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Abstract. Exploring the functioning of analytical solutions of differential equations defined by the
fractional order operators is one of the hottest topics in the field of research in stability problems.
This article analyze the stability of a certain type of fractional order differential equation. Employing
Banach contraction mapping principle, existence and uniqueness of solutions are obtained. A sufficient
condition to assure the reliability of solving the fractional order differential equation by Laplace
Transform method and Generalized Laplace Transform are presented. Exponential stability results
for the solution is discussed using Gronwall inequality. Application of the generalized Gronwall
inequality to fractional order differential equation under investigation yields new sufficient condition
for stability of fractional order differential equation. Applicability of the theoretical results on stability
are demonstrated with an example. In the analysis of fractional order differential equation, Laplace
transform is proved to be a valid tool under certain conditions.
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1. Introduction
Fractional calculus is the generalization of integer order calculus to any arbitrary order.
It includes both derivatives and integrals with fractional orders. For the past three decades,
fractional calculus is the focus of several mathematicians in view of its application in different
fields of science and engineering. In addition, nowadays economists are also using the concept
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of fractional calculus. Researchers and academicians found that the fractional order derivatives
are more suitable for the interpretation of the real world phenomena, such as population
dynamics, visco-elasticity, heat conduction, finance and so on ([5,9,13,16]).

In fractional calculus, different types of operators such as Riemann-Liouville operator,
Caputo operator, conformable operator and many others have been introduced by researchers
to analyze the real world problem with different conditions and assumptions. Khalil et al. [8]
proposed the conformable fractional derivative and proved the conformable fractional Leibniz
rule. Abdeljawad in [1] established generalized conformable derivatives to higher orders.
Bosch [4] derived new convolution properties and the extension of Laplace Transform (LT)
for fractional order differential equation.

Recently, study on stability theory of fractional order differential equation (FODE) has been
productive and expeditiously developing and it has drawn the attention of many researchers. To
analyze FODE, different tools have been used, of which the most frequently applied method
is LT method [7,18]. LT method is used to solve the differential equations where the original
differential equation of time domain is transformed into algebraic equation of frequency
domain. Then this can be transformed into approximate solution of the original differential
equation. Laplace transform is applied when the constants are known. For instance, the study
of generalized Mittag-Leffler (ML) stability for fractional order nonlinear dynamical systems
using Laplace transform is investigated in [10, 11]. Also, Sabatier et al. [14] established the
stability conditions for fractional order system by utilizing Laplace transform. The existence and
stability of fractional order difference equations with certain boundary conditions is discussed
by Selvam et al. [17]. Also, Liang et al. [12], Ye et al. [20], and Deng et al. [6] have used the
Laplace transform method to analyze certain qualitative properties of FODE.

Inspired by the above mentioned analysis of stability of FODE under Laplace transformation
method, we propose to study the stability of the following nonlinear fractional order initial
value problem (FIVP) of the form

Dα
0φ(η)=λφ(η)+ f (η,φ(η)), η≥ 0 ,

φ(0)=µ ,
(1.1)

where 0<α≤ 1 is the fractional order, λ is a non-negative real constant and µ is a real constant.
The nonlinear term is f and it is continuous for every φ ∈Rn.

The core objective of the article is to establish the stability of the solution of fractional order
differential equation (1.1) by employing the Laplace transform. The basic properties of LT are
presented in section 2. In Section 3, the existence and uniqueness of the solutions are discussed
and new sufficient condition ensuring stability is determined in Section 4. Extended work to
prove the reliability of Generalized Laplace Transform (GLT) method for solving fractional
differential equation with conformable fractional derivative in Section 5 is followed by an
example and numerical illustration is provided in Section 6. Section 7 presents a conclusion for
the article.

Communications in Mathematics and Applications, Vol. 13, No. 1, pp. 103–115, 2022



Analysis of Fractional Order Differential Equation Using Laplace Transform: S.B. Jacob and A.G.M. Selvam 105

2. Prerequisites
This section recollects, some important properties that are essential to derive the main results.

Definition 2.1 ([13]). The Laplace transform for the function F(s) is

F(s)= L[φ(η)]=
∫ ∞

0
e−sηφ(η)dη, (2.1)

where φ(η) is a vector-valued function.

