Invariant Submanifolds of Sasakian Manifolds Admitting Semi-symmetric Metric Connection

B.S. Anitha and C.S. Bagewadi

Abstract The object of this paper is to study invariant submanifolds M of Sasakian manifolds \tilde{M} admitting a semi-symmetric metric connection and to show that M admits semi-symmetric metric connection. Further it is proved that the second fundamental forms σ and $\tilde{\sigma}$ with respect to Levi-Civita connection and semi-symmetric metric connection coincide. It is shown that if the second fundamental form σ is recurrent, 2-recurrent, generalized 2-recurrent and M has parallel third fundamental form with respect to semi-symmetric metric connection, then M is totally geodesic with respect to Levi-Civita connection.

1. Semi-symmetric Metric Connection

The geometry of invariant submanifolds M of Sasakian manifolds \tilde{M} is carried out from 1970's by M. Kon [12], D. Chinea [8], K. Yano and M. Kon [17]. It is proved that invariant submanifold of Sasakian structure also carries Sasakian structure. Also the authors B.S. Anitha and C.S. Bagewadi [1] have studied and the same authors [2] have studied on Invariant submanifolds of Sasakian manifolds admitting semi-symmetric non-metric connection. In this paper we extend the results to invariant submanifolds M of Sasakian manifolds admitting semi-symmetric metric connection.

We know that a connection ∇ on a manifold M is called a metric connection if there is a Riemannian metric g on M if $\nabla g = 0$ otherwise it is non-metric. Further it is said to be semi-symmetric if its torsion tensor $T(X,Y) = 0$, i.e., $T(X,Y) = w(Y)X - w(X)Y$, where w is a 1-form. In 1924, A. Friedmann and J.A. Schouten [10] introduced the idea of semi-symmetric linear connection on differentiable manifold. In 1932, H.A. Hayden [11] introduced the idea of metric connection with torsion on a Riemannian manifold. A systematic study of the semi-symmetric metric connection on a Riemannian manifold was published by K. Yano [16] in

2010 Mathematics Subject Classification. 53D15, 53C21, 53C25, 53C40.

Key words and phrases. Invariant submanifolds; Sasakian manifold; Semi-symmetric metric connection; Totally geodesic.
1970. After that the properties of semi-symmetric metric connection have studied by many authors like K.S. Amur and S.S. Pujar [3], C.S. Bagewadi, D.G. Prakasha and Venkatesha [4, 5], A. Sharfuddin and S.I. Hussain [14], U.C. De and G. Pathak [9] etc. If \(\nabla \) denotes semi-symmetric metric connection on a contact metric manifold, then it is given by [4]

\[
\nabla_X Y = \nabla_X Y + \eta(Y)X - g(X, Y)\xi, \tag{1.1}
\]

where \(\eta(Y) = g(Y, \xi) \).

The covariant differential of the \(p \)th order, \(p \geq 1 \), of a \((0, k)\)-tensor field \(T \), \(k \geq 1 \), defined on a Riemannian manifold \((M, g)\) with the Levi-Civita connection \(\nabla \), is denoted by \(\nabla^p T \). The tensor \(T \) is said to be recurrent and 2-recurrent [13], if the following conditions hold on \(M \), respectively,

\[
(\nabla T)(X_1, \ldots, X_k; X)T(Y_1, \ldots, Y_k) = (\nabla T)(Y_1, \ldots, Y_k; X)T(X_1, \ldots, X_k), \tag{1.2}
\]

\[
(\nabla^2 T)(X_1, \ldots, X_k; X, Y)T(Y_1, \ldots, Y_k) = (\nabla^2 T)(Y_1, \ldots, Y_k; X, Y)T(X_1, \ldots, X_k),
\]

where \(X, Y, X_1, Y_1, \ldots, X_k, Y_k \in TM \). From (1.2) it follows that at a point \(x \in M \), if the tensor \(T \) is non-zero, then there exists a unique 1-form \(\phi \) and a \((0, 2)\)-tensor \(\psi \), defined on a neighborhood \(U \) of \(x \) such that

