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Abstract. This paper deal with the initial-value problem for a linear first order Fredholm delay
integro differential equation. To solve this problem numerically, a finite difference scheme is presented,
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a result of the error analysis, it is proved that the method is first-order convergent in the discrete
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1. Introduction
Integro-differential equations have many applications of science and engineering. They are
an important subject of mathematical physics and biology, which are modelled in many areas
such as the elasticity, fluid dynamics, electromagnetic, heat and mass transfer, biomechanics,
propagation of nervous impulse, population dynamics, polymeric liquids [11,13,14,16,18–22].

Motivated by these works, we deal with the following Fredholm integro-differential equation
(FIDE) with delay in the interval Ω̄= [0, l] :

Lu := u′(x)+a(x)u(x)+b(x)u(x− r)= f (x)+λ
∫ l

0
K(x, t)u(t− r)dt, x ∈Ω, (1.1)

u(x)=ϕ(x), x ∈Ω0 (1.2)
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where Ω = (0, l] =
m⋃

p=1
Ωp, Ωp = {x : rp−1 < x ≤ rp, 1 ≤ p ≤ m}, Ω̄ = [0, l], rk = kr, 0 ≤ k ≤ m and

Ω0 = [−r,0] (for simplicity we suppose that l/r is integer; i.e., l = mr). Also, λ is a real parameter
and r is a constant delay term. a(x) ≥α> 0, b(x), f (x), ϕ(x) and K(x, t) are given sufficiently
smooth functions. Under the conditions in Lemma 2.1, the existence and uniqueness of the
solution to problem (1.1)-(1.2) are guaranteed.

There are many methods for the numerical approximation of FIDEs, such as the collocation
method [6,23], the variational iteration method [10], the Wavelet method [9], the direct method
[15], the Tau method with polynomial bases [17], the finite difference method [2, 12], the
reproducing kernel Hilbert space method [5], and references there in. Although, there are many
studies on FIDEs without delay in the literature, there are few works on FIDEs including delay
terms. Especially, in the last two decades, interest in these equations has been remarkable.
For example, to solve FIDEs with delay, various types of computational methods have been
proposed, such as the collocation technique with the Haar wavelet [1], the Jacobi matrix method
with collocation points [8], the Tau method with the some special polynomials [24, 25], the
polynomial approach with spline functions [7].

Even if the equation (1.1) is linear, it may not always be possible to find its analytical
solution. Because, it is not possible to benefit from Taylor’s expansion because of the delay term
is large. Therefore, it is necessary to develop suitable numerical solutions for such equations.

In this paper, we have developed a new approach to solve (1.1)-(1.2), numerically. This
approach is based on the method of integral identities with the use of interpolating quadrature
rules with the weight and remainder terms in integral form for differential part and the
composite integration method for integral part. As a result of this, the local truncation errors
occur that include up to first order derivative of the exact solution and so facilitates examination
of the convergence.

The remainder of this paper is as follows. In Section 2, a priori estimate of the exact solution
is given. The finite difference scheme is constructed in Section 3. In Section 4, the error analysis
for the approximate solution is presented and convergence is proved in the discrete maximum
norm. In Section 5, the iterative algorithm for solving the discrete problem is formulated and
numerical results are presented, which computationally verify the theoretical analysis. The
paper ends with a summary of the main conclusions.

Throughout the paper, C denotes a generic positive constant. Some specific, fixed constants
of this kind are indicated by subscripting C.

2. The Statement of the Problem
In this section, we present some estimates for the solution of (1.1)-(1.2), which are needed in later
sections for the analysis of appropriate numerical solution. For any continuous function g(t), we
use ‖g‖∞ for the continuous maximum norm on the corresponding interval. In particular, we
will use ‖g‖∞,p = ‖g‖∞,Ω̄p

:=max
x∈Ω̄p

|g(x)|, 0≤ p ≤ m and Ω̄∗
p = {x : 0< x ≤ rp}, 1≤ p ≤ m.
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Lemma 2.1. Let a,b, f ∈ C(Ω̄), K ∈ C(Ω̄× Ω̄), ϕ ∈ C(Ω0) and |λ| <α/(K̄ l). Then for u which the
solution of the problem (1.1)-(1.2) the following estimates hold:

‖u‖∞,Ω̄∗
p
≤ Cp, (2.1)

‖u′‖∞,Ω̄∗
p
≤ ‖a‖∞Cp + (‖b‖∞+|λ|K̄ l)Cp−1 +‖ f ‖∞, (2.2)

where

Cp = ‖ϕ‖∞,0[(α−|λ|K̄ l)−1‖b‖∞]p

+ (1−α−1|λ|K̄ l)−1
[
|ϕ(0)|+α−1‖ f ‖∞+α−1|λ|K̄

∫ 0

−r
|ϕ(s)|ds

]
×

p∑
k=1

[(α−|λ|K̄ l)−1‖b‖∞]p−k, p = 1,2, . . . ,m

and

K̄ = max
(x,t)∈Ω̄×Ω̄

|K(x, t)| .

