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1. Introduction
A derivative was presented by Atangana and Baleanu and followed by some valuable
results [1–4]. The fractional derivatives introduced by Caputo and Riemann-Liouville have
been applied in several real world problems by enormous success [6,7] however there are lot
of things to do in this topic. So, we proposed the new definition of fractional derivatives with
Mittag-Leffler kernel of two parameters.

2. Preliminaries
2.1 Definition
Let f ∈ H1(a,b), a < b, a ∈ [−∞, t) and α ∈ [0,1] then, the Caputo fractional time derivative with
non-singular kernel [6,7] is defined by

aD(α)
t f (t)= N(α)

1−α
∫ t

a
f ′(τ)exp

(
−α(t−τ)

1−α
)

dτ , (2.1)

where N(α) is a normalization function such that N(0)= N(1)= 1.
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2.2 Mittag Leffler Function
The Mittag-Leffler function [9,17] is the solution of fractional ordinary differential equation
given by

dαy
dxα

= ay, 0<α< 1 . (2.2)

The Mittag-Leffler function and its general form are then considered as non-local functions.
Let us consider the following generalized Mittag-Leffler function of two parameters:

tβ−1Eα,β(−tα)= tβ−1
∞∑

k=0

(−tα)k

Γ(αk+β)
. (2.3)

Using a kernel which is non-local and non-singular, namely the Mittag-Leffler function,
Atangana and Baleanu proposed a new definition of fractional derivatives as below:

2.3 Definition
Let f ∈ H1(a,b), a < b, α ∈ [0,1] then, the definitions of the AB fractional derivative with
non-local and non-singular kernel [2] are given by:

ABC
aDα

t f (t)= N(α)
1−α

∫ t

a
f ′(τ)Eα

[
−α(t−τ)α

1−α
]

dτ , (2.4)

ABR
aDα

t f (t)= N(α)
1−α

d
dt

∫ t

a
f (τ)Eα

[
−α(t−τ)α

1−α
]

dτ (2.5)

with N(α) being a normalisation function mentioned in Caputo fractional time derivative.

3. A New Definition of Fractional Derivative

By changing the kernel Eα

[
− αtα

1−α
]

with the Mittag-Leffler function tβ−1Eα,β

[
− (α+β−1)tα

2−α−β
]

of two

parameter and N(α)
1−α by B(α,β)

2−α−β , we obtain the following new definition of fractional derivative:

aDα,β
t f (t)= B(α,β)

2−α−β
∫ t

a
f ′(τ)(t−τ)β−1Eα,β

[
− (α+β−1)(t−τ)α

2−α−β
]

dτ . (3.1)

Thus, the following derivative is proposed.

3.1 Definition
Let f ∈ H1(a,b), a < b, 0≤α, β≤ 1 then, the definition of the new fractional derivative is given:

SABC
aDα,β

t f (t)= B(α,β)
2−α−β

∫ t

a
f ′(τ)(t−τ)β−1Eα,β

[
− (α+β−1)(t−τ)α

2−α−β
]

dτ , (3.2)

where B(α,β) is a normalization function such that B(α,β)= N(α+β−1).
If α+β= 1, the original function will not be recovered except when at the origin the function

vanishes. To avoid this problem, we intend Definition 3.2.

3.2 Definition
Let f ∈ H1(a,b),a < b,0≤α,β≤ 1 then, the definition of the new fractional derivative is given:

SABR
aDα,β

t f (t)= B(α,β)
2−α−β

d
dt

∫ t

a
f (τ)(t−τ)β−1Eα,β

[
− (α+β−1)(t−τ)α

2−α−β
]

dτ . (3.3)

Obviously, equations (3.2) and (3.3) have a non-local and non-singular kernel.
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4. Properties of the New Derivatives
In this section, initially we present the relation between both derivatives defined above using
Laplace transform.

Theorem 4.1. If β= 1, the derivatives SABC
aDα,β

t f (t) are equal to ABC
aDα

t f (t) and SABR
aDα,β

t f (t)
are equal to ABR

aDα
t f (t).

Proof. The proofs are just by observation of definitions of derivatives.

Theorem 4.2. Let f ∈ H1(a,b), a < b and α,β ∈ [0,1] then the following relation is obtained:
SABC

0Dα,β
t f (t)= SABR

0Dα,β
t f (t)+H0(t) . (4.1)

Proof. By using the equation (3.2) and the Laplace transform [9] applied on both sides, we get

L
{

SABC
0Dα,β

t f (t), p
}
= B(α,β)

2−α−β
pα−β [pL { f (t), p}− f (0)]

pα+ α+β−1
2−α−β

.

