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1. Introduction
In the recent literature, there is a growing interest to solve Sturm-Liouville problem to
find eigenvalues and eigenfunctions corresponding linear system. The reader is referred to
[3,8,9,13,15–17] for an overview of the recent work in this area. In the beginning of the 1980s,
[11,12,14,20] proposed a new and fruitful method (hereafter called the Green’s function) for
solving linear (algebraic, differential, partial differential, integral, etc.) equations. We shown
that this method yields a rapid convergence of the solutions series to linear and nonlinear
deterministic and stochastic equations. The main objective of this paper is to apply the Sturm-
Liouville problem with Green’s function to linear system. The Green’s function is powerful tool
of mathematical method which used in solving linear non-homogenous differential equation
(ordinary and partial).
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In this paper, we introduction to ordinary and partial differential equations acquaints
with equations describing the more important theories of classical physics [5], and introduce
some of the standard ways for solving those differential equations which have been derived:
Eigenfunctions, Fourier series and integrals [25], Green’s theorem, particular solutions in
coordinates, asymptotic expansions, change of variables, conformal mapping, singularities, and
transition to integral equations [10].

Sturm-Liouville Problems
In this paper, we will study the Sturm-Liouville problem, a differential equation of the form

− d
dx

(p(x)du dx)+ q(x)u =λu with u(a)= u(b)= 0 ,

where p and q are given functions on the interval [a,b]. The values of λ for which the problem
has a non-trivial solution are called eigenvalues of the Sturm-Liouville problem and the
corresponding solutions u are called eigenfunctions. An eigenvalue is called simple, if the
corresponding eigenspace is one-dimensional. The main conclusion of this paper is the following
theorem:

Theorem 1.1. If p ∈ C1[a,b], q ∈ C0[a,b], p(x)> 0 and q(x)≥ 0 for all x ∈ [a,b], then
(i) eigenvalues of the Sturm-Liouville problem are all simple,

(ii) they form an unbounded monotone sequence,

(iii) eigenfunctions of the Sturm-Liouville problem form an orthonormal basis in L2(a,b).

Proof. Since A : L2(a,b) → L2(a,b) is compact and self-adjoint. If u is an eigenfunction of A,
then Lemma 3.1 implies that u ∈ C2[a,b] and u(a)= u(b)= 0. Moreover, Lemma 3.3 and Au =µu
with µ 6= 0 imply that Lu = λu with λ = µ−1. Consequently, u is also an eigenfunction of the
Sturm-Liouville problem.

Then, suppose that u is an eigenfunction of the Sturm-Liouville problem and ũ is another
eigenfunction which corresponds to the same eigenvalue. Both eigenfunctions satisfy the linear
ordinary differential equation L(u)=λu and u(a)= ũ(a)= 0. Then ũ(x)= u(x)ũ′(a)/u′(a). Thus,
the eigenspace is one-dimensional.

For a function u ∈ C2[a,b] we define

L(u)=− d
dx

(
p(x)

du
dx

)
+ q(x)u .

Let L0 : D0 → C0[a,b] be the restriction of L onto the space

D0 := {u ∈ C2[a,b] : u(a)= u(b)= 0} .

We can equip both D0 and C0[a,b] with the L2 norm. Integrating by parts, we can check that
L0 is symmetric, i.e., (u,L0v)= (L0u,v) for all u,v ∈ D0. On the other hand, considering L0 on
the sequence un = n−1 sin(πn(x−a)/(b−a)), we can check that L0 is not bounded. We have not
studied unbounded operators.

Eigenfunctions of the Sturm-Liouville problem are eigenvectors of L0. The Sturm-Liouville
theorem implies that eigenfunctions of A form an orthonormal basis in L2(a,b). Moreover,
we will see that all eigenfunctions of A belong to D0 and, consequently, L0 have the same
eigenfunctions as A.
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2. Construction of the Green’s Function
Thus, we are interested in solving the following first order differential n-dimensional linear
system

x′(t)= A(t)x(t)+ f (t), t ∈ J = [a,b] (2.1)

together with the two-point boundary value conditions

Bx(a)+Cx(b)= h . (2.2)

Here, n is a positive integer, a,b ∈R, a < b, A : J → Mn×n is a L1(J, Mn×n) function, f : J →Rn

belongs to L1(J,Rn), B,C ∈ Mn×n and h ∈Rn have constants coefficients, and x : J →Rn belongs
to the set ℘(J,Rn). As usual, we denote by L1(J,Rn) and L1(J, Mn×n) the set of all Lebesgue
integrable functions on J and by ℘(J,Rn) the set of absolutely continuous functions on J .