Definition 2.2 ([9]). The Riemann-Liouville integral for the function φ : (0,∞) → Rn of order
0<α≤ 1 is

0Iαt φ(η)= 1
Γ(α)

∫ η

0
(η− s)α−1φ(s)ds. (2.2)

Lemma 2.1 ([11]). Let C be the complex plane, for every u > 0, v > 0 and V ∈Cn×n,

L{ηv−1Eu,v(V tu)}= su−v(su −V )−1,

is satisfied when R(s)> ∥V∥ 1
u , where the real part is denoted by R(s).

Proof. For R(s)> ∥V∥ 1
u , from [19], we have

∞∑
k=0

V ks−(k+1)u = (su −V )−1. Then

L[ηv−1Eu,v(Vηu)]= L

[
ηv−1

∞∑
k=0

(Vηu)k

Γ(uk+v)

]

=
∞∑

k=0

V kL[ηuk+v−1]
Γ(uk+v)

= su−v
∞∑

k=0
V ks−(k+1)u

= su−v(su −V )−1 .

Lemma 2.2 ([12]). If q ≥ 0,β> 0. Suppose φ(η), p(η) are non-negative and locally integrable on
0≤ η< T (some T ≤+∞) with

φ(η)≤ p(η)+ q
∫ η

0
(η− s)α−1φ(s)ds, (2.3)

on (0,T). Then

φ(η)≤ p(η)+θ
∫ η

0
E′
β(θ(η− s))p(s)ds, 0≤ η< T, (2.4)

where

θ = (qΓ(β))
1
β , Eβ(z)=

∞∑
n=0

znβ

Γ(nβ+1)
, E′

β(z)= d
dz

Eβ(z),

E′
β(z)≃ zβ−1

Γ(β)
as z → 0+, E′

β(z)≃ 1
β

ez as z →+∞.

(and Eβ(z)≃ 1
β

ez as z →+∞).

Remark. If p(η)≡ p, (constant), then φ(η)≤ pEβ(θη).
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Theorem 2.1 ([12]). If f (η) is piece-wise continuous on the interval [0,∞) and of exponential
order δ, then the LT exists for R(s)> δ and it converges absolutely.

Lemma 2.3 (Gronwall Inequality, [12]). If

x(η)≤φ(η)+
∫ η

η0

k(s)x(s)ds, η ∈ [η0,T),

where each function is continuous on [η0,T), T ≤+∞, and k(s)≥ 0, then x(η) satisfies

x(η)≤φ(η)+
∫ η

η0

φ(s)k(s)e
∫ η

s k(h)dhds, η ∈ [η0,T).

In addition, if φ(η) is non-decreasing, then

x(η)≤φ(η)e
∫ η
η0

k(s)ds, η ∈ [η0,T).

Definition 2.3 ([11]). Given (G,d) is a metric space, a function T : G →G is assumed to be a
contraction mapping if there is a constant α with 0<α≤ 1, such that ∀ x, y ∈G,

d(T(x),T(y))≤ d(x, y).

Theorem 2.2 (Banach Contraction Principle, [11]). Let (G,d) be a complete metric space, then
every contraction has a unique fixed point.

Definition 2.4 ([2]). The trivial solution of Dα
0φ(η)=λφ(η)+ f (η,φ(η)) with 0<α≤ 1 is stable, if

for any initial value φk(k = (0,1)), ∃ ϵ> 0 such that ∥φ(η)∥ < ϵ, ∀ η≥ η0.
In addition to being stable, the solution is asymptotically stable if ∥φ(η)∥→ 0 as η→+∞.

Definition 2.5 (Exponential Stability [15]). The solution of fractional order differential equation
is exponentially stable if ∃ v > 0 and u ≥ 0 such that, for every solution of FODE φ ∈ S, then the
exponential inequality

∥φ(η)∥ ≤ u∥φ(η)∥∞e−vη

holds.