Therefore, we have

L
{

SABC
0Dα,β

t f (t), p
}
= B(α,β)

2−α−β
pα−β+1L { f (t), p}

pα+ α+β−1
2−α−β

− B(α,β)
2−α−β

pα−β f (0)

pα+ α+β−1
2−α−β

. (4.2)

Similarly, by using the equation (3.3) and the Laplace transform [9] applied on both sides, we get

L
{

SABR
0Dα,β

t f (t), p
}
= B(α,β)

2−α−β p

 pα−β

pα+ α+β−1
2−α−β

L { f (t), p}

 .

Therefore, we have

L
{

SABR
0Dα,β

t f (t), p
}
= B(α,β)

2−α−β
pα−β+1L { f (t), p}

pα+ α+β−1
2−α−β

. (4.3)

Using equation (4.2), we have

L
{

SABC
0Dα,β

t f (t), p
}
=L

{
SABR

0Dα,β
t f (t), p

}
− B(α,β)

2−α−β
pα−β f (0)

pα+ α+β−1
2−α−β

. (4.4)

Applying the inverse Laplace on both sides of eq. (4.4) we obtain
SABC

0Dα,β
t f (t)= SABR

0Dα,β
t f (t)− B(α,β)

2−α−β f (0)tβ−1Eα,β

(
−α+β−1

2−α−β tα
)
. (4.5)

This implies that
SABC

0Dα,β
t f (t)= SABR

0Dα,β
t f (t)+H0(t) ,

where

H0(t)=− B(α,β)
2−α−β f (0)tβ−1Eα,β

(
−α+β−1

2−α−β tα
)
.

This completes the proof.

Theorem 4.3. Let f be a continuous function defined on a closed interval [a,b]. Then
the following inequality is obtained on [a,b]:∥∥∥SABR

0Dα,β
t f (t)

∥∥∥< B(α,β)
2−α−βK . (4.6)
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Proof. Using ∥h(t)∥ = max
a≤t≤b

|h(t)|, we have∥∥∥SABR
0Dα,β

t f (t)
∥∥∥=

∥∥∥∥ B(α,β)
2−α−β

d
dt

∫ t

0
f (τ)(t−τ)β−1Eα,β

[
− (α+β−1)(t−τ)α

2−α−β
]

dτ
∥∥∥∥

< B(α,β)
2−α−β

∥∥∥∥ d
dt

∫ t

0
f (τ)dτ

∥∥∥∥
= B(α,β)

2−α−β ∥ f (t)∥ .

This implies that∥∥∥SABR
0Dα,β

t f (t)
∥∥∥< B(α,β)

2−α−βK ,

where
K = ∥ f (t)∥ .

This completes the proof.

Theorem 4.4. The S.A.B. derivative in Riemann and Caputo sense possess the Lipschitz
condition. In other words, for a given functions f and h, the following inequalities can be
established∥∥∥SABR

0Dα,β
t f (t)−SABR

0Dα,β
t h(t)

∥∥∥≤ H(t)∥ f (t)−h(t)∥ (4.7)

and ∥∥∥SABC
0Dα,β

t f (t)−SABC
0Dα,β

t h(t)
∥∥∥≤ H(t)∥ f (t)−h(t)∥ . (4.8)

Proof.∥∥∥SABR
0Dα,β

t f (t)−SABR
0Dα,β

t h(t)
∥∥∥

=
∥∥∥∥ B(α,β)

2−α−β
d
dt

∫ t

0
f (τ)(t−τ)β−1Eα,β

[
− (α+β−1)(t−τ)α

2−α−β
]

dτ

− B(α,β)
2−α−β

d
dt

∫ t

0
h(τ)(t−τ)β−1Eα,β

[
− (α+β−1)(t−τ)α

2−α−β
]

dτ
∥∥∥∥ .

Using the Lipschitz condition of the first order derivative, we can find a small positive constant
φ1 such that:∥∥∥SABR

0Dα,β
t f (t)−SABR

0Dα,β
t h(t)

∥∥∥
< B(α,β)φ1

2−α−β tβ−1Eα,β

[
− (α+β−1)tα

2−α−β
]∥∥∥∥∫ t

0
f (τ)dτ−

∫ t

0
h(τ)dτ

∥∥∥∥ (4.9)

and then the following result is obtained∥∥∥SABR
0Dα,β

t f (t)−SABR
0Dα,β

t h(t)
∥∥∥< B(α,β)φ1

2−α−β tβ−1Eα,β

[
− (α+β−1)tα

2−α−β
]
∥ f (t)−h(t)∥ t

= H(t)∥ f (t)−h(t)∥ ,
where

H(t)= B(α,β)φ1

2−α−β tβEα,β

[
− (α+β−1)tα

2−α−β
]

which produces the requested result. The proof of (4.8) can be obtained similarly.
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5. Derivation of New Fractional Integral