Proof. From (1.1)-(1.2) we can write

u′(x)+a(x)u(x)= F(x), x ∈ Ω̄∗
p , (2.3)

where

F(x)= f (x)−b(x)u(x− r)+λ
∫ l

0
K(x, t)u(t− r)dt .

Then

|F(x)| ≤ ‖ f ‖∞,Ω̄∗
p
+‖b‖∞,Ω̄∗

p
‖u‖∞,Ω̄∗

p−1
+|λ|K̄

∫ l

0
|u(t− r)|dt

and based on assumptions of this lemma and from (2.3) it follows that

|u(x)| ≤ |ϕ(0)|+α−1
[
‖ f ‖∞,Ω̄∗

p
+‖b‖∞,Ω̄∗

p
‖u‖∞,Ω̄∗

p−1

]
+α−1|λ|K̄

∫ l

0
|u(t− r)|dt .

After replacing s = t− r we arrive at

|u(x)| ≤ γp +α−1|λ|K̄
∫ 0

−r
|ϕ(s)|ds+α−1|λ|K̄

∫ l−r

0
|u(s)|ds

≤ γp +α−1|λ|K̄
∫ 0

−r
|ϕ(s)|ds+α−1|λ|K̄

∫ l

0
|u(s)|ds ,

where

γp = |ϕ(0)|+α−1
[
‖ f ‖∞,Ω̄∗

p
+‖b‖∞,Ω̄∗

p
‖u‖∞,Ω̄∗

p−1

]
.

So, we have

‖u‖∞,Ω̄∗
p
≤ (1−δl)−1

[
|ϕ(0)|+α−1‖ f ‖∞,Ω̄∗

p
+δ

∫ 0

−r
|ϕ(s)|ds

]
+α−1(1−δl)−1‖b‖∞,Ω̄∗

p
‖u‖∞,Ω̄∗

p−1
,

where

δ=α−1|λ|K̄ .
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From here, the following first order difference inequality follows

vp ≤ qvp−1 +ρ
with

vp = ‖u‖∞,Ω̄∗
p
, δ=α−1|λ|K̄ ,

q =α−1(1−δl)−1‖b‖∞,Ω̄∗
p
,

ρ = (1−δl)−1
[
|ϕ(0)|+α−1‖ f ‖∞,Ω̄∗

p
+δ

∫ 0

−r
|ϕ(s)|ds

]
,

which yields the estimate

vp ≤ v0qp +ρ
p∑

k=1
qp−k

so we arrive at (2.1).
Now, from (1.1), we easily get

|u′(x)| ≤ |a(x)||u(x)|+ |b(x)||u(x− r)|+ | f (x)|+ |λ|
∫ l

0
|K(x, t)||u(t− r)|dt

and from hence we obtain

‖u′‖∞,Ω̄∗
p
≤ ‖a‖∞,Ω̄∗

p
‖u‖∞,Ω̄∗

p
+‖b‖∞,Ω̄∗

p
‖u‖∞,Ω̄∗

p−1
+‖ f ‖∞,Ω̄∗

p
+|λ|‖u‖∞,Ω̄∗

p−1
K̄ l,

which completes the proof.

3. The Difference Scheme and Mesh
Let ω̄N0 be a uniform mesh on Ω̄:

ωN0 = {xi = ih, i = 1,2, . . . , N, h = l/N0 = r/N}, ω̄N0 =ωN0 ∪ {0},

which contains by N mesh point at each subinterval Ωp (1≤ p ≤ m):

ωNp = {xi : (p−1)N +1≤ i ≤ pN, 1≤ p ≤ m}

and consequently

ωN0 =
m⋃

p=1
ωNp

and also

ω∗
Np

= {xi : 1≤ i ≤ pN}, (1≤ p ≤ m).

