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1. Introduction
Throughout this paper, let us denote the set of complex matrices as Cm×n and Cn represent
complex n-tuples. The symbols P∗

1 , P†
1, P∼

1 , P m©
1 , R(P1) and N(P1) denote the conjugate

transpose, Moore-Penrose inverse, Minkowski adjoint, Minkowski inverse, range space and
null space of a matrix P1, respectively. The components of this complex vector in Cn is
represented as u = (u0,u1,u2, . . . ,un−1). Let G be the Minkowski metric tensor defined by
Gu = (u0,−u1,−u2, . . . ,−un−1). Clearly, the Minkowski metric matrix is given by

G =
(
1 0
0 −In−1

)
, (1.1)

G =G∗ and G2 = In. In [11], defined Minkowski inner product on Cn by (u,v)= [u,Gv], where
[·, ·] denotes the conventional Hilbert space inner product, M denotes the Minkowski space,
which is a space with Minkowski inner product.
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In the year 2000 Meenakshi [7] presented the concept of Minkowski inverse of a matrix
represented as A ∈ Cm×n. Also, presented a unique solution to the following four matrix
equations:

AX A = A, X AX = X , (AX )∼ = AX , (X A)∼ = X A , (1.2)

where A∼ denotes the Minkowski adjoint of the matrix A in M.
However, the Minkowski inverse of a matrix does not exists always as in Moore-Penrose

inverse of a matrix. The proved that the Minkowski inverse of a matrix A ∈ Cm×n exists if and
only if rk(AA∼)= rk(A∼A)= rk(A). A matrix A ∈ Cn is said to be m-symmetric if A = A∼. Also,
presented the notion of range symmetric matrices in Minkowski space. Further developed the
concept of Minkowski inverse of the range symmetric matrices and its equivalent conditions.

Many authors show interest on partial orders on matrices. Most of the authors present
different kinds of generalized inverses following mainly on Moore-Penrose inverses. [1,2,10,12]
present the result involving partial orders on matrices. Drazin [5] presented the concept of
Star partial ordering

∗≤, Hartwig [6] introduced the notion of minus partial order ≤−, Mitra [9]
presented the concept of Sharp partial order ≤#, left star ordering ∗≤ and right star ordering
≤∗.

In this paper, we consider matrix partial orderings in Cm×n. First, we discuss on star
ordering in Minkowski space is defined by

P1
∼≤Q1 ⇔ (P1G)∼GP1 = (P1G)∼GQ1 and P1G(GP1)∼ = (Q1G)(GP1)∼ (1.3)

and

P1
∼≤Q1 ⇔ (GP1) m©GP1 = (GP1) m©GQ1 and P1G(P1G) m© =Q1G(P1G) m©. (1.4)

The left, right star orderings in Minkowski space is defined by

P1∼≤Q1 ⇔ (P1G)∼GP1 = (P1G)∼GQ1 (or (GP1) m©GP1 = (GP1) m©GQ1) and

R(P1)⊆ R(Q1), (1.5)

P1≤∼Q1 ⇔ P1G(GP1)∼ =Q1G(GP1)∼ (or P1G(P1G) m© =Q1G(P1G) m©) and

R((P1G)∼)⊆ R((Q1G)∼). (1.6)

The reverse order law and matrix partial ordering were investigated by Benitez et al. [4]

2. Star Partial Ordering in Minkowski Space
In this section, we present the results on the star partial orderings in Minkowski space.

Theorem 2.1. Let P1,R1 ∈ Cm×n and Q1,S1 ∈ Cm×k be star-ordered as P1
∼≤ R1,Q1

∼≤ S1. If
R(P1)= R(Q1), then G

(
P1 Q1

) ∼≤G
(
R1 S1

)
.

Proof. On account of eqs. (1.3) and (1.4), since P1
∼≤ R1, Q1

∼≤ S1 and R(P1)= R(Q1), so

(i) P1
∼≤ R1⇔ (P1G)∼GP1 = (P1G)∼GR1 and P1G(GP1)∼ = R1G(GP1)∼,

(ii) Q1
∼≤ S1 ⇔ (Q1G)∼GQ1 = (Q1G)∼GS1 and Q1G(GQ1)∼ = S1G(GQ1)∼.