\[
\nabla T = T \otimes \phi, \quad \phi = d(\log ||T||) \tag{1.3}
\]

and

\[
\nabla^2 T = T \otimes \psi, \tag{1.4}
\]

hold on \(U \), where \(||T|| \) denotes the norm of \(T \) and \(||T||^2 = g(T, T) \). The tensor \(T \) is said to be generalized 2-recurrent if

\[
((\nabla^2 T)(X_1, \ldots, X_k; X, Y) - (\nabla T \otimes \phi)(X_1, \ldots, X_k; X, Y))T(Y_1, \ldots, Y_k)
\]

\[
= ((\nabla^2 T)(Y_1, \ldots, Y_k; X, Y) - (\nabla T \otimes \phi)(Y_1, \ldots, Y_k; X, Y))T(X_1, \ldots, X_k),
\]

hold on \(M \), where \(\phi \) is a 1-form on \(M \). From this it follows that at a point \(x \in M \) if the tensor \(T \) is non-zero, then there exists a unique \((0, 2)\)-tensor \(\psi \), defined on a neighborhood \(U \) of \(x \), such that

\[
\nabla^2 T = \nabla T \otimes \phi + T \otimes \psi, \tag{1.5}
\]

holds on \(U \).

2. Isometric Immersion

Let \(f : (M, g) \rightarrow (\tilde{M}, \tilde{g}) \) be an isometric immersion from an \(n \)-dimensional Riemannian manifold \((M, g)\) into \((n + d)\)-dimensional Riemannian manifold \((\tilde{M}, \tilde{g})\), \(n \geq 2, d \geq 1 \). We denote by \(\nabla \) and \(\tilde{\nabla} \) as Levi-Civita connection of \(M^n \)
and \tilde{M}^{n+d} respectively. Then the formulas of Gauss and Weingarten are given by
\begin{align}
\tilde{\nabla}_X Y &= \nabla_X Y + \sigma(X, Y), \quad (2.1) \\
\tilde{\nabla}_X N &= -A_N X + \nabla^\bot_X N, \quad (2.2)
\end{align}
for any tangent vector fields X, Y and the normal vector field N on M, where σ, A and ∇^\bot are the second fundamental form, the shape operator and the normal connection respectively. If the second fundamental form σ is identically zero, then the manifold is said to be \textit{totally geodesic}. The second fundamental form σ and A_N are related by
\[\tilde{g}(\sigma(X, Y), N) = g(A_N X, Y), \]
for tangent vector fields X, Y. The first and second covariant derivatives of the second fundamental form σ are given by
\begin{align}
(\tilde{\nabla}_X \sigma)(Y, Z) &= \nabla^\bot_X (\sigma(Y, Z)) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z), \quad (2.3) \\
(\tilde{\nabla}^2 \sigma)(Z, W, X, Y) &= (\tilde{\nabla}_X \tilde{\nabla}_Y \sigma)(Z, W), \quad (2.4) \\
&= \nabla^\bot_X ((\tilde{\nabla}_Y \sigma)(Z, W)) - (\tilde{\nabla}_Y \sigma)(\nabla_X Z, W) \\
&\quad - (\tilde{\nabla}_X \sigma)(Z, \nabla_Y W) - (\tilde{\nabla}_{\nabla_X Y} \sigma)(Z, W)
\end{align}
respectively, where $\tilde{\nabla}$ is called the \textit{vander Waerden-Bortolotti connection} of M [7]. If $\tilde{\nabla}\sigma = 0$, then M is said to have \textit{parallel second fundamental form} [7].