3. Existence and Uniqueness of Solutions
This section focuses on establishing the existence and uniqueness of the solution of eq. (1.1).
Before proceeding to the theorem, we shall now define the set S

S = {φ ∈G : ∥φ∥ ≤ r | r ∈R+}.

Here G is the Banach space of continuous functions.

Theorem 3.1. Let φ ∈ S, then φ is a solution to the FIVP (1.1) iff it is a solution to the integral
equation

φ(η)=µ+ 1
Γ(α)

∫ η

0
(η−ℓ)α−1[λφ(ℓ)+ f (ℓ,φ(ℓ))]dℓ. (3.1)
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Proof. Applying the integral operator Iα to (1.1) and using the properties of the inverse operator,
we attain the existence of solution for eq. (1.1).

Theorem 3.2. Consider the FIVP (1.1), where f (η,φ(η)) is a smooth function. If λφ(η)+ f (η,φ(η))
is Lipschitz function, then the FIVP (1.1) has a unique solution in S, if

L < Γ(α)
(1−α)Γ(α)+ηα .

Proof. Define the norm ∥ ·∥ on [0,1] by

∥φ∥ = sup
η∈(0,1)

|φ(η)|, ∀ φ ∈ S,

and consider the operator T : S → S defined by

Tφ(η)=µ+ (1−α)[λφ(η)+ f (η,φ(η))]+ α

Γ(α)

∫ η

0
λφ(s)+ f (s,φ(s))(η− s)α−1ds

and let ∥λφ(η)+ f (η,φ(η))∥ ≤ L.
From Theorem 3.1, finding a fixed point of T , is equivalent to finding a solution to the FIVP (1.1).

Next, for each φ1(η),φ2(η) ∈ S and η ∈ (0,1). Then

|Tφ1(η)−Tφ2(η)| = |(1−α)[(λφ1(η)+ f (η,φ1(η)))− (λφ2(η)+ f (η,φ2(η)))]|

+
∣∣∣∣ α

Γ(α)

∫ η

0
[(λφ1(s)+ f (s,φ1(s))(η− s)α−1)]ds

∣∣∣∣
−

∣∣∣∣ α

Γ(α)

∫ η

0
[(λφ2(s)+ f (s,φ2(s))(η− s)α−1)]ds

∣∣∣∣
≤ (1−α)L∥φ1 −φ2∥+ α

Γ(α)
L∥φ1 −φ2∥

∣∣∣∣∫ η

0
(η− s)α−1ds

∣∣∣∣
≤ (1−α)L∥φ1 −φ2∥+ α

Γ(α)
L∥φ1 −φ2∥η

α

α

≤
(
(1−α)Γ(α)+ηα

Γ(α)

)
L∥φ1 −φ2∥.

Since
(

(1−α)Γ(α)+ηα
Γ(α)

)
L < 1, then T is contraction. Theorem 2.2 ensures that T has a unique

solution.

4. Stability Analysis
The reliability of solving FODE using Laplace transform under certain conditions is established
in this section. Some essential results on Mittag-Leffler function and Grownwall inequality
are presented. Then, the solutions of FODE are estimated. The solutions are in the form of
exponential order, which is essential to employ the LT. Solutions of FODE are estimated by
utilizing Gronwall inequality.

Theorem 4.1. Assume that eq. (1.1) has a solution φ(η) which is unique and continuous,
if f (η,φ(η)) is continuous on the interval [0,∞) and exponentially bounded, then their Laplace
transforms exists whenever φ(η) and its derivatives are both exponentially bounded.
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Proof. Since f (η,φ(η)) is exponential, there exist positive constants Q, x and y such that

∥ f (η,φ(η))∥ ≤Qeηx+φ(η)y .

