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1. Introduction
As generalizations of standard metric spaces, metric-like spaces were considered first by Hitzler
and Seda [12] under the name of dislocated metric spaces. After then Amini-Harandi [3] proved
some fixed point theorems in the class of metric-like space. Very recently many authors proved
fixed point results in the setting of metric-like spaces (e.g, see [5–7,15,17]). Also, Khojasteh et
al. [14] introduced the notion of z-contraction by defining the concept of simulation functions.
They unified the some existing metric fixed point results. Then various authors studied in this
direction [2,4,11,16,18].
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Alizadeh et al. [1] introduced the concept of cyclic (α,β)-admissible mapping and proved some
new fixed point theorems which generalize and extend some recent results in the literature.
By using this concept, they [15, 16] proved several fixed point theorems with different type
contractive conditions. Berinde [9,10] extended the class of contractive mapping, introducing
the notion of almost contractions and proved that every almost contraction mapping defined on
a complete metric space has at least one fixed point. Subsequently, Babu et al. [8] demonstrated
that almost contraction type mappings have a unique fixed point under conditions that present
the notion of B-almost contraction. Also, Isik et al. [13] proved fixed point theorems for almost
z-contraction with an application.

In this paper, we consider some simulation functions to show the existence of fixed points
of cyclic (α,β)-admissible almost z-contraction in metric-like space. Furthermore, we also give
some examples to illustrate the main results. We modify and generalize the results of Isik et al.
[13], and Qawaqneh [15].

Let us recall some notations and definitions, we will need in the squeal. Throughout this
paper, we assume the symbols R and N as a set of real numbers and a set of natural numbers
respectively.

2. Basic Facts and Definitions
Definition 2.1 ([3]). Let X be a non empty set. A function σ : X × X → R+ is said to be a
metric-like (or a dislocated metric) on X , if for any x, y, z ∈ X the following conditions hold:

(σ1) σ(x, y)= 0⇒ x = y;

(σ2) σ(x, y)=σ(y, x);

(σ3) σ(x, z)≤σ(x, y)+σ(y, z).

The pair (X ,σ) is called a metric-like space. Then a metric-like on X satisfies all conditions
of a metric except that σ(x, x) may be positive for x ∈ X . Each metric-like σ on X generates a
topology τσ on X , whose base is the family of open σ-balls, then for all x ∈ X and ϵ> 0

Bσ(X ,ϵ)= {y ∈ X :σ(x, y)−σ(x, x)< ϵ}.
Now, let (X ,σ) be a metric-like space. A sequence {xn} in the metric-like space (X ,σ) converges
to a point x ∈ X if and only if

lim
n→∞σ(xn, x)=σ(x, x).

Let (X ,σ) be metric-like space, and let T : X → X be a continuous mapping. Then

lim
n→∞xn = x ⇒ lim

n→∞T(xn)= T(x) .

A sequence {xn} is Cauchy in (X ,σ), if and only if lim
n,m→∞σ(xm, xn) exists and is finite. Moreover,

the metric-like space (X ,σ) is called complete, if and only if for every Cauchy sequence {xn} in
X , there exists x ∈ X such that

lim
n→+∞σ(xn, x)=σ(x, x)= lim

n,m→∞σ(xn, xm) .
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It is clear that every metric space and partial metric space is a metric-like space but the
converse is not true.

Example 2.2. Let X = {0,1} and σ(x, y)=
{

2, if x = y= 0;
1, otherwise.

Then (X ,σ) is a metric-like space. It is neither a partial metric space (σ(0,0)≰σ(0,1)) nor a
metric space (σ(0,0)= 2 ̸= 0).

Remark 2.3. A subset A of a metric-like space (X ,σ) is bounded if there is a point b ∈ X and a
positive constant k such that σ(a,b)≤ k for all a ∈ A.

Remark 2.4 ([3]). Let X = {0,1} such that σ(x, y) = 1 for each x, y ∈ X and let xn = 1 for each
n ∈ N . Then it is easy to see that xn → 0 and xn → 1 and so in metric-like space, the limit of a
convergence sequence is not necessarily unique.

The following Lemma is useful to prove our results.

Lemma 2.5 ([3,9]). Let (X ,σ) be a metric-like space. Let {xn} be a sequence in X such that xn → x,
where x ∈ X and σ(x, y)= 0. Then for all y ∈ X we have lim

n→∞σ(xn, y)=σ(x, y).

Definition 2.6 ([14]). A function ζ : [0,∞)×[0,∞)→R is called a simulation function if ζ satisfies
the following conditions:

(ζ1) ζ(0,0)= 0.