3. \textbf{Sasakian Manifolds}

An n-dimensional differential manifold M is said to have an almost contact structure (ϕ, ξ, η) if it carries a tensor field ϕ of type $(1, 1)$, a vector field ξ and 1-form η on M respectively such that
\[\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \eta \circ \phi = 0, \quad \phi \xi = 0. \quad (3.1) \]

Thus a manifold M equipped with this structure is called an almost contact manifold and is denoted by (M, ϕ, ξ, η). If g is a Riemannian metric on an almost contact manifold M such that
\[g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad g(X, \xi) = \eta(X), \quad (3.2) \]
where X, Y are vector fields defined on M, then M is said to have an almost contact metric structure (ϕ, ξ, η, g) and M with this structure is called an almost contact metric manifold and is denoted by (M, ϕ, ξ, η, g).

If on (M, ϕ, ξ, η, g) the exterior derivative of 1-form η satisfies,
\[\Phi(X, Y) = d\eta(X, Y) = g(X, \phi Y), \quad (3.3) \]
then (ϕ, ξ, η, g) is said to be a contact metric structure and together with manifold M is called contact metric manifold and Φ is a 2-form. The contact metric structure
(\(M, \phi, \xi, \eta, g\)) is said to be normal if
\[
[\phi, \phi](X, Y) + 2d \eta \otimes \xi = 0. \tag{3.4}
\]

If the contact metric structure is normal, then it is called a Sasakian structure and \(M\) is called a Sasakian manifold. Note that an Almost contact metric manifold defines Sasakian structure if and only if
\[
(\nabla_X \phi)Y = g(X, Y)\xi - \eta(Y)X, \tag{3.5}
\]
\[
\nabla_X \xi = -\phi X. \tag{3.6}
\]

Example of Sasakian manifold. Consider the 3-dimensional manifold \(M = \{(x, y, z) \in \mathbb{R}^3\}\), where \((x, y, z)\) are the standard coordinates in \(\mathbb{R}^3\). Let \(\{E_1, E_2, E_3\}\) be linearly independent global frame field on \(M\) given by
\[
E_1 = \frac{\partial}{\partial x}, \quad E_2 = \frac{\partial}{\partial y} + 2xe^z \frac{\partial}{\partial z}, \quad E_3 = e^z \frac{\partial}{\partial z}.
\]
Let \(g\) be the Riemannian metric defined by
\[
g(E_1, E_2) = g(E_1, E_3) = g(E_2, E_3) = 0,
\]
\[
g(E_1, E_1) = g(E_2, E_2) = g(E_3, E_3) = 1.
\]
The \((\phi, \xi, \eta)\) is given by
\[
\eta = -2xdy + e^{-z}dz, \quad \xi = E_3 = \frac{\partial}{\partial z},
\]
\[
\phi E_1 = E_2, \quad \phi E_2 = -E_1, \quad \phi E_3 = 0.
\]
The linearity property of \(\phi\) and \(g\) yields
\[
\eta(E_3) = 1, \quad \phi^2 U = -U + \eta(U)E_3,
\]
\[
g(\phi U, \phi W) = g(U, W) - \eta(U)\eta(W), \quad g(U, \xi) = \eta(U),
\]
for any vector fields \(U, W\) on \(M\). By definition of Lie bracket, we have
\[
[E_1, E_2] = 2E_3.
\]
The Levi-Civita connection with respect to above metric \(g\) and be given by Koszula formula
\[
2g(\nabla_X Y, Z) = X(g(Y, Z)) + Y(g(Z, X)) - Z(g(X, Y))
\]
\[
- g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y]).
\]
Then, we have
\[
\nabla_{E_1} E_1 = 0, \quad \nabla_{E_1} E_2 = E_3, \quad \nabla_{E_1} E_3 = -E_2,
\]
\[
\nabla_{E_2} E_1 = -E_3, \quad \nabla_{E_2} E_2 = 0, \quad \nabla_{E_2} E_3 = E_1,
\]
\[
\nabla_{E_3} E_1 = -E_2, \quad \nabla_{E_3} E_2 = E_1, \quad \nabla_{E_3} E_3 = 0.
\]
The tangent vectors X and Y to M are expressed as linear combination of E_1, E_2, E_3, i.e., $X = a_1 E_1 + a_2 E_2 + a_3 E_3$ and $Y = b_1 E_1 + b_2 E_2 + b_3 E_3$, where a_i and b_j are scalars. Clearly (ϕ, ξ, η, g) and X, Y satisfy equations (3.1), (3.2), (3.5) and (3.6). Thus M is a Sasakian manifold. Further the following relations hold:

\[
R(X, Y)Z = \{g(Y, Z)X - g(X, Z)Y\},
\]
\[
R(X, Y)\xi = \{\eta(Y)X - \eta(X)Y\},
\]
\[
R(\xi, X)Y = \{g(X, Y)\xi - \eta(Y)X\},
\]
\[
R(\xi, X)\xi = \{\eta(X)\xi - X\},
\]
\[
S(X, \xi) = (n - 1)\eta(X),
\]
\[
Q\xi = (n - 1)\xi,
\]
for all vector fields, X, Y, Z and where ∇ denotes the operator of covariant differentiation with respect to g, ϕ is a $(1, 1)$ tensor field, S is the Ricci tensor of type $(0, 2)$ and R is the Riemannian curvature tensor of the manifold.

4. Invariant Submanifolds of Sasakian Manifolds admitting Semi-symmetric Metric Connection

If \tilde{M} is a Sasakian manifold with structure tensors $(\tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})$, then we know that its invariant submanifold M has the induced Sasakian structure (ϕ, ξ, η, g).

A submanifold M of a Sasakian manifold \tilde{M} with a semi-symmetric metric connection is called an invariant submanifold of \tilde{M} with a semi-symmetric metric connection, if for each $x \in M$, $\phi(T_xM) \subset T_xM$. As a consequence, ξ becomes tangent to M. For an invariant submanifold of a Sasakian manifold with a semi-symmetric metric connection, we have

\[
\sigma(X, \xi) = 0,
\]
for any vector X tangent to M.

Let \tilde{M} be a Sasakian manifold admitting a semi-symmetric metric connection $\tilde{\nabla}$.

Lemma 1. Let M be an invariant submanifold of contact metric manifold \tilde{M} which admits semi-symmetric metric connection $\tilde{\nabla}$ and let σ and $\tilde{\sigma}$ be the second fundamental forms with respect to Levi-Civita connection and semi-symmetric metric connection, then (a) M admits semi-symmetric metric connection, (b) the second fundamental forms with respect to $\tilde{\nabla}$ and $\tilde{\nabla}$ are equal.

Proof. We know that the contact metric structure $(\tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})$ on \tilde{M} induces (ϕ, ξ, η, g) on invariant submanifold. By virtue of (1.1), we get

\[
\tilde{\nabla}_X Y = \tilde{\nabla}_X Y + \eta(Y)X - g(X, Y)\xi.
\]
By using (2.1) in (4.2), we get
\[\nabla_X Y = \nabla_X Y + \sigma(X, Y) + \eta(Y)X - g(X, Y)\xi. \]
(4.3)

Now Gauss formula (2.1) with respect to semi-symmetric metric connection is given by
\[\nabla_X Y = \nabla_X Y + \sigma(X, Y). \]
(4.4)

Equating (4.3) and (4.4), we get (1.1) and
\[\sigma(X, Y) = \sigma(X, Y). \]
(4.5)

5. Recurrent Invariant Submanifolds of Sasakian Manifolds Admitting Semi-symmetric Metric Connection

We consider invariant submanifolds of a Sasakian manifold when \(\sigma \) is recurrent, 2-recurrent, generalized 2-recurrent and \(M \) has parallel third fundamental form with respect to semi-symmetric metric connection. We write the equations (2.3) and (2.4) with respect to semi-symmetric metric connection in the form
\[(\nabla_X \sigma)(Y, Z) = \nabla_X^{\perp}(\sigma(Y, Z)) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z), \]
(5.1)
\[(\nabla^2 \sigma)(Z, W, X, Y) = (\nabla_X \nabla^*_Y \sigma)(Z, W), \]
\[= \nabla_X^{\perp}(\nabla_Y \sigma)(Z, W) - (\nabla_Y \sigma)(\nabla_X Z, W) - (\nabla_X \sigma)(Z, \nabla_Y W) - (\nabla_X \nabla_Y \sigma)(Z, W). \]
(5.2)