Here φ(η) converges boundedly in R for all η≥ T .
Eq. (1.1) is written in the given integral form

φ(η)=µ+ 1
Γ(α)

∫ η

0
(η−ℓ)α−1[λφ(ℓ)+ f (ℓ,φ(ℓ))]dℓ, 0≤ η<∞ . (4.1)

For η≥ T , eq. (4.1) can be rewritten as

φ(η)=µ+ 1
Γ(α)

∫ T

0
(η−ℓ)α−1[λφ(ℓ)+ f (ℓ,φ(ℓ))]dℓ+ 1

Γ(α)

∫ η

T
(η−ℓ)α−1[λφ(ℓ)+ f (ℓ,φ(ℓ))]dℓ .

Since, the solution φ(η), (φ(0)=µ) is unique and continuous on [0,∞), then λφ(η)+ f (η,φ(η)) is
bounded on [0,T].
That is, ∃ k > 0 such that ∥λφ(η)+ f (η,φ(η))∥ ≤ k ∀ η ∈ [0,T]. Here k is constant.

We have

∥φ(η)∥ ≤ ∥µ∥+ k
Γ(α)

∫ T

0
(η−ℓ)α−1dℓ+ 1

Γ(α)

∫ η

T
(η−ℓ)α−1∥λφ(ℓ)∥dℓ

+ 1
Γ(α)

∫ η

T
(η−ℓ)α−1∥ f (ℓ,φ(ℓ))∥dℓ .

Multiplication of the above expression by e−τη leads to

e−τη ≤ e−τT , e−τη ≤ e−τℓ, ∥ f (η,φ(η))∥ ≤Qeηx+φ(η)y for η≥ T.

Then, we obtain

∥φ(η)∥e−τη ≤ ∥µ∥e−τη+ ke−τη

Γ(α)

∫ T

0
(η−ℓ)α−1dℓ+ e−τη

Γ(α)

∫ η

T
(η−ℓ)α−1∥λφ(ℓ)∥dℓ

+ e−τη

Γ(α)

∫ η

T
(η−ℓ)α−1∥ f (ℓ,φ(ℓ))∥dℓ

≤ ∥µ∥e−τη+ ke−τT

αΓ(α)
[ηα− (η−T)α]+ λe−τη

Γ(α)

∫ η

T
(η−ℓ)α−1∥φ(ℓ)∥dℓ

+ e−τη

Γ(α)

∫ η

T
(η−ℓ)α−1∥ f (ℓ,φ(ℓ))∥dℓ

≤ ∥µ∥e−τη+ ke−τT

αΓ(α)
[ηα− (η−T)α]+ λ

Γ(α)

∫ η

0
(η−ℓ)α−1∥φ(ℓ)∥eτ(η−ℓ)ℓdℓ

+ Q
Γ(α)

∫ η

0
(η−ℓ)α−1eτ(η−ℓ)eηx+φ(η)ydℓ

≤ ∥µ∥e−τη+ kTαe−τT

αΓ(α)
+ λ

Γ(α)

∫ η

0
sα−1∥φ(ℓ)∥e−τsds

+ Q
Γ(α)

∫ η

0
sα−1e−τseηx+φ(η)yds (take η−ℓ= s)

≤ ∥µ∥e−τη+ kTαe−τT

αΓ(α)
+ λ

Γ(α)

∫ η

0
sα−1∥φ(ℓ)∥e−τsds

+ Qeηx+φ(η)y

Γ(α)

∫ ∞

0
sα−1e−τsds
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≤ ∥µ∥e−τη+ kTαe−τT

αΓ(α)
+ Qeηx+φ(η)y

τα
+ λ

Γ(α)

∫ η

0
sα−1∥φ(ℓ)∥e−τsds, η≥ T.

Denote

p = ∥µ∥e−τη+ kTαe−τT

αΓ(α)
+ Qeηx+φ(η)y

τα
, q = λ

Γ(α)
, r(η)= ∥φ(η)∥e−τη .

We get

r(η)≤ p+ q
∫ η

0
sα−1r(s)ds, η≥ T.

By Lemma 2.2, we have

r(η)≤ pEβ(θη)= p
∞∑

n=0

(qΓ(α))nηnα

Γ(nα+1)
, η≥ T.

