= 0.1

µ((0,0, cX33,dX24,0,0), f ((0,0, cX33,dX24,0,0), (y34)))= y34

100
= t34
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µ((0,0,1,4,0,0), f ((1,4), (5)))= 5
100

= 0.05

The fuzzy matrix of the rule matrix

F =


0.04 0.06 0.04 0.04

0.09 0.11 0.09 0.06

0.08 0.007 0.1 0.05

 .

4. Reversibility of HFFCA
Definition 4.1 (Reversibility of CA). A cellular automata rule is called reversible if there a
another rule that makes the automaton retrace is computation steps backwards in time [4].

There is no specific algorithm that would decide whether a given local rule is reversible or
not in [3]. In this paper, by using the matrix algebra it is shown that HFCA is reversible if the
number of columns of T0

R are even and not reversible the number of columns are odd.
So in this section, we obtain fuzzy matrix of the inverse matrix of T0

R .

Example 4.1. Let m = 3 and n = 2 the fuzzy matrix of 2D finite fuzzy CA with hexagonal rule
over Z3 be as follows.

Figure 4. Information matrix of the HFFCA under NBC for m = 3, n = 2

where a,b, c, f = 1 and d, e = 2.

The rule matrix of the cellular automata T0
R =



0 1 2 0 0 0

1 0 2 2 0 0

1 1 0 1 2 0

0 1 1 0 2 2

0 0 1 1 0 1

0 0 0 1 1 0


.

Since the columns are even in [10], it is reversible.
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Solution. By using Theorem 3.1, for given X values at time t, X =
1 2

2 2
1 0

. We fine the

corresponding Y values at time t+1, Y =
4 5

9 7
8 5

 using T0
R matrix.

Then, Y matrix converted to the row matrix
(
4 5 9 7 8 5

)
.

The inverse of rule matrix T0
R is given by

−0.5714 0.7143 0.2857 0.2857 −0.5714 −1.1429

0.7143 −1.1429 1.1429 −0.8571 1.7143 −0.5714

0.1429 0.5714 −0.5714 0.4286 −0.8571 0.2857

0.1429 −0.4286 0.4286 −0.5714 1.1429 0.2857

−0.1429 0.4286 −0.4286 0.5714 −1.1429 0.7143

−0.2857 −0.1429 0.1429 0.1429 0.7143 −0.5714


(
4 5 9 7 8 5

)


−0.5714 0.7143 0.2857 0.2857 −0.5714 −1.1429

0.7143 −1.1429 1.1429 −0.8571 1.7143 −0.5714

0.1429 0.5714 −0.5714 0.4286 −0.8571 0.2857

0.1429 −0.4286 0.4286 −0.5714 1.1429 0.2857

−0.1429 0.4286 −0.4286 0.5714 −1.1429 0.7143

−0.2857 −0.1429 0.1429 0.1429 0.7143 −0.5714


µ((2.8572,−5.7145,5.1426,−3.0002,3.4288,−0.7145),

f ((2.8572,−5.7145,5.1426,−3.0002,3.4288,−0.7145, (1.0006)))= x11

100
= s11 = 1.0006

100
= 0.01

µ((1.1428,5.7145,5.1426,3.0002,3.4288,0.7145),

f ((1.1428,5.7145,5.1426,3.0002,3.4288,0.7145), (2.0006)))= x12

100
= s12 = 2.0006

100
= 0.02

µ((1.1428,5.7145,−5.1426,3.0002,−3.4288,0.7145),

f ((1.1428,5.7145,−5.1426,3.0002,−3.4288,0.7145), (2.0006)))= x21

100
= s21 = 2.0006

100
= 0.02

µ((1.1428,−4.2855,3.8574,3.9998,4.5712,0.7145),

f ((1.1428,−4.2855,3.8574,3.9998,4.5712,0.7145), (2.0006)))= x22

100
= s22 = 2.0006

100
= 0.02

µ((−2.2856,8.5715,−7.7139,8.0003,−9.1432,3.5715),

f ((−2.2856,8.5715,−7.7139,8.0003,−9.1432,3.5715), (1.0006)))= x31

100
= s31 = 1.0006

100
= 0.01

µ((−4.5716,−2.857,2.5713,1.9999,5.7144,−2.857),

f ((−4.5716,−2.857,2.5713,1.9999,5.7144,−2.857), (0)))= x32

100
= s32 = 0

100
= 0
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The fuzzy matrix of the inverse matrix


0.01 0.02

0.02 0.02

0.01 0

.

5. Conclusion
Fuzzification of 2D hexagonal finite cellular automata are studied over the field Z3. First, the
definition of principle of fuzzy cellular automata is given. The fuzzy matrix of the transition
T0

R matrix of 2D hexagonal finite cellular automata is computed. If the number of column of
transition matrix T0

R is even, then the fuzzy matrix of the inverse matrix T0
R is also computed.

In future by using above concept, a fuzzy mathematical model for predicting spread of the forest
fire may be obtained.
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