For any mesh function g(x), we use g i = g(xi) and moreover yi denotes an approximation of
u(x) at xi and

g x̄,i = (g i − g i−1)/h, ‖g‖∞,p = ‖g‖∞,ωNp
:= max

(p−1)N≤i≤pN
|g i|,

‖g‖∞,ω∗
Np

:= max
1≤i≤pN

|g i|, (1≤ p ≤ m).

For the difference approximation the problem (1.1)-(1.2), we are using the following identity

h−1
∫ xi

xi−1

Lu(x)φi(x)dx = h−1
∫ xi

xi−1

[ f (x)+λ
∫ l

0
K(x, s)u(s− r)ds]φi(x)dx, 1≤ i ≤ N0, (3.1)

Communications in Mathematics and Applications, Vol. 12, No. 3, pp. 619–631, 2021



A Numerical Approach for Fredholm Delay Integro Differential Equation: E. Cimen and K. Enterili 623

with basis function

φi(x)=e−
∫ xi

x a(t)dt, xi−1 ≤ x ≤ xi (3.2)

which is the solution of the following problem

−φ′
i(x)+a(x)φi(x)= 0, xi−1 < x ≤ xi, φi(xi)= 1.

The relation (3.1) is rewritten as

h−1
∫ xi

xi−1

u′(x)φi(x)dx+h−1
∫ xi

xi−1

a(x)u(x)φi(x)dx+h−1
∫ xi

xi−1

b(x)u(x− r)φi(x)dx

= h−1
∫ xi

xi−1

f (x)φi(x)dx+h−1
∫ xi

xi−1

(
λ

∫ l

0
K(x, s)u(s− r)ds

)
φi(x)dx. (3.3)

First, using the formulas (2.1) and (2.2) from [3] on interval (xi−1, xi) taking into account the
left hand side equation (3.3), we have

h−1
∫ xi

xi−1

u′(x)φi(x)dx+h−1
∫ xi

xi−1

a(x)u(x)φi(x)dx+h−1
∫ xi

xi−1

b(x)u(x− r)φi(x)dx

= A iu x̄,i +Biu x̄,i−N +Ciui +D iui−N +R(1)
i ,

where

A i = h−1
∫ xi

xi−1

φi(x)dx+h−1
∫ xi

xi−1

(x− xi)a(x)φi(x)dx, (3.4)

Bi = h−1
∫ xi

xi−1

(x− xi)b(x)φi(x)dx, Ci = h−1
∫ xi

xi−1

a (x)φi(x)dx, (3.5)

D i = h−1
∫ xi

xi−1

b(x)φi(x)dx, (3.6)

R(1)
i = h−1

∫ xi

xi−1

b(x)φi(x)dx
∫ xi

xi−1

u′(ξ− r)K0(x,ξ)dξ, (3.7)

K0(x,ξ)=T0(x−ξ)−h−1(x− xi−1), T0(t)= 1, t ≥ 0; T0(t)= 0, t < 0.

Second, for the integral term from the right hand side eqution (3.3), we have

h−1
∫ xi

xi−1

[
λ

∫ l

0
K(x, s)u(s− r)ds

]
φi(x)dx

= h−1λ

∫ xi

xi−1

dxφi(x)
∫ l

0
K(xi, s)u(s− r)ds,

+h−1λ

∫ xi

xi−1

dxφi(x)
∫ l

0
[K(x, s)−K(xi, s)]u(s− r)ds.

Further using the composite right side rectangle rule, we obtain∫ l

0
K(xi, s)u(s− r)ds = h

N0∑
j=1

K i, ju j−N −
N0∑
j=1

∫ x j

x j−1

(s− x j−1)
∂

∂s
[K(xi, s)u(s− r)]ds .

Therefore, we get

h−1
∫ xi

xi−1

[
λ

∫ l

0
K(x, s)u(s− r)ds

]
φi(x)dx = h−1λ

∫ xi

xi−1

dxφi(x)h
N0∑
j=1

K i, ju j−N +R(2)
i
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with remainder term

R(2)
i = h−1λ

∫ xi

xi−1

dxφi(x)
∫ l

0
[K(x, s)−K(xi, s)]u(s− r)ds

+λh−1
∫ xi

xi−1

φi(x)dx
N0∑
j=1

∫ x j

x j−1

(s− x j−1)
∂

∂s
[K(xi, s)u(s− r)]ds. (3.8)

Hereby, we write the exact relation for u(xi):

`ui ≡ A iu x̄,i +Biu x̄,i−N +Ciui +D iui−N

= Fi +E iλ
N0∑
j=1

K i, ju j−N +Ri, 1≤ i ≤ N0, (3.9)

with

E i =
∫ xi

xi−1

φi(x)dx,

Fi = h−1
∫ xi

xi−1

f (x)φi(x)dx,

Ri = R(1)
i +R(2)

i (3.10)

where A i , Bi , Ci , D i and R(k)
i (k = 1,2) are determined by (3.4)-(3.6) and (3.7), (3.8), respectively.