From the definition of M-L function

Eα,1(η)=
∞∑

n=0

ηn

Γ(nα+1)
, α,β> 0

we arrive at

r(η)≤ pEα,1(qΓ(α)ηα), η≥ T. (4.2)

The continuity of the M-L function in η≥ 0 implies that if w ≥ 0, there is a constant C such that

Eα(wηα)≤ Cew(1/α)η, η≥ 0, 0<α< 2. (4.3)

From (4.2) and (4.3), we have

r(η)≤ Ce(qΓ(α))1/αη, η≥ T.

Now,

⇒ ∥φ(η)∥ ≤ pCe|(qΓ(α))1/α+τ|η, η≥ T.

From (1.1), we obtain

∥Dα
t φ(η)∥ ≤λ∥φ(η)∥+∥ f (η,φ(η))∥ ≤ pλCe[qΓ(α)1/α+τ]η+Qeηx+φ(η)y

≤ (pλC+Q)e[qΓ(α)1/α+τ+ηx+φ(η)y]η, η≥ T.

Applying LT to equation (1.1) with respect to η, we have

L(Dα
0φ(η))= L(λφ(η))+L( f (η,φ(η))),

φ̂(s)= sα−1(sα−λ)−1µ+
∫ ∞

0

∫ ∞

0
f (η,φ(η))eηx+φ(η)ydxdy

= sα−1(sα−λ)−1µ+
∫ ∞

0
eηx f (η)dx

∫ ∞

0
eφ(η)y f (φ(η))d y

= sα−1(sα−λ)−1µ+ sα−1 f̂ (s)esx + sα−1 àf (φ(s))esy,

where φ̂(s), f̂ (s) and àf (φ(s)) denote the Laplace transforms of φ(η) and f (η), f (φ(η)), respectively.
From Lemma 2.1, we get

φ(η)= Eα,β(η)α−1µ+
∫ η

0
(η−ℓ)α−1Eα,β(λ(η−ℓ)α) f (ℓ,φ(ℓ))dℓ.

The proof is complete.
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Theorem 4.2. Suppose

∥(η−ℓ)α−1Eα,β(λ(η−ℓ))α∥ ≤ Ne−γη, 0≤ η<∞, γ> 0

and ∫ η

0
∥ f (ℓ,φ(ℓ))∥dℓ≤ M, where M, N > 0,

then the solution of eq. (1.1) is exponentially stable.

Proof. The solution of eq. (1.1) is

φ(η)= Eα,β(η)α−1µ+
∫ η

0
(η−ℓ)α−1Eα,β(λ(η−ℓ)α) f (ℓ,φ(ℓ))dℓ .

Then,

∥φ(η)∥ ≤ ∥Eα,β(η)α−1∥ ∥µ∥+
∫ η

0
∥(η−ℓ)α−1Eα,β(λ(η−ℓ)α) f (ℓ,φ(ℓ))∥dℓ.

From the boundedness, we obtain

∥φ(η)∥ ≤ Ne−γη∥µ∥+
∫ η

0
Ne−γ(η−ℓ)∥ f (ℓ,φ(ℓ))∥dℓ. (4.4)

Multiply by eγη both sides of eq. (4.4) to get

eγη∥φ(η)∥ ≤ N∥µ∥+
∫ η

0
Neγℓ∥ f (ℓ,φ(ℓ))∥dℓ.

By Lemma 2.3, we have

eγη∥φ(η)∥ ≤ N∥µ∥exp
(
N

∫ η

0
∥ f (ℓ,φ(ℓ))∥dℓ

)
. (4.5)

Multiply by e−γη both sides of eq. (4.5), we have

∥φ(η)∥ ≤ N∥µ∥exp
(
N

∫ η

0
∥ f (ℓ,φ(ℓ))∥dℓ

)
e−γη.

This leads to the following inequality

∥φ(η)∥ ≤ N∥µ∥eMN−γη .