(ζ2) ζ(t, s)< s− t, for all t, s > 0.

(ζ3) If {tn} and {sn} are sequences in (0,∞) such that lim
n→∞ tn = lim

n→∞ sn = l ∈ (0,∞), then
lim

n→∞supζ(tn, sn)< 0.

The following unique fixed point theorem is established by Khojasteh et al. in [14].

Theorem 2.7. Let (X ,d) be a metric space and T : X → X be a z-contraction with respect to a
simulation function ζ, that is

ζ(d(Tx,T y),d(x, y))≥ 0

for all x, y ∈ X . Then T has a unique fixed point.

It is worth mentioning that the Banach contraction is an example of z-contractions by
defining ζ : [0,∞)× [0,∞)→R via ζ(t, s)=λs− t, for all s, t ∈ [0,∞), where λ ∈ [0,1).

Argoubi et al. [4] modified Definition 2.6 as follows.

Definition 2.8 ([4]). A simulation function is a function ζ : [0,∞)× [0,∞)→R that satisfies the
following conditions:

(i) ζ(t, s)< s− t, for all t, s > 0;
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(ii) if {tn} and {sn} are sequences in (0,∞) such that lim
n→∞ tn = lim

n→∞ sn = l ∈ (0,∞), then
lim

n→∞supζ(tn, sn)< 0.

It is clear that any simulation function in the sense of Khojasteh et al. [14, Definition 2.6] is
also a simulation function in the sense of Argoubi et al. [4, Definition 2.8]. The converse is not
true.

Example 2.9 ([4]). Define a function ζ : [0,∞)× [0,∞)→R by

ζ(t, s)=
{

1, if (s, t)= (0,0),
λs− t, otherwise,

where λ ∈ (0,1). Then ζ is a simulation function in the sense of Argoubi et al. [4].

In the sense of Definition 2.6, some other examples of simulation functions are given below:

(i) ζ(t, s)= cs− t, for all t, s ∈ [0,∞), where c ∈ [0,1),

(ii) ζ(t, s)= s−φ(s)− t, for all t, s ∈ [0,∞),

where φ :R+ →R+ is a lower semi-continuous function such that φ(t)= 0 if and only if t = 0.

Definition 2.10 ([1]). Let f : X → X be a mapping and α,β : X →R+ be two functions. We say
that f is a cyclic (α,β)-admissible mapping if:

(1) α(x)≥ 1 for some x ∈ X ⇒β( f (x))≥ 1.

(2) β(x)≥ 1 for some x ∈ X ⇒α( f (x))≥ 1.

Definition 2.11 ([9,10]). Let (X ,d) be a metric space. A self mapping T on X is called an almost
contraction if there are constants λ ∈ (0,1) and θ ≥ 0 such that

d(Tx,T y)≤λd(x, y)+θd(y,Tx), for all x, y ∈ X .

Definition 2.12 ([8]). Let (X ,d) be a metric space. A self mapping T on X is called an B-almost
contraction if there are constants λ ∈ (0,1) and θ ≥ 0 such that

d(Tx,T y)≤λd(x, y)+θN(x, y), for all x, y ∈ X ,

where N(x, y)= min{d(x,Tx),d(y,T y),d(x,T y),d(y,Tx)}.

3. Main Results
In this section, we present the class of cyclic (α,β)-admissible almost z-contraction mapping
and prove some fixed point theorems on complete metric-like space with simulation function.

Theorem 3.1. Let (X ,σ) be a complete metric-like space and T : X → X be a cyclic (α,β)-
admissible almost z-contraction mapping with respect to a ζ simulation function if there exist
ψ :R+ →R+ with ψ(t)< t such that

ζ(ψ(σ(Tx,T y)),ψ(σ(x, y)+θN(x, y)))≥ 0 , (3.1)
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for all x, y ∈ X satisfying α(x)β(y)≥ 1 where

N(x, y)=min{σ(x,Tx),σ(y,T y),σ(x,T y),σ(y,Tx)} and θ ≥ 0.

Assume that,

(1) there exists x0 ∈ X such that α(x0)≥ 1 and β(x0)≥ 1,

(2) T is continuous, or

(3) if {xn}⊆ X such that xn → x and β(xn)≥ 1 for all n, then β(x)≥ 1.

Then T has a fixed point u ∈ X such that σ(u,u)= 0. Moreover, if α(x)≥ 1 and β(y)≥ 1, for all
x, y ∈ Fix(T), then T has a unique fixed point.