By virtue of (3.9) we suggest the following difference scheme for approximating (1.1)-(1.2):

`yi ≡ A i yx̄,i +Bi yx̄,i−N +Ci yi +D i yi−N = Fi +E iλ
N0∑
j=1

K i, j yj−N , 1≤ i ≤ N0, (3.11)

yi =ϕi, −N ≤ i ≤ 0. (3.12)

We also propose another difference scheme that can be easily obtained using the implicit Euler
method which is known as the classical method and appropriate quadrature rules:

yx̄,i +ai yi +bi yi−N = f i +hλ
N0∑
j=1

K i, j yj−N , 1≤ i ≤ N0, (3.13)

yi =ϕi, −N ≤ i ≤ 0. (3.14)

4. Error Analysis
To analyze the convergence of the method, we define the error function zi = yi −ui , 1≤ i ≤ N0 is
the solution of the following discrete problem

`zi = E iλ
N0∑
j=1

K i, j z j−N −Ri, 1≤ i ≤ N0, (4.1)

zi = 0, −N ≤ i ≤ 0, (4.2)

where the truncation error Ri is given by (3.10).

Lemma 4.1. If a,b, f ∈ C(Ω̄), ϕ ∈ C1(Ω0), K ∈ C1(Ω̄×Ω̄) and then for the truncation error Ri we
have

‖R‖∞ ≤ Ch. (4.3)
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Proof. From (3.7), we write

|R(1)
i | ≤ h−1

∫ xi

xi−1

dx|b(x)|φi(x)
∫ xi

xi−1

|u′(ξ− r)|dξ .

Due to Lemma 2.1 and 0<φi(t)≤ 1, we have

|R(1)
i | ≤ Ch−1‖b‖∞

∫ xi

xi−1

dx
∫ xi

xi−1

|u′(ξ− r)|dξ

≤ C
∫ xi

xi−1

|u′(ξ− r)|dξ≤ Ch.

From (3.8), we write

|R(2)
i | ≤ h−1|λ|

∫ xi

xi−1

dxφi(x)
∫ l

0
|K(x, s)−K(xi, s)||u(s− r)|ds

+|λ|h−1
∫ xi

xi−1

φi(x)dx
N0∑
j=1

∫ x j

x j−1

(s− x j−1)
∣∣∣∣ ∂∂s

[K(xi, s)u(s− r)]
∣∣∣∣ds

≤ h−1|λ|
∫ xi

xi−1

dxφi(x)
∫ l

0
(x− xi)| ∂

∂x
K(x, s)||u(s− r)|ds

+|λ|h−1
∫ xi

xi−1

φi(x)dxh
∫ l

0

∣∣∣∣ ∂∂s
[K(xi, s)u(s− r)]

∣∣∣∣ds

≤ |λ|
∫ xi

xi−1

dxφi(x)
∫ l

0

∣∣∣∣ ∂∂x
K(x, s)

∣∣∣∣ |u(s− r)|ds

+|λ|
∫ xi

xi−1

φi(x)dx
∫ l

0

[∣∣∣∣ ∂∂s
K(xi, s)

∣∣∣∣ |u(s− r)|+ |K(xi, s)||u′(s− r)|
]

ds .

By virtue of Lemma 2.1,
∣∣ ∂
∂x K(x, t)

∣∣≤ C,
∣∣ ∂
∂s K(x, s)

∣∣≤ C and 0<φi(t)≤ 1, we have

|R(2)
i | ≤ |λ|

∫ xi

xi−1

dx
∫ l

0

[|u(s− r)|+ |u′(s− r)|]ds ≤ Ch,

and so we arrive at (4.3).

Lemma 4.2. Let |G i| ≤ Ḡ i and Ḡ i be nondecreasing function, we consider the following problem

lvi = A ivt̄,i +Civi =G i, 1≤ i ≤ N, (4.4)

v0 =β. (4.5)

Then the solution of difference problem (4.4)-(4.5) hold:

|vi| ≤ |β|+α−1Ḡ i, 1≤ i ≤ N.