Definition 2.5 establishes the exponentially stability of the solution of eq. (1.1).
In addition, as η→∞ ⇒ ∥φ(η)∥→ 0. This indicates the asymptotic stability of the system.

5. Generalized Laplace Transform
In this section, essential results are presented which are needed to derive the reliability of
solving FODE using generalized Laplace transform. The following definitions and theorems are
essential properties of generalized Laplace transform.

Definition 5.1 ([4]). Given φ : (0,∞) → R and α ∈ (0,1], the derivative of φ of order α at the
point η is defined by

Tαφ(η)= lim
h→0

φ(η)−φ(η−hη1−α)
h

.

Here Tα is the particular case of Pα when α ∈ (0,1] and T(η,α)= η1−α.
Pα is the conformable fractional derivative of order α ∈ (0,1].
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Lemma 5.1 ([4]). Let I be an interval I ⊆R, φ : I →R and α ∈R+.

(i) If there exists D⌈α⌉φ at the point η ∈ I , then φ is Pα
T differentiable at η and Pα

Tφ(η) =
T(η,α)⌈α⌉D⌈α⌉φ(η).

(ii) If α ∈ (0,1], then φ is Pα
T differentiable at η ∈ I if and only if η is differentiable at η; in this

case, we have Pα
Tφ(η)= T(η,α)φ′(η).

Definition 5.2 ([4]). Given 0 < α ≤ 1 and a measurable function φ : [0,∞) → R, we define its
generalized Laplace transform as

Lα
T[φ](s)=

∫ ∞

0
Eα(−s,η)φ(η)

dη
T(η,α)

,

if Lα
T[|φ|](s)<∞, i.e., Eα(−s,η)φ(η)

T(η,α) ∈ L1([0,∞]).

Theorem 5.1 ([4]). Let φ : [0,∞)→R be a locally absolutely continuous function such that there
exists Lα

T[φ](s) and Lα
T[Pα

Tφ](s) for some s and 0<α≤ 1. Then

Lα
T[Pα

Tφ](s)= sLα
T[φ](s)−φ(0).

Theorem 5.2 ([4]). Let φ : [0,∞) → R be a C1 function such that φ′ is a locally absolutely
continuous function and there exists Lα

T[φ](s),Lα
T[Pα

Tφ](s) and Lα
T[Pα

T(Pα
Tφ)](s) for some s and

0<α≤ 1. Then

Lα
T[Pα

T(Pα
Tφ)](s)= s2Lα

T[φ](s)− sφ(0)−Pα
Tφ(0)

= s2Lα
T[φ](s)− sφ(0)−T(0,α)φ′(0).

Theorem 5.3 ([4]). Let φ,χ : [0,∞)→R be functions such that there exist Lα
T[φ](s) and Lα

T[χ](s)
for some s and 0<α≤ 1. Then

Lα
T[φ∗χ](s)=Lα

T[φ](s)Lα
T[χ](s).

5.1 Solution of FODE by Generalized Laplace Transform
Now, consider the eq. (1.1) in the following form

Pα
T(Pα

Tφ)(η)=λ2φ(η)+ f (η,φ(η)) (5.1)

with φ(0)= x, Pα
Tφ(0)= y. Here x, y,λ ∈R and λ ̸= 0.

Now applying the Generalized Laplace transform to eq. (5.1), we have

Lα
T

[
Pα

T(Pα
Tφ)(η)(s)

]=λ2Lα
T[φ(η)](s)+Lα

T[ f (η,φ(η))](s).

Using Theorem 5.2, the above expression is transformed into

s2Lα
T[φ(η)](s)− sφ(0)−Pα

Tφ(0)=λ2Lα
T[φ(η)](s)+Lα

T[ f (η,φ(η))](s)

s2Lα
T[φ(η)](s)− xs− y=λ2Lα

T[φ(η)](s)+Lα
T[ f (η,φ(η))](s)

s2Lα
T[φ(η)](s)− xs− y−λ2Lα

T[φ(η)](s)=Lα
T[ f (η,φ(η))](s)

Lα
T[φ(η)](s)= xs+ y

s2 +λ2 +Lα
T[ f (η,φ(η))](s)

1
s2 +λ2 .
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From Theorem 5.3 and [4, Proposition 2], we obtain

φ(η)= xcos
(
λ

∫ η

0

dq
T(q,α)

)
+ y
λ

sin
(
λ

∫ η

0

dq
T(q,α)

)
+ 1
λ

f (η,φ(η))∗sin
(
λ

∫ η

0

dq
T(q,α)

)
.