(P1G)∼GP1 = (P1G)∼GR1
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GP1 = ((P1G)∼) m©(P1G)∼GR1

= ((P1G) m©)∼(P1G)∼GR1

GP1 = ((P1G)(P1G) m©)∼GR1, (2.1)

(Q1G)∼GQ1 = (Q1G)∼GS1

GQ1 = ((Q1G)∼) m©(Q1G)∼GS1

= ((Q1G) m©)∼(Q1G)∼GS1

GQ1 = ((Q1G)(Q1G) m©)∼GS1 (2.2)

P1G(GP1)∼ = R1G(GP1)∼

P1G = R1G(GP1)∼((GP1)∼) m©

= R1G(GP1)∼((GP1) m©)∼

P1G = R1G((GP1) m©GP1)∼ (2.3)

Q1G(GQ1)∼ = S1G(GQ1)∼

Q1G = S1G(GQ1)∼((GQ1)∼) m©

= S1G(GQ1)∼((GQ1) m©)∼

Q1G = S1G((GQ1) m©(GQ1))∼. (2.4)

Consider,(
GP∼

1
GQ∼

1

)(
GP1 GQ1

)= (
GP∼

1 GP1 GP∼
1 GQ1

GQ∼
1 GP1 GQ∼

1 GQ1

)
G

(
P1 Q1

)∼G
(
P1 Q1

)= (
(P1G)∼GP1 (P1G)∼GQ1
(Q1G)∼GP1 (Q1G)∼GQ1

)
(using (2.1) and (2.2))

=
(

(P1G)∼GR1 (P1G)∼((Q1G)(Q1G) m©)∼GS1
(Q1G)∼((P1G)(P1G) m©)∼GR1 (Q1G)∼GS1

)
=

(
(P1G)∼GR1 ((Q1G)(Q1G) m©P1G)∼GS1

((P1G)(P1G) m©Q1G)∼GR1 (Q1G)∼GS1

)
=

(
(P1G)∼GR1 (P1G)∼GS1
(Q1G)∼GR1 (Q1G)∼GS1

)
=

(
(P1G)∼

(Q1G)∼
)(

GR1 GS1
)

=
(
GP∼

1
GQ∼

1

)(
GR1 GS1

)
=G

(
P∼

1
Q∼

1

)
G

(
R1 S1

)
=G

(
P1 Q1

)∼G
(
R1 S1

)
(2.5)

Consider, (
P1G Q1G

)(P∼
1 G

Q∼
1 G

)
=

(
P1GP∼

1 G P1GQ∼
1 G

Q1GP∼
1 G Q1GQ∼

1 G

)
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(
P1 Q1

)
G

(
P1 Q1

)∼G =
(
P1G(GP1)∼ P1G(GQ1)∼

Q1G(GP1)∼ Q1G(GQ1)∼
)

(using (2.3) and (2.4))

=
(

R1G(GP1)∼ R1G((GP1) m©(GP1))∼(GQ1)∼

S1G((GQ1) m©(GQ1))∼(GP1)∼ S1G(GQ1)∼
)

=
(

R1G(GP1)∼ R1G((GQ1)(GP1) m©(GP1))∼

S1G((GP1)(GQ1) m©(GQ1))∼ S1G(GQ1)∼
)

=
(
R1G(GP1)∼ R1G(GQ1)∼

S1G(GP1)∼ S1G(GQ1)∼
)

= (
R1G S1G

)((GP1)∼

(GQ1)∼
)

= (
R1G S1G

)(P∼
1 G

Q∼
1 G

)
= (

R1 S1
)
G

(
P∼

1
Q∼

1

)
G

= (
R1 S1

)
G

(
P1 Q1

)∼G .

Pre and post multiplying by G, we have

=G
(
R1 S1

)
G

(
P1 Q1

)∼ . (2.6)

From eqs. (2.5) and (2.6), we have

G
(
P1 Q1

) ∼≤G
(
R1 S1

)
.

Hence proved.

Theorem 2.2. Let P1,R1 ∈ Cm×n and Q1,S1 ∈ Cm×k be star-ordered as P1∼≤ R1,Q1∼≤ S1.
If R(P1)= R(Q1), then G(P1 Q1)∼≤G(R1 S1).

Proof. (i) P1∼≤Q1⇔(P1G)∼GP1=(P1G)∼GQ1 (or (GP1) m©)GP1=(GP1) m©GQ1 and R(P1)⊆
R(Q1).

(ii) P1∼≤R1⇔(P1G)∼GP1=(P1G)∼GR1 (or (GP1) m©)GP1=(GP1) m©GR1 and R(P1)⊆R(R1).

(iii) Q1∼≤S1⇔(Q1G)∼GQ1=(Q1G)∼GS1 (or (GQ1) m©)GQ1=(GQ1) m©GS1 and R(Q1)⊆R(S1).