Proof. The proof is almost identical that of [4].

Lemma 4.3. Let zi be the solution of (4.1)-(4.2) and

2α−1‖b‖∞+α−1|λ| max
1≤i≤N0

h
N0∑
j=1

|K i, j| < 1

holds true. Then

‖z‖∞ ≤ C‖R‖∞ .
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Proof. From (4.1), we write

A i zx̄,i +Bi zx̄,i−N +Ci zi +D i zi−N = E ihλ
N0∑
j=1

K i, j z j−N −Ri .

Here, we rewrite as

A i zx̄,i +Ci zi =G i ,

G i =−Bi zx̄,i−N −D i zi−N +E ihλ
N0∑
j=1

K i, j z j−N −Ri

and here, we have

|G i| ≤ ‖b‖∞|zi−N |+‖b‖∞|zi−N−1|+ |λ|h
N0∑
j=1

|K i, j||z j−N |+‖R‖∞ .

Considering Lemma 4.2, we can write

‖z‖∞ ≤ 2α−1‖b‖∞‖z‖∞+α−1|λ|‖z‖∞ max
1≤i≤N0

h
N0∑
j=1

|K i, j|+α−1‖R‖∞,

which completes the proof.

Now, we give the main convergence result.

Theorem 4.4. Let u be the solution of (1.1)-(1.2) and y be the solution (3.11)-(3.12). Then

‖y−u‖∞,ωN0
≤ Ch .

Proof. This follows immediately by combining the previous lemmas.

5. Numerical Results
In this section, we present numerical results obtained by applying the new numerical scheme
(3.11)-(3.12) to the particular problem. Also, we present numerical results obtained by using
implicit Euler method in (3.13)-(3.14).

First, we suggest the following iterative technique for solving problem (3.11)-(3.12). So, if
we reformulate (3.11) then we can write

A i y(n)
x̄,i +Bi y(n)

x̄,i−N +Ci y(n)
i +D i y(n)

i−N = Fi +E iλ
N0∑
j=1

K i j y(n−1)
j−N , 1≤ i ≤ N0 −1, (5.1)

y(n)
i =ϕi, −N ≤ i ≤ 0, (5.2)

n = 1,2, . . ., y(0)
i (1≤ i ≤ N0 −1) are given and stopping criterion is

max
i

|y(n)
i − y(n−1)

i | ≤ 10−5.

Latter, for the iterative error z(n)
i = y(n)

i − yi from (3.11)-(3.12) and (5.1)-(5.2), we have

A i z(n)
x̄,i +Bi z(n)

x̄,i−N +Ci z(n)
i +D i z(n)

i−N = E iλ
N0∑
j=1

K i j z(n−1)
j−N , 1≤ i ≤ N0 −1,

z(n)
i = 0, −N ≤ i ≤ 0.
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According to maximum principle

‖z(n)‖∞ ≤ |λ|h
N0∑
j=1

|K i j| |z(n−1)
j |

≤ q‖z(n−1)‖∞
with

q = |λ|h max
0≤i≤N0

N0∑
j=1

|K i j| .

For |λ| < 1/

(
h max

1≤i≤N0

N0∑
j=1

|K i j|
)

the iterative process obviously convergent.

Example 5.1. Now, we consider the test problem:

u′(x)+4u(x)+u(x−1)= 3
4

e(x−1) + 1
4

∫ 2

0
ex−tu(t−1)dt, 0< x ≤ 2,

u(x)= ex, −1≤ x ≤ 0

the exact solution of the problem is given by

u(x)=
{

d1e−4x +d2ex−1, 0< x ≤ 1,
[d3 + (1− x)d1]e−4(x−1) +d4ex−1, 1< x ≤ 2,

where

d1 = 1− e−1 − e−6

100−4e−1 − e−6 ,

d2 = 1− e−5

100−5e−1 d1,

d3 =
[

e−4 − 1
100

(1− e−5)
]

d1 +
(
1+ 3e−1

20

)
d2 − 1

5
,

d4 = 1
100

(1− e−5)d1 − 3e−1

20
d2 + 1

5
.