Now, we study the structure of the set of solutions of the homogeneous problem ( f ≡ 0,h ≡ 0).

x′(t)= A(t)x(t), t ∈ J, Bx(a)+Cx(b)= 0 . (2.3)

Let W = {x ∈℘(J,Rn);Bx(a)+Cx(b)= 0} and define the linear operator

L : x ∈W → Lx = x′− Ax ∈ L1(J,Rn). (2.4)

As a consequence, the set of solutions of equation (2.3) coincides with the kernel of operator L.
So, we have that the set of solutions of equation (2.3) is a linear space of dimension k ≤ n.

Theorem 2.1. x is a solution of equation (2.1)-(2.2) if and only if x = y+ p, where y is a solution
of the homogeneous equation (2.3) and p is a solution of (2.1)-(2.2).

Proof. Let y be a solution of (2.3) and p be a solution of equation (2.1)-(2.2). As a consequence

y′(t)+ p′(t)= A(t)y(t)+ A(t)p(t)+ f (t)= A(t)(y(t)+ p(t))+ f (t)

and x ≡ y+ p fulfills equation (2.1) on J .
On the other hand,

B(y+ p)(a)+C(y+ p)(b)= Bp(a)+Cp(b)= h

and x is a solution of (2.1)-(2.2).
Consider, now x1 and x2, two solutions of equation (2.1)-(2.2). As a consequence

x′1(t)− x′2(t)= A(t)(x1(t)− x2(t)), for all t ∈ J

and

B(x1(a)− x2(a))+C(x2(b)− x1(b))= h−h = 0 .

That is, the difference of two solutions of equation (2.1)-(2.2) is a solution of the homogeneous
equation (2.3).

Let ϕ : J → Mn×n be a fundamental matrix related to equation (2.3), then the solution of the
linear equation:

ϕ′(t)= A(t)ϕ(t), t ∈ J . (2.5)

We arrive at the following existence and uniqueness result for equation (2.1)-(2.2).

Theorem 2.2. Equations (2.1)-(2.2) have a unique solution x ∈℘(J,Rn) if and only if

det(Mϕ) 6= 0 (2.6)
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with ϕ any fundamental matrix of system (2.3) and Mϕ ≡ Bϕ(a)+Cϕ(b).

Proof. From the variation of constants formula [18, Corollary 2.1], we have that x ∈℘(J,Rn) is
a solution of equation (2.1) if and only if there exists λ ∈Rn such that

x(t)=ϕ(t)λ+ϕ(t)
∫ t

a
ϕ−1(s) f (s)ds, t ∈ J . (2.7)

Obviously, function x satisfies the boundary value condition (2.2) if and only if λ solves the
following algebraic equation

Mϕλ≡ (Bϕ(a)+Cϕ(b))λ= h−Cϕ(b)
∫ b

a
ϕ−1(s) f (s)ds . (2.8)

It is clear that this equation has a unique solution if and only if matrix Mϕ is invertible.

Remark 2.1. Notice that when condition (2.6) holds, the expression of the unique solution of
equation (2.1)-(2.2) is given by:

x(t)=ϕ(t)M−1
ϕ

(
h−Cϕ(b)

∫ b

a
ϕ−1(s) f (x)ds

)
+ϕ(t)

∫ t

a
ϕ−1(s) f (s)ds .

Remark 2.2. It is important to remark that, to ensure the uniqueness of solution of equation
(2.1)-(2.2) for any f in L1(J,Rn) and h ∈Rn, the involved boundary conditions (2.2) must define
n linearly independent conditions. Thus, we obtain the following necessary condition

rank(B | C)= n . (2.9)

Having in mind the previous remark, we are interested in obtaining a characterization of
the uniqueness of solutions for equation (2.1)-(2.2) that involves condition (2.9). To this end, we
must take into account that the general solution of the differential equation (2.1) is given by
(2.7), or, alternatively, by

x(t)=ϕ(t)λ+ϕ(t)
∫ t

t0

ϕ−1(s) f (s)ds, λ ∈Rn , (2.10)

where t0 ∈ J can be chosen as we please.
For later purposes, it will be convenient to fix t0 ∈ (a,b), and then the solution x given by