We prove the following theorems

Theorem 1. Let \(M \) be an invariant submanifold of a Sasakian manifold \(\tilde{M} \) admitting semi-symmetric metric connection. Then \(\sigma \) is recurrent with respect to semi-symmetric metric connection if and only if it is totally geodesic with respect to Levi-Civita connection.

Proof. Let \(\sigma \) be recurrent with respect to semi-symmetric metric connection. Then from (1.3) we get
\[(\nabla_X \sigma)(Y, Z) = \phi(X)\sigma(Y, Z), \]
where \(\phi \) is a 1-form on \(M \). By using (5.1) and \(Z = \xi \) in the above equation, we have
\[\nabla_X^{\perp}\sigma(Y, \xi) - \sigma(\nabla_X Y, \xi) - \sigma(Y, \nabla_X \xi) = \phi(X)\sigma(Y, \xi), \]
(5.3)

which by virtue of (4.1) reduces to
\[-\sigma(\nabla_X Y, \xi) - \sigma(Y, \nabla_X \xi) = 0. \]
(5.4)
Using (1.1), (3.1), (3.6) and (4.1) in (5.4), we get
\[\sigma(Y, \phi X) - \sigma(Y, X) = 0. \]
(5.5)

Replace \(X \) by \(\phi X \) and by virtue of (3.1) and (4.1) in (5.5), we get
\[-\sigma(Y, X) - \sigma(Y, \phi X) = 0. \]
(5.6)

Adding equation (5.5) and (5.6), we obtain \(\sigma(X, Y) = 0 \). Thus \(M \) is totally geodesic. The converse statement is trivial. This proves the theorem. \(\square \)

Theorem 2. Let \(M \) be an invariant submanifold of a Sasakian manifold \(\tilde{M} \) admitting semi-symmetric metric connection. Then \(M \) has parallel third fundamental form with respect to semi-symmetric metric connection if and only if it is totally geodesic with respect to Levi-Civita connection.

Proof. Let \(M \) has parallel third fundamental form with respect to semi-symmetric metric connection. Then we have
\[\overline{\nabla}_X \overline{\nabla}_Y \sigma(Z, W) = 0. \]

Taking \(W = \xi \) and using (5.2) in the above equation, we have
\[\overline{\nabla}_X ((\overline{\nabla}_Y \sigma)(Z, \xi)) - (\overline{\nabla}_Y \sigma)(\overline{\nabla}_X Z, \xi) - (\overline{\nabla}_X \sigma)(Z, \overline{\nabla}_Y \xi) - (\overline{\nabla}_{\overline{\nabla}_X \xi} \sigma)(Z, \xi) = 0. \]
(5.7)

By using (4.1) and (5.1) in (5.7), we get
\[0 = -\overline{\nabla}_X \{ \sigma(\overline{\nabla}_Y Z, \xi) + \sigma(Z, \overline{\nabla}_Y \xi) \} - \overline{\nabla}_Y \sigma(\overline{\nabla}_X Z, \xi) + \sigma(\overline{\nabla}_Y \overline{\nabla}_X Z, \xi) \]
\[+ 2\sigma(\overline{\nabla}_X Z, \overline{\nabla}_Y \xi) - \overline{\nabla}_X \sigma(Z, \overline{\nabla}_Y \xi) + \sigma(Z, \overline{\nabla}_X \overline{\nabla}_Y \xi) + \sigma(\overline{\nabla}_{\overline{\nabla}_X \xi} \sigma)(Z, \xi) \]
\[+ \sigma(Z, \overline{\nabla}_{\overline{\nabla}_X \xi} \xi). \]
(5.8)

