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Abstract. The concept of transit of a vertex and transit index of a graph was defined by the authors
in their previous work. The transit of a vertex v is “the sum of the lengths of all shortest path with v
as an internal vertex” and the transit index of a graph G is the sum of the transit of all the vertices of
it. In this paper, we investigate transit index of sub-division graphs.
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1. Introduction
It is well known that the chemical behaviour of a compound is dependent upon the structure of
its molecules. Quantitative Structure Activity Relationship (QSAR) studies and Quantitative
Structure Property Relationship (QSPR) studies are active areas of chemical research that
focus on the nature of this dependency. A topological index is a numeric quantity that is
mathematically derived from the structural graph of a molecule. The first reported use of a
topological index in chemistry was by Wiener in his study of paraffin boiling points. In [5], transit
index of a graph was introduced by the authors and its correlation with one of the physiochemical
property-MON of octane isomers was established.

In this paper, we discuss transit index of subdivision of a tree, a graph with no odd cycles
and of certain graph classes.
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Throughout G denotes a simple, connected, undirected graph with vertex set V and edge
set E, for undefined terms we refer [1].

2. Preliminaries
Definition 2.1 ([5]). Let v be a vertex of G. Then the transit of v denoted by T(v) is “the sum of
the lengths of all shortest path with v as an internal vertex” and the transit index of G denoted
by TI(G) is

TI(G)= ∑
v∈V

T(v) .

Lemma 2.2 ([5]). For a vertex v of G, T(v)= 0 iff 〈N[v]〉 is a clique, or T(v)= 0 iff v is a simplicial
vertex of G.

Theorem 2.3 ([5]). For a path Pn, transit index will be n(n+1)(n2−3n+2)
12 .

Theorem 2.4 ([6]). Let Cn be a cycle with n even. Then

(i) TI(Cn)= n2(n2−4)
24 ,

(ii) TI(Cn+1)= n(n2−4)(n+1)
24 ,

Definition 2.5. A path M through v is called a majorized shortest path through v, abbreviated
as msp(v), if it satisfies the following conditions:

(i) M is a shortest path in G with v as an internal vertex.

(ii) There exist no path M′ such that, M′ is a shortest path in G with v as an internal vertex
and M as a sub-path of it.

We denote the collection of all msp(v) by Mv and
⋃

v∈V
Mv by MG .

Definition 2.6. A decomposition of a graph G into a collection of sub graphs τ= {T1,T2, . . . ,Tr},
where each Ti is either a chord-less cycle in G or a majorized shortest path of G such that
TI(G)=∑

i
TI(Ti)− ∑

i 6= j
TI(Ti ∩T j)+ ∑

i 6= j 6=k
TI(Ti ∩T j ∩Tk)− . . . is called a transit decomposition

of G. We denote a transit decomposition of minimum cardinality by τmin.

Definition 2.7 ([6]). Two vertices v1 and v2 of a graph are called transit identical if the shortest
paths passing through them are same in number and length.

Definition 2.8 ([3]). The edge subdivision operation for an edge {u,v} ∈ E is the deletion of
{u,v} from G and the addition of two edges {u,w} and {w,v} along with the new vertex w.

Definition 2.9 ([3]). A graph which has been derived from G by a sequence of edge subdivision
operations is called a subdivision of G.
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3. Subdivision of Trees
Theorem 3.1. Let G be a tree. Let S denote the graph got by subdividing every edge of G. Then
MS is got by subdividing paths of MG .

Proof. Let M : v1v2 . . .v . . .vk−1vk ∈MG . Let M′ : v1u1v2u2 . . .v . . .vk−1uk−1vk be the subdivision
of M.