Consider,(
GP∼

1
GQ∼

1

)(
GP1 GQ1

)= (
GP∼

1 GP1 GP∼
1 GQ1

GQ∼
1 GP1 GQ∼

1 GQ1

)
G

(
P1 Q1

)∼G
(
P1 Q1

)= (
(P1G)∼GP1 (P1G)∼GQ1
(Q1G)∼GP1 (Q1G)∼GQ1

)
(using (2.1) and (2.2))

=
(

(P1G)∼GR1 (P1G)∼((Q1G)(Q1G) m©)∼GS1
(Q1G)∼((P1G)(P1G) m©)∼GR1 (Q1G)∼GS1

)
=

(
(P1G)∼GR1 ((Q1G)(Q1G) m©P1G)∼GS1

((P1G)(P1G) m©Q1G)∼GR1 (Q1G)∼GS1

)
=

(
(P1G)∼GR1 (P1G)∼GS1
(Q1G)∼GR1 (Q1G)∼GS1

)
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=
(
(P1G)∼

(Q1G)∼
)(

GR1 GS1
)

=
(
GP∼

1
GQ∼

1

)(
GR1 GS1

)
=G

(
P∼

1
Q∼

1

)
G

(
R1 S1

)
=G

(
P1 Q1

)∼G
(
R1 S1

)
.

On the otherhand, on account of eq. (1.5), from the conditions P1∼≤ R1 and Q1∼≤ S1, we have
R(P1)⊆ R(R1) and R(Q1)⊆ R(S1), which imply that R(P1 Q1)⊆ R(R1 S1).
According to eq. (1.5), we have G(P1 Q1)∼≤G(R1 S1).

Theorem 2.3. Let P1,R1 ∈ Cm×n and Q1,S1 ∈ Cm×k be star-ordered as G(P1 Q1)
∼≤G(R1 S1).

If P1
∼≤ R1 (or Q1

∼≤ S1), then Q1
∼≤ S1 (or P1

∼≤ R1).

Moreover, the condition P1
∼≤ R1 (or Q1

∼≤ S1) can be replaced by P1 ≤∼R1 (or Q1 ≤∼S1).

Proof. Proof of Theorem 2.3 follows from Theorem 2.1.

Corollary 2.1. Let P1,R1 ∈ Cm×n and Q1,S1 ∈ Ck×n be star-ordered as P1
∼≤ R1, Q1

∼≤ S1.

If R((P1G)∼)= R((Q1G)∼), then G
(
P1
Q1

) ∼≤G
(
R1
S1

)
.

Proof. It is an immediate consequence of proof of Theorem 2.1.

Corollary 2.2. Let P1,R1 ∈ Cm×n and Q1,S1 ∈ Ck×n be star-ordered as P1 ≤∼R1, Q1 ≤∼S1.

If R((P1G)∼)= R((Q1G)∼), then G
(
P1
Q1

)
≤∼G

(
R1
S1

)
.

Proof. Given,

(i) P1 ≤∼R1 ⇔ (P1G)(GP1)∼ = R1G(GP1)∼ (or P1G(P1G) m© =Q1G(P1G) m©) and R((P1G)∼)⊆
R((R1G)∼).

(ii) Q1 ≤∼S1 ⇔ (Q1G)(GQ1)∼ = S1G(GQ1)∼ (or Q1G(Q1G) m© = S1G(Q1G) m© and R((Q1G)∼)⊆
R((S1G)∼).

Consider,(
P1G
Q1G

)(
P∼

1 G Q∼
1 G

)= (
P1GP∼

1 G P1GQ∼
1 G

Q1GP∼
1 G Q1GQ∼

1 G

)
(
P1
Q1

)
G

(
P1
Q1

)∼
G =

(
P1G(GP1)∼ P1G(GQ1)∼

Q1G(GP1)∼ Q1G(GQ1)∼
)

(using (2.3) and (2.4))

=
(

R1G(GP1)∼ R1G((GP1) m©(GP1))∼(GQ1)∼

S1G((GQ1) m©(GQ1))∼(GP1)∼ S1G(GQ1)∼
)

=
(

R1G(GP1)∼ R1G((GQ1)(GP1) m©(GP1))∼

S1G((GP1)(GQ1) m©(GQ1))∼ S1G(GQ1)∼
)

=
(
R1G(GP1)∼ R1G(GQ1)∼

S1G(GP1)∼ S1G(GQ1)∼
)
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=
(
R1G
S1G

)(
(GP1)∼ (GQ1)∼

)
=

(
R1G
S1G

)(
P∼

1 G Q∼
1 G

)
=

(
R1
S1

)
G

(
P1
Q1

)∼
G .