In view of (1.1), (3.1), (3.6) and (4.1) the above result (5.8) gives
\[0 = 2\overline{\nabla}_X \sigma(Z, \phi Y) - 2\overline{\nabla}_X \sigma(Z, Y) - \sigma(Z, \overline{\nabla}_X \phi Y) - \sigma(Z, \overline{\nabla}_X \eta(Y)) \xi \]
\[- \sigma(Z, \phi \overline{\nabla}_X Y) - \eta(Y)\sigma(Z, \phi X) + 2\sigma(Z, \overline{\nabla}_X Y) + \eta(Y)\sigma(Z, X) \]
\[- 2\sigma(\overline{\nabla}_X Z, \phi Y) + 2\sigma(\overline{\nabla}_X Z, Y) - 2\eta(Z)\sigma(X, \phi Y) + 2\eta(Z)\sigma(X, Y). \]
(5.9)

Put \(Y = \xi \) and using (3.1), (3.6), (4.1) in (5.9), we get
\[0 = -2\sigma(Z, \phi X). \]
(5.10)

Replacing \(X \) by \(\phi X \) and using (3.1) and (4.1) in (5.10) to obtain \(\sigma(X, Z) = 0 \). Thus \(M \) is totally geodesic. The converse statement is trivial. This proves the theorem. \(\square \)

Corollary 1. Let \(M \) be an invariant submanifold of a Sasakian manifold \(\tilde{M} \) admitting semi-symmetric metric connection. Then \(\sigma \) is 2-recurrent with respect to semi-symmetric metric connection if and only if it is totally geodesic with respect to Levi-Civita connection.
Proof. Let \(\sigma \) be 2-recurrent with respect to semi-symmetric metric connection. From (1.4), we have
\[
(\overline{\nabla}_X \overline{\nabla}_Y \sigma)(Z, W) = \sigma(Z, W)\phi(X, Y).
\]
Taking \(W = \xi \) and using (5.2) in the above equation, we have
\[
\overline{\nabla}^\perp_X ((\overline{\nabla}_Y \sigma)(Z, \xi)) - (\overline{\nabla}_Y \sigma)(\overline{\nabla}_X Z, \xi) - (\overline{\nabla}_X \sigma)(Z, \overline{\nabla}_Y \xi) - (\overline{\nabla}^\perp_{\overline{\nabla}_X Y} \sigma)(Z, \xi)
= \sigma(Z, \xi)\phi(X, Y). \tag{5.11}
\]
In view of (4.1) and (5.1) we write (5.11) in the form
\[
0 = -\overline{\nabla}^\perp_X \{\sigma(\overline{\nabla}_Y Z, \xi) + \sigma(Z, \overline{\nabla}_Y \xi)\} - \overline{\nabla}^\perp_Y \sigma(\overline{\nabla}_X Z, \xi) + \sigma(\overline{\nabla}_Y \overline{\nabla}_X Z, \xi)
+ 2\sigma(\overline{\nabla}_X Z, \overline{\nabla}_Y \xi) - \overline{\nabla}^\perp_X \sigma(Z, \overline{\nabla}_Y \xi) + \sigma(Z, \overline{\nabla}_X \overline{\nabla}_Y \xi)
+ \sigma(\overline{\nabla}^\perp_{\overline{\nabla}_X Y} Z, \xi) + \sigma(Z, \overline{\nabla}^\perp_{\overline{\nabla}_X Y} \xi). \tag{5.12}
\]
Using (1.1), (3.1), (3.6) and (4.1) in (5.12), we get
\[
0 = 2\overline{\nabla}^\perp_X \sigma(Z, \phi Y) - 2\overline{\nabla}^\perp_X \sigma(Z, Y) - \sigma(Z, \overline{\nabla}_X \phi Y)
- \sigma(Z, \overline{\nabla}_X \eta(Y)\xi) - \sigma(Z, \phi \overline{\nabla}_X Y) - \eta(Y)\sigma(Z, \phi X) + 2\sigma(Z, \overline{\nabla}_X Y)
+ \eta(Y)\sigma(Z, X) - 2\sigma(\overline{\nabla}_X Z, \phi Y) + 2\sigma(\overline{\nabla}_X Z, Y)
- 2\eta(Z)\sigma(X, \phi Y) + 2\eta(Z)\sigma(X, Y). \tag{5.13}
\]
Taking \(Y = \xi \) and using (3.1), (3.6), (4.1) in (5.13), we get
\[
0 = -2\sigma(Z, \phi X). \tag{5.14}
\]
Replacing \(X \) by \(\phi X \) and using (3.1) and (4.1) in (5.14) to obtain \(\sigma(X, Z) = 0 \). Thus \(M \) is totally geodesic. The converse statement is trivial. This proves the theorem. \(\square \)