(10) is a solution of (2.1)-(2.2) if and only if λ ∈Rn solves the algebraic system

Mϕλ= h−Bϕ(a)
∫ a

t0

ϕ−1(s) f (s)ds−Cϕ(b)
∫ b

t0

ϕ−1(s) f (s)ds (2.11)

where Mϕ is given in Theorem 2.2.
Next, we present the following characterization of the uniqueness of solutions of equations

(2.1)-(2.2) by means of the condition (2.9).
Notice that, considering χ(0,t), the indicator function in (0, t), equation (2.8) can be rewritten

as follows:

x(t)=ϕ(t)M−1
ϕ

(
h−Cϕ(b)

∫ b

a
ϕ−1(s) f (s)ds

)
+ϕ(t)

∫ b

a
ϕ−1(s)χ(0, t)(s) f (s)ds,

or, which is the same,

x(t)=
∫ b

a
G(t, s) f (s)ds+ϕ(t)M−1

ϕ h (2.12)
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with

G(t, s)=
{
−ϕ(t)M−1

ϕ Cϕ(b)ϕ−1(s)+,ϕ(t)ϕ−1(s) if a ≤ s < t ≤ b,
−ϕ(t)M−1

ϕ Cϕ(b)ϕ−1(s), if a ≤ s < t ≤ b.
(2.13)

The function G : (J × J)\{(t, t), t ∈ J} → Mn×n is called the Green’s function related to
problem (2.3).

3. Differential Equation Lu = f
Lemma 3.1. If both u1 and u2 satisfy the equation Lu = 0, i.e.

−(pu′)t + qu = 0 (3.1)

then

Wp(u1,u2)= p(u′
1u2 −u1u′

2)

is constant. Moreover, if Wp(u1,u2) 6= 0 then u1 and u2 are linearly independent.

Proof. Differentiating Wp with respect to x and using pu′′ =−p′u′+ qu we obtain

W ′
p = p′(u′

1u2 −u1u′
2)+ p(u′′

1u2 −u1u′′
2)

= p′(u′
1u2 −u1u′

2)+ ((−p′u′
1 + qu1)u2 − (−p′ut2 + qu2)u1)= 0 .

Therefore Wp is constant.
Suppose u1 and u2 are linearly dependent, then there are constants α1, α2 such that

α1u1 +α2u2 = 0 and at least one of the constants does not vanish. Suppose α2 6= 0 (otherwise
swap u1 and u2). Then u2 =−α1u1/α2 and u′

2 =−α1u′
1/α2. Substituting these equalities into

Wp(u1,u2) we see that Wp(u1,u2)= 0. Therefore, Wp(u1,u2) 6= 0 implies that u1,u2 are linearly
independent.

Lemma 3.2. The equation (3.1) has two linearly independent solutions, u1,u2 ∈ C2[a,b] such
that u1(a)= u2(b)= 0.

Proof. Let u1, u2 be solutions of the Cauchy problems

− (pu′
1)′+ qu1 = 0, u1(a)= 0, u′

1(a)= 1,

− (pu′
2)′+ qu2 = 0, u2(b)= 0, u′

2(b)= 1.

According to the theory of linear ordinary differential equations u1 and u2 exist, belong to
C2[a,b] and are unique.

Moreover, u1 and u2 are linearly independent. Indeed, suppose Lu = 0 for some u ∈ C2[a,b]
and u(a)= u(b)= 0. Then

0= (Lu,u)=−
∫ b

a
(pu′)′u+ qu2dx (using definition of L)

= p(x)u′(x)u(x)
∣∣b
a +

∫ b

a
p(u′)2 + qu2dx (using integration by parts)

=
∫ b

a
p(u′)2 + qu2dx .

Since p > 0 on [a,b], we conclude that u′ ≡ 0. Then u(a) = u(b) = 0 implies u(x) = 0 for all
x ∈ [a,b].
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As u2(b)= 0 and u2 is not identically zero, u2(a) 6= 0 and thus

Wp (u1,u2)= p(a)
(
u′

1(a)u2(a)−u1(a)u′
2(a)

)= p(a)u′
1(a)u2(a) 6= 0 .

Therefore, u1,u2 are linearly independent by Lemma 3.1.