Hence, we proved the reliability of solving fractional order differential equation using
generalized Laplace transform.

6. Example
Example 6.1. Let us consider the FODE of the logistic type as

Dαφ(η)=φ(η)
[
1−acosφ(η)

]
, α ∈ [0,1]. (6.1)

The solution for (6.1) is

φ(η)= 1
Γ(α)

∫ η

0
(η−ℓ)α−1[φ(η)(1−acosφ(η))]dℓ . (6.2)

Now

|φ1(η)−φ2(η)| = |(1−α)[φ1(η)(1−acosφ1(η))−φ2(η)(1−acosφ2(η))]|
+

∣∣∣∣ α

Γ(α)

∫ η

0
[φ1(s)(1−acosφ1(η))(η− s)α−1]ds

∣∣∣∣
−

∣∣∣∣ α

Γ(α)

∫ η

0
[φ2(s)(1−acosφ2(η))(η− s)α−1]ds

∣∣∣∣
≤ (1−α)aV∥φ1 −φ2∥+ α

Γ(α)
∥φ1 −φ2∥aV

∣∣∣∣∫ η

0
(η− s)α−1ds

∣∣∣∣
≤ (1−α)aV∥φ1 −φ2∥+ α

Γ(α)
∥φ1 −φ2∥aV

ηα

α

≤
(
(1−α)Γ(α)+ηα

Γ(α)

)
aV∥φ1 −φ2∥,

∥φ1 −φ2∥ ≤ k∥φ1 −φ2∥, where k = aV
(
(1−α)Γ(α)+ηα

Γ(α)

)
.

Hence by Theorem 4.2, it is clear that (6.1) is stable if constant k < 1.

Table 1. Different values of k for V ∈ (0,1] and α= 0.01 to 0.05

V α= 0.01 α= 0.02 α= 0.03 α= 0.04 α= 0.05
k k k k k

0.1 0.0984 0.0485 0.0318 0.0235 0.0185
0.2 0.1969 0.0969 0.0637 0.0470 0.0371
0.3 0.2953 0.1454 0.0955 0.0705 0.0556
0.4 0.3938 0.1939 0.1273 0.0941 0.0741
0.5 0.4922 0.2424 0.1591 0.1176 0.0927
0.6 0.5907 0.2908 0.1910 0.1411 0.1112
0.7 0.6891 0.3393 0.2228 0.1646 0.1298
0.8 0.7876 0.3878 0.2546 0.1881 0.1483
0.9 0.8860 0.4362 0.2865 0.2116 0.1668
1.0 0.9845 0.4847 0.3183 0.2352 0.1854
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Figure 1. Numerical illustration for Example 6.1, for different values of α

Also, it has a unique solution for the values of V ∈ (0,1], a = 0.01, η= 0.01 varying α from 0.01
to 0.05, the values of k are given in Table 1 and plotted in Figure 1. The curve is exponentially
increasing when V ∈ (0,1] and it is stable.

7. Conclusion
This article discussed the stability of nonlinear fractional order differential equation.
To guarantee the reliability of solving the FODE by Laplace transform method under certain
sufficient condition is established. Existence and Uniqueness of the solutions are derived.
Sufficient conditions which ensures the stability of the FODE are derived. Extended work of
solving fractional order differential equation using generalized Laplace transform is presented.
An example is given to validate the analytical results. Important analytic tools used in this work
are Mittag-Leffler function, Gronwall inequality and Laplace transform. Thus it is proved that
the FODE can be solved by both Laplace and generalized Laplace transform and the stability of
FODE under Laplace transform.
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