Theorem 3. Let \(M \) be an invariant submanifold of a Sasakian manifold \(\tilde{M} \) admitting semi-symmetric metric connection. Then \(\sigma \) is generalized 2-recurrent with respect to semi-symmetric metric connection if and only if it is totally geodesic with respect to Levi-Civita connection.

Proof. Let \(\sigma \) be generalized 2-recurrent with respect to semi-symmetric metric connection. From (1.5), we have
\[
(\overline{\nabla}_X \overline{\nabla}_Y \sigma)(Z, W) = \psi(X, Y)\sigma(Z, W) + \phi(X)(\overline{\nabla}_Y \sigma)(Z, W), \tag{5.15}
\]
where \(\psi \) and \(\phi \) are 2-recurrent and 1-form respectively. Taking \(W = \xi \) in (5.15) and using (4.1), we get
\[
(\overline{\nabla}_X \overline{\nabla}_Y \sigma)(Z, \xi) = \phi(X)(\overline{\nabla}_Y \sigma)(Z, \xi).
\]
Using (5.2) and (4.1) in above equation, we get
\[
\nabla^\perp_X ((\nabla_Y \sigma)(Z, \xi)) - (\nabla_Y \sigma)(\nabla_X Z, \xi) = -\phi(X)[\sigma(\nabla_Y Z, \xi) + \sigma(Z, \nabla_Y \xi)].
\]
In view of (4.1) and by virtue of (5.1), the above result gives (5.16), we get
\[
-\nabla^\perp_X \{\sigma(\nabla_Y Z, \xi) + \sigma(Z, \nabla_Y \xi)\} - \nabla_Y^\perp \sigma(\nabla_X Z, \xi) + 2\sigma(\nabla_X Z, \nabla_Y \xi)
\]

Choosing \(Y = \xi \) and using (3.1), (4.1) in (5.18), we get
\[
0 = -2\sigma(Z, \phi X).
\]
Replacing \(X \) by \(\phi X \) and using (3.1) and (4.1) in (5.19) to obtain \(\sigma(X, Z) = 0 \).
Thus \(M \) is totally geodesic. The converse statement is trivial. This proves the theorem. \(\square \)

Using Theorems 5.1 to 5.3 and Corollary 5.1, we have the following result

Corollary 2. Let \(M \) be an invariant submanifold of a Sasakian manifold \(\tilde{M} \) admitting semi-symmetric metric connection. Then the following statements are equivalent

(i) \(\sigma \) is recurrent.

(ii) \(\sigma \) is 2-recurrent.

(iii) \(\sigma \) is generalized 2-recurrent.

(iv) \(M \) has parallel third fundamental form.

References

B.S. Anitha, Department of Mathematics, Kuvempu University, Shankaraghatta 577451, Shimoga, Karnataka, India.

E-mail: abanithabs@gmail.com

C.S. Bagewadi, Department of Mathematics, Kuvempu University, Shankaraghatta 577451, Shimoga, Karnataka, India.

E-mail: prof_bagewadi@yahoo.co.in

Received May 18, 2012

Accepted July 14, 2012