Lemma 3.3. If u1 and u2 are linearly independent solutions of the equation Lu = 0 such that
u1(a)= u2(b)= 0 and

G(x, y)= 1
Wp (u1,u2)

{
u1(x)u2(y), a ≤ x < y≤ b,
u1(y)u2(x), a ≤ y≤ x ≤ b,

then for any f ∈ C0[a,b] the function

u(x)=
∫ b

a
G(x, y) f (y)d y

belongs to C2[a,b] satisfies the equation Lu = f and the boundary conditions u(a)= u(b)= 0.

Proof. The statement is proved by a direct substitution of

u(x)= u2(x)
Wp (u1,u2)

∫ x

a
u1(y) f (y)d y+ u1(x)

Wp (u1,u2)

∫ b

x
u2(y) f (y)d y

into the differential equation. Moreover, u1(a)= u2(b)= 0 implies u(a)= u(b)= 0.

4. Integral Operator
Lemma 4.1. The operator A : L2(a,b)→ L2(a,b) defined by

(A f )(x)=
∫ b

a
G(x, y) f (y)dy

is compact and self-adjoint. Moreover, Range(A) is dense in L2(a,b), ker A = {0}, and all
eigenfunctions, Au =µu, belong to C2[a,b] and satisfy u(a)= u(b)= 0.

Proof. Since the kernel G is continuous, the operator A is compact.
Moreover, G is real and symmetric and so A is self-adjoint. Lemma 3.3 implies the range

of A contains all functions from C2[a,b] such that u(a)= u(b)= 0. This set is dense in L2(a,b).
Now, suppose Au = 0 for some u ∈ L2[a,b]. Then for any v ∈ L2

0= (Au,v)= (u, Av),

which implies u = 0 because u is orthogonal to a dense set (the range of A). Thus ker(A)= {0}.
Finally, let u ∈ L2[a,b] be an eigenfunction of A, i.e., Au =µu. Since ker(A)= {0}, µ 6= 0. So

we can write u =µ−1Au, which takes the form of the following integral equation:

u(x)=µ−1
∫ b

a
G(x, y)u(y)d y .

Obviously,

|G(x, y)u(y)| ≤ ‖G‖∞|u(y)|, for all x, y ∈ [a,b].

Since G is continuous, the dominated convergence theorem implies that we can swap a limit
x → x0 and the integration, and thus the integral in the right-hand-side is a continuous
function of x. Consequently, u is continuous. For a continuous u the integral is in C2[a,b]
and satisfies the boundary conditions u(a)= u(b)= 0 due to Lemma 3.3. Thus u ∈ D0. Therefore,
the eigenfunctions of A belong to D0.
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Example 4.1 (An application for Fourier series). Consider the Strum-Liouville problem

−d2u
dx2 =λu, u(0)= u(1)= 0

It corresponds to the choice p = 1, q = 0. Theorem 1.1 implies that the normalized eigenfunctions
of this problem form an orthonormal basis in L2(0,1). In this example, the eigenfunctions are
easy to find:{

1p
2

sinkπx : k ∈ N
}

.

Consequently, any function f ∈ L2(0,1) can be written in the form

f (x)=
∞∑

k=1
αk sinkπx ,

where

αk =
1
2

∫ 1

0
f (x)sinkπx dx .

The series converges in the L2 norm.

5. Green’s Function Solution to the Laplace and Poisson Equations
Laplace’s equation 5.1. The two- and three-dimensional Laplace and Poisson equations are
given by

∇2u = 0 ,

∇2u =− f , (5.1)

respectively. We consider the Poisson equation first [15,20]. The general approach is identical to
that used to derive a solution to the inhomogeneous Helmholtz equation. Thus, working in three
dimensions and defining the Green’s function to be the solution of

∇2 g (~r |~r0)=−δ3 (~r−~r0)

from equation (5.1) we obtain the following result:

u =
∮

s
(g∇u−u∇g) · n̂d2~r+

∫
v

gf d3~r

where we have used Green’s theorem to obtain the surface integral on the right-hand side.
The problem now is to find the Green’s function for this problem. Clearly, since the solution to
the equation

(~r2 +k2)g =−δ3(~r−~r0)

is

g(~r |~r0,k)= 1
4π|~r−~r0|

exp(ik|~r−~r0|)
we should expect the Green’s function for the three-dimensional Poisson equation (and the Laplace
equation) to be of the form

g (~r |~r0)= 1
4π |~r−~r0|

. (5.2)
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Thus, we obtain the following fundamental result:

V 2
(

1
4πR

)
=−δ3(R).