Pre and post multiplying by G, we have

=G
(
R1
S1

)
G

(
P1
Q1

)∼
.

On the otherhand, on account of eq. (1.6), from the conditions P1 ≤∼R1 and Q1 ≤∼S1, we have

R((P1G)∼)⊆ R((R1G)∼) and R((Q1G)∼)⊆ R((S1G)∼), which imply that R
(
P1
Q1

)
⊆ R

(
R1
S1

)
.

According to eq. (1.6), we have

G
(
P1
Q1

)
≤∼G

(
R1
S1

)
.

Hence the proof.

Corollary 2.3. Let P1,R1 ∈ Cm×n and Q1,S1 ∈ Ck×n be star-ordered as G
(
P1
Q1

) ∼≤G
(
R1
S1

)
.

If P1∼≤ R1 (or Q1∼≤ S1), then Q1
∼≤ S1 (or P1

∼≤ R1).

Proof. The proof follows from Theorem 2.3.

Theorem 2.4. Let P1,Q1 ∈ Cm×n, R1 ∈ Cm×k and S1 ∈ Ck×n. Then
(i) If P1

∼≤Q1 and R(R1)⊆ R(P1), then G(P1 R1)
∼≤G(Q1 R1) and G(R1 P1)

∼≤G(R1 Q1).

Moreover, both G(P1 R1)
∼≤G(Q1 R1) and G(R1 P1)

∼≤G(R1 Q1) imply P1
∼≤Q1, even though

R(R1) 6⊂ R(P1).

(ii) P1∼≤Q1 and R(R1)⊆ R(P1), then G(P1 R1)∼≤G(Q1 R1) and G(R1 P1)∼≤G(R1 Q1).

(iii) If P1
∼≤ Q1 and R((S1G)∼) ⊆ R((P1G)∼), then G

(
P1
S1

) ∼≤ G
(
Q1
S1

)
and G

(
S1
P1

) ∼≤ G
(
S1
Q1

)
.

Moreover, both G
(
P1
S1

) ∼≤ G
(
Q1
S1

)
and G

(
S1
P1

) ∼≤ G
(
S1
Q1

)
imply P1

∼≤ Q1, even though

R((S1G)∼) 6⊂ R((P1G)∼).

(iv) If P1 ≤∼Q1 and R((S1G)∼)⊆ R((P1G)∼), then G
(
P1
S1

)
≤∼G

(
Q1
S1

)
and G

(
S1
P1

)
≤∼G

(
S1
Q1

)
.

Proof. (i) Given, P1
∼≤Q1 ⇔ (P1G)∼GP1 = (P1G)∼GQ1 and P1G(GP1)∼ =Q1G(GP1)∼.

(P1G)∼GP1 = (P1G)∼GQ1

GP1 = ((P1G)∼) m©(P1G)∼GQ1 = ((P1G) m©)∼(P1G)∼GQ1

GP1 = ((P1G)(P1G) m©)∼GQ1 (2.7)

P1G(GP1)∼ =Q1G(GP1)∼

P1G =Q1G(GP1)∼((GP1)∼) m©
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=Q1G(GP1)∼((GP1) m©)∼

P1G =Q1G((GP1) m©(GP1))∼. (2.8)

Consider,(
GP∼

1
GR∼

1

)(
GP1 GR1

)= (
GP∼

1 GP1 GP∼
1 GR1

GR∼
1 GP1 GR∼

1 GR1

)
G

(
P1 R1

)∼G
(
P1 R1

)= (
(P1G)∼GP1 (P1G)∼GR1
(R1G)∼GP1 (R1G)∼GR1

)
(using (2.7))

=
(

(P1G)∼GQ1 (P1G)∼GR1
(R1G)∼((P1G)(P1G) m©)∼GQ1 (R1G)∼GR1

)
=

(
(P1G)∼GQ1 (P1G)∼GR1

((P1G)(P1G) m©(R1G))∼GQ1 (R1G)∼GR1

)
=

(
(P1G)∼GQ1 (P1G)∼GR1
(R1G)∼GQ1 (R1G)∼GR1

)
=

(
(P1G)∼

(R1G)∼
)(

GQ1 GR1
)