Claim 1: M′ is a shortest path connecting v1 to vk in S.
If possible let M′ be not a shortest path connecting v1 to vk in S. Then there exist some path
N ′ : v1n1n2 . . .nsvk, where s+1 < 2k−2. Clearly, n1,n3, . . . ,ns are subdivision vertices. Hence
the path N : v1n2n4 . . .ns−1vk is a path in G connecting v1 to vk of length s−3

2 +2.
But s−3

2 +2 ≤ k−1, a contradiction to the fact that M is a shortest path connecting v1 to vk.
Hence the claim.

Claim 2: There exist no path M′′ in S such that M′′ is a shortest path with v as an internal
vertex and M′ as a subpath of it.
Suppose on the contrary, let M′′ be a shortest path in S with v as an internal vertex and M′

as a subpath of it. Then M′′ connects two pendant vertices of S. Let M′′ = z1u1 . . . M′ . . .us−1zs.
Then the path M′′− {u1,u2, . . . ,us−1} is a path in G with M as a subpath and v as an internal
vertex. This is a contraction. Hence the claim.
These two claims prove the theorem.

4. Sub Division of a Graph
Theorem 4.1. Let G be a graph with no odd cycles. Let τmin be a transit decomposition of G of
minimum cardinality. τ′ denotes the collection of all sub division of paths/cycles in τmin. Then
τ′ is a transit decomposition of S(G), the sub division graph of G.

Proof. Let τmin = {T1,T2, . . . ,Tr} and τ′ = {T ′
1,T ′

2, . . . ,T ′
r}. Since τmin is of minimum cardinality,

every cycle of G belongs to τmin. Also, note that every path in S(G) have subdivision vertices in
alternate position.

Claim: If M′ : v1,v2, . . . ,vk is a shortest path in in S(G), then M′ is a subpath of some T ′
i ∈ τ′.

Here three cases arise. In each case we will show the claim is true.

Case 1: Both v1 and vk are in G. The path got by deleting the subdivision vertices from M′ will
be a path connecting v1 to vk in G and will be a shortest path. Hence it will be part of some
path/cycle, say Ti in τmin. Clearly, M′ will be part of T ′

i ∈ τ′.
Case 2: Either of v1 or vk is in G. Without loss of generality let us assume v1 is in G and vk is a
subdivision vertex. Clearly, the path v1,v3, . . . ,vk−1 is a shortest path in G. Suppose w 6= vk−1 is
a neighbour of vk. Since G has no odd cycles it is clear that vk−3 is not a neighbour of w. We
claim that the path M : v1,v3, . . . ,vk−1, w is a shortest path in G, which will prove the theorem
for Case 2.
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On the contrary let us assume that M is not the shortest path from v1 to w. Then it is evident
that some (atleast vk−3, vk−1 and w) or all of the vertices in M are part of a cycle. Let us assume
that the vertices v, . . . ,vk−1, w are part of a cycle. Then the paths v → vk−1 and v → w are of
same length, a contradiction to the fact that G has no odd cycles. Hence our claim.

Case 3: Both v1 and vk are subdivision vertices. Hence d(v1)= d(vk)= 2. Let u 6= v2 and w 6= vk−1

be the neighbours of v1 and vk respectively. If uv2v4 . . .w is a shortest path of G, we are done.
If the edges uv2 and vk−1w are not part of a cycle, there is nothing to prove. Since G contains
cycles, some or all of the vertices of the path uv2v4 . . .w may lie on same or different cycles.
Hence there can be more than one path connecting u to w. Due to our assumption that M′ is
the shortest path and due to the fact that G contains only even cycles, the path uv2v4 . . .w is a
shortest path.
Hence the proof.

Tadpole Graph
The tadpole graph Tm,n is a special type of graph consisting of a cycle on m (≥ 3) vertices and a
path on n vertices, connected by a bridge, say e.

Corollary 4.2. Let G denote the tadpole graph T2m,n. Then the transit decomposition for
S(G),τS(G) = {T ′

1,T ′
2,T ′

3}, where T ′
1,T ′

2 ' P2m+2n+1 and T ′
3 ' C4m.