Let for a natural number n, f be an n-times differentiable and f (k)(0)= 0, for k = 1,2,3, . . . ,n,
then by observation we get

SABC
0Dα,β

t

[
dn

dtn f (t)
]
= dn

dtn

[
SABC

0Dα,β
t f (t)

]
. (5.1)

Let
SABC

0Dα,β
t f (t)= u(t) (5.2)

⇒ B(α,β)
2−α−β

d
dt

∫ t

0
f (τ)(t−τ)β−1Eα,β

[
− (α+β−1)(t−τ)α

2−α−β
]

dτ= u(t)

⇒ L

{
B(α,β)

2−α−β
d
dt

∫ t

0
f (τ)(t−τ)β−1Eα,β

[
− (α+β−1)(t−τ)α

2−α−β
]

dτ, p
}
=L {u(t), p}

Using the convolution theorem, we get
B(α,β)

2−α−β
pα−β [pL { f (t), p}]

pα+ α+β−1
2−α−β

=L {u(t), p}

⇒ L { f (t), p}= 2−α−β
B(α,β)

1
p−β+1 L {u(t), p}+ α+β−1

B(α,β)
1

pα−β+1 L {u(t), p} .

By taking the inverse Laplace transform, we get the unique solution

f (t)=


2−α−β

B(α,β)Γ(−β+1)
∫ t

0 u(y)(t− y)−βd y+ α+β−1
B(α,β)Γ(α−β+1)

∫ t
0 u(y)(t− y)α−βd y β ̸=1

1−α
N(α)

u(t)+ α

N(α)Γ(α)
∫ t

0 u(y)(t− y)α−1d y β=1

(5.3)

5.1 Definition
The fractional integral in two parameters corresponds to the new fractional derivative with
non-local and non-singular kernel is defined as

S
a Iα,β

t f (t)=


2−α−β

B(α,β)Γ(−β+1)
∫ t

a f (y)(t− y)−βd y+ α+β−1
B(α,β)Γ(α−β+1)

∫ t
a f (y)(t− y)α−βd y β ̸=1

1−α
N(α)

f (t)+ α

N(α)Γ(α)
∫ t

a f (y)(t− y)α−1d y β=1

(5.4)
When α= 0, β= 1 we recover the initial function, and if α= 1, β= 1, we obtain the ordinary
integral.

6. Application to Thermal Science
Fractional time Fourier’s Law Equation. The Fourier’s law [8, 10, 13] is defined by the
classical parabolic equation as

χ
∂2T(x, t)
∂x2 − ∂T(x, t)

∂x
= 0 , (6.1)

where

χ= k
ρCp

.
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χ is the thermal diffusivity,k is the thermal conductivity, ρ is density, Cp is the specific heat
capacity, and T is the temperature conduction in a planar medium with constant properties.
Taking into consideration eq. (6.1) and assuming that time derivative is fractional and space
derivative is ordinary, the temporal fractional equation will be as follows

SABC
0Dα,β

t T(x, t)−χ∂
2T(x, t)
∂x2 = 0 . (6.2)

A particular solution to eq. (6.2) will be in the following form

T(x, t)= T0e−ik̄xu(t) . (6.3)
Substituting eq. (6.3) into eq. (6.2), we obtain

T0e−ik̄xSABC
0Dα,β

t u(t)−χ(−ik̄)2T0e−ik̄xu(t)= 0

⇒ T0e−ik̄x
[

SABC
0Dα,β

t u(t)+χk̄2u(t)
]
= 0

SABC
0Dα,β

t u(t)+ωu(t)= 0 (6.4)

where ω= χk̄2σ
2−α−β
t is the angular frequency.

The numerical approximation to eq. (6.4) is given by
B(α,β)

2−α−β
∫ t

0
u′(τ)(t−τ)β−1Eα,β

[
− (α+β−1)(t−τ)α

2−α−β
]

dτ+ωu(t)= 0 .