=
(
GP∼

1
GQ∼

1

)(
GQ1 GR1

)
=G

(
P1 R1

)∼G
(
Q1 R1

)
(2.9)

Consider,(
P1G R1G

)(P∼
1 G

R∼
1 G

)
=

(
P1GP∼

1 G P1GR∼
1 G

R1GP∼
1 G R1GR∼

1 G

)
(
P1 R1

)
G

(
P1 R1

)∼G =
(
P1G(GP1)∼ P1G(GR1)∼

R1G(GP1)∼ R1G(GR1)∼
)

(using (2.8))

=
(
Q1G(GP1)∼ Q1G((GP1) m©GP1)∼(GR1)∼

R1G(GP1)∼ R1G(GR1)∼
)

=
(
Q1G(GP1)∼ Q1G((GR1)(GP1) m©(GP1))∼

R1G(GP1)∼ R1G(GR1)∼
)

=
(
Q1G(GP1)∼ Q1G(GR1)∼

R1G(GP1)∼ R1G(GR1)∼
)

= (
Q1G R1G

)((GP1)∼

(GR1)∼
)

= (
Q1G R1G

)(P∼
1 G

R∼
1 G

)
= (

Q1 R1
)
G

(
P1 R1

)∼G .

Pre and post multiplying by G, we have

G
(
P1 R1

)
G

(
P1 R1

)∼ =G
(
Q1 R1

)
G

(
P1 R1

)∼ . (2.10)

From eqs. (2.9) and (2.10), we have

G
(
P1 R1

) ∼≤G
(
Q1 R1

)
. (2.11)
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Similarly,

G
(
R1 P1

) ∼≤G
(
R1 Q1

)
. (2.12)

Combining eqs. (2.11) and (2.12) implies that P1
∼≤Q1, even though R(R1) 6⊂ R(P1).

(ii) Given, P1∼≤Q1 and R(R1)⊆ R(P1).
P1∼≤Q1 ⇔ (P1G)∼GP1 = (P1G)∼GQ1 (or (GP1) m©)GP1 = (GP1) m©GQ1 and R(P1)⊆ R(Q1).
To prove that G

(
P1 R1

)∼≤G
(
Q1 R1

)
.

Consider,(
GP∼

1
GR∼

1

)(
GP1 GR1

)= (
GP∼

1 GP1 GP∼
1 GR1

GR∼
1 GP1 GR∼

1 GR1

)
G

(
P1 R1

)∼G
(
P1 R1

)= (
(P1G)∼GP1 (P1G)∼GR1
(R1G)∼GP1 (R1G)∼GR1

)
(using (2.7))

=
(

(P1G)∼GQ1 (P1G)∼GR1
(R1G)∼((P1G)(P1G) m©)∼GQ1 (R1G)∼GR1

)
=

(
(P1G)∼GQ1 (P1G)∼GR1

((P1G)(P1G) m©(R1G))∼GQ1 (R1G)∼GR1

)
=

(
(P1G)∼GQ1 (P1G)∼GR1
(R1G)∼GQ1 (R1G)∼GR1

)
=

(
(P1G)∼

(R1G)∼
)(

GQ1 GR1
)

=
(
GP∼

1
GQ∼

1

)(
GQ1 GR1

)
=G

(
P1 R1

)∼G
(
Q1 R1

)
.

On the otherhand, on account of eq. (1.5), from the conditions P1∼≤Q1, we have R(P1)⊆ R(Q1)
which imply that R

(
P1 R1

)⊆ R
(
Q1 R1

)
.

According to eq. (1.5), we have G
(
P1 R1

)∼≤G
(
Q1 R1

)
.

Similarly,

G
(
R1 P1

)∼≤G
(
R1 Q1

)
.

(iii) Given, P1
∼≤Q1 and R((S1G)∼)⊆ R((P1G)∼).

To prove that G
(
P1
S1

) ∼≤G
(
Q1
S1

)
.

P1
∼≤Q1 ⇔ (P1G)∼GP1 = (P1G)∼GQ1 and P1G(GP1)∼ =Q1G(GP1)∼.