Proof. The graph G contains no odd cycles. Hence if τmin is a transit decomposition of G with
minimum cardinality, the transit decomposition for S(G),τS(G) is got by subdividing every edge
of paths/cycles in τmin.
Since C2m is a cycle in G, C2m ∈ τmin. Let e = uv be the bridge in G, with u as a vertex of the
cycle C2m. Let u′ be vertex diametrically opposite to u. The paths connecting the pendant vertex
of G to u′ are of length n+m and form majorized paths of G. Hence τmin = {T1,T2,T3} where
T1 ' C2m and T1,T2 ' Pn+m+1. Thus, by Theorem 4.1, the result follows.

Remark 4.3. Consider the tadpole graph T2m+1,n. This graph has an odd cycle and hence the
Theorem 4.1 does not hold good here. To find the transit index of its subdivision graph we
form the transit decomposition, τS(G). It is evident that here S(G)= T4m+2,2n. Therefore, τS(G) =
{T1,T2,T3}, where T1 ' C4m+2, T2 ' T3 ' P2m+2n+2. Also, note that T1 ∩T2 ' T1 ∩T3 ' P2m+2

and T2 ∩T3 ' P2n+1.

Proposition 4.4. Let G be not a cycle and let τ be a transit decomposition of G. If τ′ denotes the
collection of all subdivision of elements of τ, τ′ will be a transit decomposition of S(G), the sub
division graph of G, only if every edge of G is part of some majorized path in τ.

Proof. Suppose on the contrary, let e = uv be not a part of any majorized path in τ. Clearly, e
belongs to some cycle, say C. Let the sub division of e be uwv. Let w′ be any vertex of G that
is not in C. Then the shortest path connecting w to w′ in S(G) will not be a sub path of any
element in τ′ which proves τ′ is not a transit decomposition of S(G)
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5. Transit Index of Subdivision Graphs
Theorem 5.1. Let G be the graph got by subdividing every edge of the path Pn. Then
TI(G)=TI(Pn)+ n(n−1)(15n2−31n+14)

12 .

Proof. Since G is got by subdividing every edge of Pn, G ' P2n−1.
Hence by Theorem 2.3, we get TI(G)−TI(Pn)= n(n−1)(15n2−31n+14)

12 .

Theorem 5.2. Let G be the graph got by subdividing every edge of a cycle. Then

TI(G)=
TI(Cn)+ n(n−1)(5n2+6n+1)

8 , n odd,

TI(Cn)+ n2(5n2−4)
8 , n even.

Proof. For a cycle Cn its subdivision graph is the cycle C2n. Now, using Theorem 2.4, the result
follows.

Theorem 5.3. Let G be the graph got by the subdivision of a single edge e = uv1 of the star
graph K1,n−1. Then TI(G)= n2 +3n−8=TI(K1,n−1)+6n−10.

Proof. In the graph G every vertex other then the central vertex u and the newly added vertex
v have transit zero.
The shortest paths through u are the one’s connecting v to other (n−2) vertices of star and the
ones connecting v1 to the (n−2) vertices of star, i.e.

T(u)= (n−1)(n−2)+3(n−2)=TI(K1,n−1)+3(n−2).

The shortest path through v are those connecting v1 to other (n− 2) vertices of star and
connecting v1 to u, i.e.

T(v)= 3(n−2)+2.

Hence TI(G)= n2 +3n−8=TI(K1,n−1)+6n−10.

Theorem 5.4. Let G be the graph got by the subdivision of every edge of the star graph K1,n−1.
Then TI(G)= (n−1)(13n−24)=TI(K1,n−1)+2(n−1)(6n−11).

Proof. In G let the pendant vertices be v1,v2, . . . ,vn−1, newly added vertices be u1,u2, . . . ,un−1

and the center vertex be u.

T(vi)= 0, for all i.

The shortest paths through u are:

(a) connecting vi to v j of length 4,

(b) connecting vi to u j of length 3,

(c) connecting ui to u j of length 2.