Proof. Since T is a cyclic (α,β)-admissible mapping and α(x0)≥ 1 then β(x1)=β(Tx0)≥ 1 which
implies that α(Tx1)=α(x2)≥ 1. By continuing this method, we have α(x2n)≥ 1 and β(x2n−1)≥ 1
for all n ∈N. Again, since T is cyclic (α,β)-admissible mapping and β(x0)≥ 1, we have β(x2n)≥ 1
and α(x2n−1)≥ 1, then we deduce

α(xn)≥ 1 and β(xn)≥ 1, (3.2)

for all n ∈N0. Equivalently, α(xn−1)β(xn)≥ 1. Applying (3.1), we obtain

ζ(ψ(σ(Txn−1,Txn)),ψ(σ(xn−1, xn)+θN(xn−1, xn)))

= ζ(ψ(σ(xn, xn+1)),ψ(σ(xn−1, xn)+θN(xn−1, xn)))≥ 0. (3.3)

Since,

N(xn−1, xn)=min{σ(xn−1,Txn−1),σ(xn,Txn),σ(xn−1,Txn),σ(xn,Txn−1)}

=min{σ(xn−1, xn),σ(xn, xn+1),σ(xn−1, xn+1),σ(xn, xn)}

= 0 .

From (3.3), we have

ζ(ψ(σ(xn, xn+1)),ψ(σ(xn−1,xn)))≥ 0. (3.4)

If σ(xn, xn+1)= 0 for some n, then xn = xn+1 = Txn, that is xn is a fixed point of T and so the
proof is finished. Therefore, we suppose that xn ̸= xn+1 for all n ≥ 0. Now, we shall show that
σ(xn, xn+1)≤σ(xn−1, xn). Now from (3.4) and by (ζ2), we have

0≤ ζ(ψ(σ(xn, xn+1)),ψ(σ(xn−1, xn)))

<ψ(σ(xn−1, xn))−ψ(σ(xn, xn+1)),

by using the properties of ψ, we get

σ(xn+1, xn)<σ(xn−1, xn).

Hence, we obtain

σ(xn, xn+1)≤σ(xn−1, xn), (3.5)
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for all n ≥ 1 which implies that {σ(xn, xn+1)} is non increasing sequence, so there exists r ≥ 0
such that

lim
n→∞σ(xn, xn+1)= r .

Suppose that r > 0. By the properties of ψ, (3.4), (3.5) and the condition (ζ3)

0≤ lim
n→∞supζ(ψ(σ(xn, xn+1)),ψ(σ(xn−1, xn)))< 0,

which is a contradiction. Therefore r = 0. This implies that

lim
n→∞σ(xn, xn+1)= 0. (3.6)

Again, we show that {xn} is Cauchy sequence in (X ,σ), i.e.,

lim
n,m→∞σ(xn, xm)= 0. (3.7)

Suppose on the contrary that is {xn} is not a Cauchy sequence. Then there exist ϵ> 0 for which
we can assume subsequences {xm(k)} and {xn(k)} of {xn} with m(k)> n(k)> k such that for every k,

σ(xn(k) , xm(k))≥ ϵ . (3.8)

This means that

σ(xn(k) , xm(k)−1)< ϵ . (3.9)

By the triangular inequality and using (3.8) and (3.9), we get

ϵ≤σ(xn(k) , xm(k))≤σ(xn(k) , xm(k)−1)+σ(xm(k)−1, xm(k))

< ϵ+σ(xm(k)−1, xm(k)).

Letting n →∞ in the above inequalities and by using (3.7) and (3.8), we have

lim
n,m→∞σ(xn(k) , xm(k))= ϵ . (3.10)

Since

σ(xn(k) , xm(k))≤σ(xm(k) , xn(k)+1)+σ(xn(k)+1, xn(k))

and

σ(xn(k)+1, xm(k)+1)≤σ(xm(k) , xn(k)+1)+σ(xn(k)+1, xm(k)),

then by letting the limit as k →∞ in above inequalities and using (3.6) and (3.10), we deduce
that

lim
n,m→∞σ(xn(k)+1, xm(k))= ϵ . (3.11)

Similarly, one can easily show that

lim
n,m→∞σ(xn(k)+1, xm(k)+1)= lim

n,m→∞σ(xn(k) , xm(k)+1)= ϵ . (3.12)

Again since T is a cyclic (α,β)-admissible almost z-contraction mapping and

α(xn(k))β(xm(k))≥ 1,

then

N(xn(k) , xm(k))=min{σ(xn(k) , xn(k)+1),σ(xm(k) , xm(k)+1),σ(xn(k) , xm(k)+1),σ(xm(k) , xn(k)+1)}
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taking n →∞ and using (3.6), (3.10) and (3.11), we obtain

lim
n,m→∞N(xn(k) , xm(k))= ϵ . (3.13)