Now consider,(
GP∼

1 GS∼
1
)(GP1

GS1

)
=

(
GP∼

1 GP1 GP∼
1 GS1

GS∼
1 GP1 GS∼

1 GS1

)
G

(
P1
S1

)∼
G

(
P1
S1

)
=

(
(P1G)∼GP1 (P1G)∼GS1
(S1G)∼GP1 (S1G)∼GS1

)
(using (2.7))

=
(

(P1G)∼GQ1 (P1G)∼GS1
(S1G)∼((P1G)(P1G) m©)∼GQ1 (S1G)∼GS1

)
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=
(

(P1G)∼GQ1 (P1G)∼GS1
((P1G)(P1G) m©(S1G))∼GQ1 (S1G)∼GS1

)
=

(
(P1G)∼GQ1 (P1G)∼GS1
(S1G)∼GQ1 (S1G)∼GS1

)
= (

(P1G)∼ (S1G)∼
)(GQ1

GS1

)
= (

GP∼
1 GQ∼

1
)(GQ1

GS1

)
=G

(
P1
S1

)∼
G

(
Q1
S1

)
(2.13)

Consider,(
P1G
S1G

)(
P∼

1 G S∼
1 G

)= (
P1GP∼

1 G P1GS∼
1 G

S1GP∼
1 G S1GS∼

1 G

)
(
P1
S1

)
G

(
P1
S1

)∼
G =

(
P1G(GP1)∼ P1G(GS1)∼

S1G(GP1)∼ S1G(GS1)∼
)

(using (2.8))

=
(
Q1G(GP1)∼ Q1G((GP1) m©GP1)∼(GS1)∼

S1G(GP1)∼ S1G(GS1)∼
)

=
(
Q1G(GP1)∼ Q1G((GS1)(GP1) m©(GP1))∼

S1G(GP1)∼ S1G(GS1)∼
)

=
(
Q1G(GP1)∼ Q1G(GS1)∼

S1G(GP1)∼ S1G(GS1)∼
)

=
(
Q1G
S1G

)(
(GP1)∼ (GS1)∼

)
=

(
Q1G
S1G

)(
P∼

1 G S∼
1 G

)
=

(
Q1
S1

)
G

(
P1
S1

)∼
G .

Pre and post multiplying by G, we have

G
(
P1
S1

)
G

(
P1
S1

)∼
=G

(
Q1
S1

)
G

(
P1
S1

)∼
. (2.14)

From eqs. (2.13) and (2.14), we have

G
(
P1
S1

) ∼≤G
(
Q1
S1

)
. (2.15)

Similarly,

G
(
S1
P1

) ∼≤G
(
S1
Q1

)
.

(iv) Given P1 ≤∼Q1 and R((S1G)∼)⊆ R((P1G)∼).

P1 ≤ ∼Q1 ⇔ (P1G)(GP1)∼ = Q1G(GP1)∼ (or P1G(P1G) m© = Q1G(P1G) m©) and R((P1G)∼) ⊆
R((Q1G)∼).
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To prove that G
(
P1
S1

)
≤∼G

(
Q1
S1

)
:

Consider,(
P1G
S1G

)(
P∼

1 G S∼
1 G

)= (
P1GP∼

1 G P1GS∼
1 G

S1GP∼
1 G S1GS∼

1 G

)
(
P1
S1

)
G

(
P1
S1

)∼
G =

(
P1G(GP1)∼ P1G(GS1)∼

S1G(GP1)∼ S1G(GS1)∼
)

(using (2.8))

=
(
Q1G(GP1)∼ Q1G((GP1) m©GP1)∼(GS1)∼

S1G(GP1)∼ S1G(GS1)∼
)

=
(
Q1G(GP1)∼ Q1G((GS1)(GP1) m©(GP1))∼

S1G(GP1)∼ S1G(GS1)∼
)

=
(
Q1G(GP1)∼ Q1G(GS1)∼

S1G(GP1)∼ S1G(GS1)∼
)

=
(
Q1G
S1G

)(
(GP1)∼ (GS1)∼

)
=

(
Q1G
S1G

)(
P∼

1 G S∼
1 G

)
=

(
Q1
S1

)
G

(
P1
S1

)∼
G .

Pre and post multiplying by G, we have

G
(
P1
S1

)
G

(
P1
S1

)∼
=G

(
Q1
S1

)
G

(
P1
S1

)∼
.

On the otherhand, on account of eq. (1.6), from the condition P1 ≤∼Q1, we have R((P1G)∼)⊆
R((Q1G)∼) which imply that R

(
P1
S1

)
⊆ R

(
Q1
S1

)
.

According to eq. (1.6), we have

G
(
P1
S1

)
≤∼G

(
Q1
S1

)
.

Similarly,

G
(
S1
P1

)
≤∼G

(
S1
Q1

)
.

Hence the proof.

3. Conclusion
We have concluded the algebraic structure of the star partial ordering, left and right star partial
ordering of block matrices in Minkowski space.
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