Therefore, T(u)= (n−1)(6n−12).

The shortest paths through ui are:

(a) connecting vi to v j of length 4,
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(b) connecting vi to u j of length 3,

(c) connecting vi to u of length 2.

Therefore, T(ui)= 7n−12.

This gives

TI(G)= (n−1)(n−2)+2(n−1)(6n−11)

=TI(K1,n−1)+2(n−1)(6n−11) .

Theorem 5.5. Let G be the bistar got by joining the apex vertex of two stars K1,n by an edge.
If S(G) denotes its subdivision graph, TI(S(G))=TI(G)+124n2 +4n+2.

Proof. Consider Figure 1, all vertices other than the vertices of the type u,v,w have transit
zeroİt can be easily verified that T(u)= 32n2, T(v)= 32n2+2n+2 and T(w)= 18n+2. There are
two vertices of type u and 2n vertices of the type w. This shows that TI(S(G))= 132n2 +6n+2.

G

uv

S(G)

w

Figure 1. Bistar and its subdivision graph

Also, TI(G) can be computed from the figure as 8n2 +2n. Hence the result.

Theorem 5.6. Let G be the graph got by the subdividing a single edge e = uv of the complete
graph Kn. Then TI(G)= 6n−10.

Proof. Let the new vertex be w. After the subdivision the distance between u and v becomes 2.
Also, the diameter of the graph is now 2.
All the n−2 vertices of Kn other than u and v are adjacent to each other and at a distance 2
from w. Hence T(u)= T(v)= 2(n−2).
The only shortest path through w is the one connecting u to v. Hence T(w)= 2.
For the remaining (n−2) vertices the shortest path through it is the one connecting u to v, of
length 2. Therefore, TI(G)= 6n−10.

Theorem 5.7. Let G be the graph got by sub dividing every edge of the complete graph Kn. Then
TI(G)= n(11n2 −40n+37).

Proof. Let v1,v2, . . . ,vn be the vertices of Kn, and u1,u2, . . . ,um be the sub division vertices,
where m = C(n,2). In G, d(vi)= n−1 and d(ui)= 2. Note that vi ’s are transit identical and so
are ui ’s. We will calculate T(vi) and T(ui) separately and hence compute TI(G).
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1. Computing T(vi)
Let us fix v1 (refer Figure 2). It is adjacent to n− 1 vertices of the type ui . The shortest
path connecting these n−1 vertices are of length 2 and passes through v1. Hence contribute
C(n−1,2)×2 = (n−1)(n−2) to the transit of v1. The (n−1) vertices of the type ui adjacent
to v1 travels through v1 to reach other (n−2) vertices of type vi , each of length 3. Hence add
(n−2)(n−1)×3 to T(v1).
For u1 there are m− (2n−3) vertices of the type ui at a distance 4 from it. For each such vertex
ui there are two paths passing through v1 of length 4. Hence contribute 4×2× (m−2n+3) to
the transit of v.

v1

u1 v2

u2

u2 v3

Figure 2. v1 and adjacent vertices

Therefore

T(v)= (n−1)(n−2)+ (n−2)(n−1)×3+4×2× (m−2n+3)

= 8n2 −32(n−1).

2. Computing T(ui)
Now consider u1 (refer Figure 2).
The path connecting v1 to v2 of length 2 passes through u1.
All the (n−2) vertices of the type ui adjacent to v2 passes through u1 to reach v1. All these
paths are of length 3. Hence add 2×3× (n−2) to transit of u1.
Therefore

T(u1)= 6n−10.

Therefore

TI(G)=∑
i

T(vi)+
∑

i
T(ui)

= n(11n2 −40n+37).

6. Conclusion
In computational graph theory, the operations on graphs played an important role. Subdivision is
an important aspect in graph theory which allows one to calculate properties of some complicated
graphs in terms of some easier graphs. In this paper we have found transit index of subdivision
graphs for certain important graphs.
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