If xn = xm for some n < m, then xn = Txn = Txm = xm+1 and since {σ(xn, xn+1)} is non increasing
sequence then

0<σ(xn, xn+1)=σ(xm, xm+1)<σ(xm−1, xm)< . . .<σ(xn, xn+1)

which is a contradiction. Then xn ̸= xm for all n < m. From condition (ζ2), we have

0≤ lim
k→∞

supζ(ψ(σ(xn(k)+1, xm(k)+1)),ψ(σ(xn(k) , xm(k)))+θN(xn(k) , xm(k)))< 0,

which is a contradiction, due to our assumption, so {xn} is a Cauchy sequence. Since (X ,σ) is
complete, there exists u ∈ X such that

lim
n→∞σ(xn,u)=σ(u,u)= lim

n,m→∞σ(xn, xm)= 0 . (3.14)

Now, if T is continuous, we obtain from (3.14)

lim
n→∞σ(xn+1,Tu)= lim

n→∞σ(Txn+1,Tu)=σ(Tu,Tu)= 0. (3.15)

Using Lemma 2.5 and (3.15), we have

lim
n→∞σ(xn,Tu)=σ(u,Tu). (3.16)

Combining (3.15) and (3.16), we deduce that σ(Tu,u)=σ(Tu,Tu). That is Tu = u. Assume that
condition (3) is hold, that is α(xn)β(u)≥ 1. From (3.1), we get

0≤ ζ(ψ(σ(xn+1,Tu)),ψ(σ(xn,u)+θN(xn,u)))

= ζ(ψ(σ(Txn,Tu)),ψ(σ(xn,u)+θN(xn,u))), (3.17)

where

N(xn,u)=min{σ(xn,Txn),σ(u,Tu),σ(xn,Tu),σ(u,Txn)}

=min{σ(xn, xn+1),σ(u,u),σ(xn,u),σ(u, xn+1)}= 0. (3.18)

From (3.17), (3.18) and (ζ2), we have

0≤ ζ(ψ(σ(Txn,Tu)),ψ(σ(xn,u)))

≤ψ(σ(xn,u))−ψ(σ(Txn,Tu))< 0.

Since ψ is strictly increasing, we have σ(u,Tu) < (u,Tu), which is not possible and hence
σ(u,Tu) = 0, that is Tu = u and so u is a fixed point of T . Now, we shall show that the
uniqueness of fixed point of u. Let v be another fixed point of T . Since α(u)β(v)≥ 1, it follows
from (3.1) that

0≤ ζ(ψ(σ(Tu,Tv)),ψ(σ(u,v)+θN(u,v)))

= ζ(ψ(σ(u,v)),ψ(σ(u,v)+θN(u,v))), (3.19)

where

N(u,v)=min{σ(u,Tu),σ(v,Tv),σ(u,Tv),σ(v,Tu)}

=min{σ(u,u),σ(v,v),σ(u,v),σ(v,u)}= 0. (3.20)
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From (3.19) and (3.20), we get

0≤ ζ(ψ(σ(u,v)),ψ(σ(u,v)))

<ψ(σ(u,v))−ψ(σ(u,v)).

Since ψ is strictly increasing, we have σ(u,v)<σ(u,v), which is a contradiction. Hence u = v
that is T has a unique fixed point.

Corollary 3.2. Let (X ,σ) be a complete metric-like space and T : X → X be a cyclic (α,β)-
admissible z-contraction mapping with respect to ζ simulation function if there exist ψ :R+ →R+

with ψ(t)< t such that

ζ(ψ(σ(Tx,T y)),ψ(σ(x, y)))≥ 0, (3.21)

for all x, y ∈ X satisfying α(x)β(y)≥ 1. Assume that

(1) there exists x0 ∈ X such that α(x0)≥ 1 and β(x0)≥ 1,

(2) T is continuous, or

(3) if {xn}⊆ X such that xn → x and β(xn)≥ 1 for all n, then β(x)≥ 1.

Then T has a unique fixed point.

Proof. The rest of proof follows from Theorem 3.1 by considering cyclic (α,β)-admissible z-
contraction mapping that is N(x, y)= 0.