With homogeneous boundary conditions, the solution to the Poisson equation is

u(~r0)= 1
4π

∫
v

f (~r)
|~r−~r0|

d3~r .

In two dimensions the solution is of the same form, but with a Green’s function given by

g(~r |~r0)= 1
2π

ln(|~r−~r0|) .

The general solution to Laplace’s equation is

u =
∮

s
(g∇u−u∇g) · n̂d2~r

with g given by equation (5.2).

Poisson’s equation 5.1. Poisson’s equation in ID (Infinite Domain) with homogeneous BCs
serves to exemplify the general case. The operator in this example is L =−d2/dx2. For simplicity,
we take x1 = 0, x2 = a. The homogeneous solutions Ψ defined by (2.2) can be identified by
inspection:

Φ1 = x and Φ2 = (a− x).

Then

W ≡Φ1Φ2 −Φ1Φ2 = x(−1)−1(a− x)=−a 6= 0.

Consequently g becomes

g(x | ξ)=−
{

H(ζ− x) · (a− x) · x
a

+ H(x−ξ) · (a− x)
a

}
=−x<(a− x)> .

The end-result, now reads

Ψ(x)= 1
a

{
x
∫ a

x
f (ξ)(a−ξ)dξ+ (a− x)

∫ x

x0
f (ξ)ζdξ

}
.

6. Green’s Function Solution to the Laplace Equations and
Fourier Series

Consider the equation
δu
δt

−a2δ
2u
δx2 =− f (x, t) (6.1)

subject to boundary conditions |u(x, t)| <∞ as |x| <∞ and initial condition.
Suppose that G(x, t,ξ,τ) be the Green’s function, then

δG
δt

−a2δ
2G
δx2 = δ(x−ξ)δ(t−τ), −∞< x, ξ<∞, 0< t (6.2)

subject to the boundary condition G(x, t,ξ,τ) < ∞ as |x| < ∞, and the initial condition
G(x,0,ξ,τ)= 0. Let us find G(x, t,ξ,τ).

We begin by taking the Laplace transform of (6.1) with respect to t, we have

sg(x, s,ξ,τ)− g(x,0,ξ,τ)−a2 d2 g
dx2 = δ(x−ξ)e−sz .
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So
d2 g
dx2 − s

a2 g = δ− (x−ξ)e−sτ , (6.3)

where g(x, s,ξ,τ) the Laplace transform of G(x, t,ξ,τ).
Now by taking the Fourier transform of (6.3) with respect to x, so that

(−ik)2Ḡ(k, s,ξ,τ)− s
a2 Ḡ(k, s,ξ,τ)=− e−ikξ−sτ

a2 ,

k2Ḡ(k, s,ξ,τ)+ s
a2 Ḡ(k, s,ξ,τ)= e−ikξ−sτ

a2 ,

where Ḡ(k, s,ξ,τ) is Fourier transform of g(x, s,ξ,τ), now let s
a2 = b2

(k2 +b2)Ḡ(k, s,ξ,τ)= e−ikξ−sτ

a2 . (6.4)

To find g(x, s,ξ,τ), we use the inversion integral

g(x, s,ξ,τ)= e−sτ

2πa2

∫ ∞

−∞

(
e(x−ξ)

k2 +b2

)
dk . (6.5)

Transforming (6.4) into a closed contour, we evaluate it by the residue theorem and find that

g(x, s,ξ,τ)= e−sτ

2πa2

∫ ∞

−∞

(
ei(x−ξ)

(k+ ib)(k− ib)

)
dk ,

g(x, s,ξ,τ)= e−sτ

2τa2

∑
bi

at k =±ib then∑
bi = 1

2ib
(e−|x−ξ|b − e(x−ξ))= 1

2ib
e−|x−ξ|b

therefore

g(x, s,ξ,τ)= e−sτ

2a2b
e−|x−ξ| = 1

2ib
e−|x−ξ|b− sr .

Now substituting for b =
p

s
a , we have

g(x, s,ξ,τ)=
exp

(
−|x−ξ|

√
s
a − sr

)
2a

p
s

. (6.6)

Taking Laplace transform of (6.7) we obtain

G(x, s,ξ,τ)= H(t−τ)√
aπa2(t−τ)

exp
( −(x−ξ)2

aa2(t−τ)

)
. (6.7)
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