By taking Laplace transform on both sides we get

L
{

SABC
0Dα,β

t u(t), p
}
+ωL {u(t), p}= 0

⇒ B(α,β)
2−α−β

pα−β [pL {u(t), p}−u(0)]

pα+ α+β−1
2−α−β

+ωL {u(t), p}= 0

⇒ B(α,β)
2−α−β

[
pα−β+1L {u(t), p}−u(0)pα−β

]
pα+ α+β−1

2−α−β
+ωL {u(t), p}= 0

⇒ B(α,β)pα−β+1

(2−α−β)pα+α+β−1
L {u(t), p}− B(α,β)pα−βu(0)

(2−α−β)pα+α+β−1
+ωL {u(t), p}= 0

⇒
[

B(α,β)pα−β+1

(2−α−β)pα+α+β−1
+ω

]
L {u(t), p}− B(α,β)pα−βu(0)

(2−α−β)pα+α+β−1
= 0

⇒
[

B(α,β)pα−β+1 + (
(2−α−β)pα+α+β−1

)
ω

(2−α−β)pα+α+β−1

]
L {u(t), p}− B(α,β)pα−βu(0)

(2−α−β)pα+α+β−1
= 0

⇒
[
B(α,β)pα−β+1 + (

(2−α−β)pα+α+β−1
)
ω

]
L {u(t), p}= B(α,β)pα−βu(0)

⇒ L {u(t), p}= B(α,β)pα−βu(0)
B(α,β)pα−β+1 + (

(2−α−β)pα+α+β−1
)
ω

⇒ L {u(t), p}= u(0)
p

1

1+ ((2−α−β)pβ+(α+β−1)pβ−α)ω
B(α,β)

⇒ L {u(t), p}= u(0)
p

∞∑
k=0

[
−

(
(2−α−β)pβ+ (α+β−1)pβ−α

)
ω

B(α,β)

]k

⇒ L {u(t), p}= u(0)
∞∑

k=0

[
−ω (2−α−β)

B(α,β)

]k (
1+ α+β−1

2−α−β p−α
)k

pβk−1
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⇒ u(t)= u(0)
∞∑

k=0

[
−ω (2−α−β)

B(α,β)

]k ∫ t

0

[
δ(τ)+ k(α+β−1)

Γ(α)(2−α−β)
τα−1

]
(t−τ)−βk

Γ(1−βk)
dτ

⇒ u(t)= u(0)
∞∑

k=0

1
Γ(1−βk)

[
−ω (2−α−β)

B(α,β)

]k {(
t−βk+1 − t−βk

)
+ k(α+β−1)
Γ(α)(2−α−β)

Γ(α)Γ(−βk+1)
Γ(α−βk+1)

tα−βk+1
}

⇒ u(t)= u(0)
∞∑

k=0

[
−ω (2−α−β)

B(α,β)

]k {
(t−1) t−βk

Γ(1−βk)
+ k(α+β−1)

(2−α−β)
tα−βk+1

Γ(α−βk+1)

}
⇒ u(t)= u(0)

{
(t−1)E−β,1

[
−ω (2−α−β)

B(α,β)
t−β

]
+α+β−1

2−α−β tα+1E−β,α+1

[
−ω (2−α−β)

B(α,β)
t−β

]}
.

Therefore, the relation (6.3) gives us

T(x, t)= T0e−ik̄xu(0)
{

(t−1)E−β,1

[
−ω (2−α−β)

B(α,β)
t−β

]
+α+β−1

2−α−β tα+1E−β,α+1

[
−ω (2−α−β)

B(α,β)
t−β

]}
. (6.5)

This is an alternative representation of the fractional-time Fourier’s law equation using the
concept of derivative with two fractional orders α and β.
For α= 1, we have

T(x, t)= T0e−ik̄xu(0)
{

(t−1)E−β,1

[
−ω (1−β)

B(1,β)
t−β

]
+ β

1−β t2E−β,2

[
−ω (1−β)

B(1,β)
t−β

]}
. (6.6)

Further, by substituting ω = χk̄2σ
1−β
t = k̄2

Tβ
, where χ is a time constant or thermal diffusion

coefficient, we have

T(x, t)= T0e−ik̄xu(0)
{

(t−1)E−β,1

[
−k̄2 (1−β)

TβB(1,β)
t−β

]
+ β

1−β t2E−β,2

[
−k̄2 (1−β)

TβB(1,β)
t−β

]}
. (6.7)

This equation represents the fractional-time Fourier’s law equation using the concept of
derivative with only one fractional order β.

7. Conclusions
The aim of this paper was to suggest new derivative with Mittag-Leffler kernel of two parameters.
To achieve this goal, we make use the generalized Mittag-Leffler function of two parameters.
One derivative is based upon the Atangana-Baleanu Caputo viewpoint and the second on the
Atangana-Baleanu Riemann-Liouville approach. We derive the fractional integral associate
using the Laplace transform operator. The new derivative was used to find the better solution
of Fractional time Fourier’s law equation.
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