Corollary 3.3. Let (X ,σ) be a complete metric-like space and T : X → X be a cyclic (α,β)-
admissible z-contraction mapping with respect to ζ simulation function if there exist ψ :R+ →R+

with ψ(t)< t such that

ζ(ψ(α(x)β(y)σ(Tx,T y)),ψ(σ(x, y)))≥ 0, (3.22)

for all x, y ∈ X satisfying α(x)β(y)≥ 1. Assume that

(1) there exists x0 ∈ X such that α(x0)≥ 1 and β(x0)≥ 1,

(2) T is continuous, or

(3) if {xn}⊆ X such that xn → x and β(xn)≥ 1 for all n, then β(x)≥ 1.

Then T has a unique fixed point.

Proof. The rest of proof follows from Theorem 3.1 by considering cyclic (α,β)-admissible
z-contraction mapping that is N(x, y)= 0 and α(x)β(y)≥ 1.

Example 3.4. Let X = [0,∞) endowed with the metric-like σ(x, y) = x2 + y2. Consider
the mapping T : X → X given by

T(x)=
{

x2

2 , if x ∈ [0,1],
x+1, otherwise.
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Note that (X ,σ) is complete metric-like space. Define mappings α,β : X →R+ by

α(x)=
{

1, if x ∈ [0,1],
0, otherwise,

β(x)=
{

1, if x ∈ [0,1],
0, otherwise.

Let ζ(t, s)= s
1+s − t for all s, t ≥ 0 and ψ(t)= t. Note that T is a cyclic (α,β)-admissible. In fact,

let x, y ∈ X such that α(x)≥ 1 and β(x)≥ 1. By definition of α and β this implies that x, y ∈ [0,1].
Thus β(T(x)) ≥ 1, α(T(x)) ≥ 1. Now, if {xn} ⊂ X such that β(xn) ≥ 1 and xn → x as n →∞.

Therefore, xn ∈ [0,1] hence x ∈ [0,1], i.e., β(x)≥ 1.
Let α(x)β(y)≥ 1. Then x, y ∈ [0,1] and so we have

ψ(σ(Tx,T y)),ψ(σ(x, y)+θN(x, y))=σ(Tx,T y), (σ(x, y)+θN(x, y)). (3.23)

Hence θ ≥ 0 and

N(x, y)=min{σ(x,Tx),σ(y,T y),σ(x,T y),σ(y,Tx)}

=min
{(

x2 + x4

4

)
,
(
y2 + y4

4

)
,
(
x2 + y4

4

)
,
(
y2 + x4

4

)}
.

Since x, y ∈ [0,1]

N(x, y)= 0. (3.24)

From (3.23) and (3.24), we have

ψ(σ(Tx,T y)),ψ(σ(x, y)+θN(x, y))=σ(Tx,T y),σ(x, y).

It follows that

ζ(ψ(σ(Tx,T y)),ψ(σ(x, y)+θN(x, y)))= ζ(σ(Tx,T y),σ(x, y))

= σ(x, y)
1+σ(x, y)

−σ(Tx,T y)

= x2 + y2

1+ x2 + y2 −
(

x4

4
+ y4

4

)
= x2 + y2

1+ x2 + y2 − x4 + y4

4
≥ 0 .

So, the hypothesis of Corollary 3.2 hold and therefore, T has a unique fixed point x = 0.

4. Conclusion
In this paper, we have presented some fixed point results for cyclic (α,β)-admissible almost z-
contraction mapping in metric like space via simulation function. Our results are generalization
of many existing results in the literature. Finally, we show one example to support the obtained
results.
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on metric-like spaces, Journal of Nonlinear Sciences and Applications 9(5) (2016), 2458 – 2466,
DOI: 10.22436/jnsa.009.05.45.

[6] H. Aydi, A. Felhi and H. Afshari, New Geraghty type contractions on metric-like spaces, Journal of
Nonlinear Sciences and Applications 10(2) (2017), 780 – 788, DOI: 10.22436/jnsa.010.02.38.

[7] H. Aydi, A. Felhi and S. Sahmim, Fixed points of multivalued nonself almost contractions in
metric-like spaces, Mathematical Sciences 9 (2015), 103 – 108, DOI: 10.1007/s40096-015-0156-7.

[8] G.V.R. Babu, M.L. Sandhya and M.V.R. Kameswari, A note on a fixed point theorem of Berinde
on weak contractions, Carpathian Journal of Mathematics 24(1) (2008), 8 – 12, URL: https:
//www.jstor.org/stable/43996834.

[9] V. Berinde, Approximating fixed Point of weak contractions using the Picard iteration, Nonlinear
Analysis Forum 9(1) (2004), 43 – 53.

[10] V. Berinde, General constructive fixed point theorems for Ćirić-type almost contractions in metric
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