We define the exact error eN
i and the computed maximum pointwise error eN for any N as

follows:

eN
i = |yi−ui|, eN = max

0≤i≤N
eN

i ,

where yi is the numerical approximation to exact value ui for the nodes xi . The computational
results of the test problem obtained by using both methods are presented in Tables 1-3.
Furthermore, the maximum pointwise errors by means of the corresponding numbers eN

obtained by taking y(0)
i = 1− e−xi for the test problem are listed in Table 3.
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Table 1. The numerical results for the test problem on (0,2] (PM)

xi ui yi (N = 64) e64
i yi (N = 128) e128

i
0.125 0.6084837 0.6085000 1.628E-5 0.6084920 8.282E-6
0.250 0.3712771 0.3713054 2.832E-5 0.3712915 1.441E-5
0.375 0.2276987 0.2277368 3.808E-5 0.2277181 1.937E-5
0.500 0.1409479 0.1409947 4.678E-5 0.1409717 2.380E-5
0.625 0.0887093 0.0887645 5.521E-5 0.0887374 2.809E-5
0.750 0.0574537 0.0575176 6.390E-5 0.0574862 3.251E-5
0.875 0.0389820 0.0390553 7.322E-5 0.0390193 3.725E-5
1.000 0.0283289 0.0284124 8.346E-5 0.0283714 4.246E-5
1.125 0.0518891 0.0519606 7.150E-5 0.0519313 4.219E-5
1.250 0.1105784 0.1106571 7.874E-5 0.1106252 4.682E-5
1.375 0.1808347 0.1809297 9.495E-5 0.1808888 5.404E-5
1.500 0.2532287 0.2533440 1.154E-4 0.2532915 6.280E-5
1.625 0.3251265 0.3252646 1.381E-4 0.3251992 7.269E-5
1.750 0.3969579 0.3971204 1.625E-4 0.3970415 8.364E-5
1.875 0.4703886 0.4705773 1.888E-4 0.4704843 9.577E-5
2.000 0.5474807 0.5476979 2.173E-4 0.5475899 1.093E-4

Table 2. The numerical results for the test problem on (0,2] (EM)

xi ui yi (N = 64) e64
i yi (N = 128) e128

i
0.125 0.6084837 0.6175932 9.109E-3 0.6131136 4.630E-3
0.250 0.3712771 0.3823978 1.112E-2 0.3769083 5.631E-3
0.375 0.2276987 0.2378741 1.018E-2 0.2328320 5.133E-3
0.500 0.1409479 0.1492148 8.267E-3 0.1451027 4.155E-3
0.625 0.0887093 0.0949942 6.285E-3 0.0918559 3.147E-3
0.750 0.0574537 0.0620265 4.573E-3 0.0597342 2.281E-3
0.875 0.0389820 0.0421995 3.217E-3 0.0405800 1.599E-3
1.000 0.0283289 0.0305259 2.197E-3 0.0294153 1.086E-3
1.125 0.0518891 0.0550450 3.156E-3 0.0534830 1.594E-3
1.250 0.1105784 0.1123125 1.734E-3 0.1114465 8.681E-4
1.375 0.1808347 0.1810065 1.718E-4 0.1809065 7.179E-5
1.500 0.2532287 0.2523515 8.772E-4 0.2527695 4.592E-4
1.625 0.3251265 0.3237562 1.370E-3 0.3244212 7.053E-4
1.750 0.3969579 0.3955066 1.451E-3 0.3962162 7.417E-4
1.875 0.4703886 0.4691072 1.281E-3 0.4697369 6.517E-4
2.000 0.5474807 0.5464950 9.857E-4 0.5469813 4.994E-4

Table 3. Comparison of EN both methods on (0,2]

N EN (EM) EN (PM) N EN (EM) EN (PM)
32 2.170E-2 4.195E-4 256 2.834E-3 5.350E-5
64 1.112E-2 2.173E-4 512 1.421E-3 2.519E-5

128 5.631E-3 1.093E-4 1024 7.115E-4 1.092E-5
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6. Conclusion
In this paper, we proposed a difference scheme using the finite difference method for solving
a linear first order Fredholm delay integro-differential equation. This method was based on
a fitted difference scheme on an equidistant mesh on each time subinterval. By applying the
method, first order convergence in the discrete maximum norm was obtained. A numerical
example was solved not only by the presented method but also using the implicit Euler method.
Moreover, the computational results for N = 64,128 were displayed in the Tables 1-2 and the
maximum pointwise errors for various N obtained by both methods were shown in the Table 3.
From the results in these Tables, we conclude that the proposed approach more effective than
the other approach. The ideas presented approach here can be used for the study of initial or
boundary value problems for Fredholm integro-differential equations with delay as well as
neutral type.
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