Communications in Mathematics and Applications Volume 4 (2013), Number 1, pp. 1–10 © RGN Publications

Weierstrass Representation for Minimal Surfaces into BCV-Spaces

M. Koivogui, L. Todjihounde, and M. Kourouma

Abstract Bianchi-Cartan-Vranceanu spaces (BCV-spaces) are some 3-dimensional homogeneous manifolds equiped with a metric depending on 2 parameters κ and τ , and whose isometries groups are of dimension four. In this paper, we describe a Weierstrass-type representation formula for simply connected minimal surfaces immersed into BCV-spaces.

1. Introduction

The topic of Weierstrass representations for minimal surfaces has a long and rich history. It has been extensively investigated since the initial works of Weierstrass [1] and Enneper [2] in the nineteenth century on systems inducing minimal surfaces in \mathbb{R}^3 . There exist a great number of applications of Weierstrass representations for minimal surfaces in various domains of Mathematics, Physics, Chemistry and Biology [10].

By using the standard harmonic maps equation, Mercuri, Montaldo and Piu gave in [3] a Weierstrass-type representation formula for simply connected minimal surfaces into Riemannian manifolds and they applied the obtained general structure to the case of 3-dimensional Lie groups endowed with left invariant metrics. From this setting, they discussed then some examples of minimal surfaces both in 3-dimensional Heisenberg group \mathbb{H}_3 and in $\mathbb{H}^2 \times \mathbb{R}$ where \mathbb{H}^2 is the 2-dimensional hyperbolic space.

Let κ and τ be two real numbers and $D_{\kappa,\tau}$ be the domain of \mathbb{R}^3 defined by

$$D_{\kappa,\tau} = \left\{ (x, y, z) \in \mathbb{R}^3 / 1 + \frac{\kappa}{4} (x^2 + y^2) > 0 \right\}.$$

²⁰¹⁰ Mathematics Subject Classification. 53A10.

Key words and phrases. Weierstrass representation; Minimal surfaces, BCV-spaces.

By considering on $D_{\kappa,\tau}$ the 2-parameters family of homogeneous Riemannian metrics:

$$ds_{\kappa,\tau}^{2} = \frac{dx^{2} + dy^{2}}{(1 + \frac{\kappa}{4}(x^{2} + y^{2}))^{2}} + \left(dz + \tau \frac{ydx - xdy}{1 + \frac{\kappa}{4}(x^{2} + y^{2})}\right)^{2}, \quad \tau, \kappa \in \mathbb{R},$$

we obtain a 2-parameters family of 3-dimensional Riemannian manifolds $(D_{\kappa,\tau}, ds_{\kappa,\tau}^2)$, also denoted by $M^3(\kappa, \tau)$, called *Bianchi-Cartan-Vranceanu spaces* (BCV-spaces, in short).

The class of BCV-spaces contains all the Riemannian manifolds with 4-dimensional or 6-dimensional isometries groups except the hyperbolic space forms. The BCV-spaces provide model spaces of Thurston's 3-dimensional geometries (see [12]). In theoretical cosmology, the metrics on BCV-spaces are known as the Bianchi-Kantowski-Sachs type metrics used to construct some homogeneous space-times (see [11]). In these last fifteen years, many differential geometers investigate curves and surfaces with some special properties in BCVspaces [15, 16]. Surfaces with parallel fundamental forms in BCV-spaces are classified by Belkhelfa, Dillen and Inoguchi in [13], and more generally surfaces with higher order parallel second fundamental forms in BCV-spaces have been classified by J. Van der Veken [14]. In [17] and [18], the authors studied biharmonic curves in BCV-spaces and they obtained interesting classification results. A Weierstrass representation is a description of the surface by some holomorphic functions. D.A. Berdinski and I.A. Taimanov obtained in [9] a Weierstrass type representation for minimal surfaces into BCV-spaces in terms of spinors and Dirac operators.

In this paper, we describe a Weierstrass-type representation formula for minimal surfaces into BCV-spaces in terms of two complex-functions satisfying some integral conditions and we extend thus the results obtained in [3] and [4].

2. Preliminaries

Let (M^n, g) be an *n*-dimensional Riemannian manifold and $f : \Sigma \subset M \to M$ be a minimal conformal immersion, where Σ is a Riemann surface. The pull-back bundle $f^*(TM)$ has a metric and compatible connection, the pull-back connection induced by the Riemannian metric and the Levi-Civita connection of *M*. Consider the complexified bundle $\mathbb{E} = f^*(TM) \otimes \mathbb{C}$.

Let (u, v) be a local coordinates on Σ , z = u + iv the local conformal complex parameter and (x_1, \ldots, x_n) be a system of local coordinates in a neighborhood Uof M such that $U \cap f(\Sigma) \neq \emptyset$. The pull-back connection extends to a complex connection on \mathbb{E} and it is well known that \mathbb{E} has a unique holomorphic structure such that a section $\phi : \Sigma \to \mathbb{E}$ is holomorphic if and only if

$$\widetilde{\nabla}_{\frac{\partial}{\partial \sigma}}\phi = 0, \tag{2.1}$$

where $\widetilde{\nabla}$ is the pull-back connection on Σ .

The induced metric on Σ is

$$ds^2 = \lambda^2 (du^2 + dv^2) = \lambda^2 |dz|^2,$$

and the beltrami-Laplace operator on Σ , with respect to the induced metric ds^2 is given by

$$\Delta = \lambda^2 \left(\frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2} \right).$$

We recall that $f : \Sigma \to M$ is harmonic if and only if its tension field $\tau(f) = trace \nabla df$ vanishes and for conformal immersions, harmonicity and minimality are equivalent.

Let us consider

$$\phi = \frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial u} - i \frac{\partial f}{\partial v} \right).$$

By putting

$$\phi = \sum_{j=1}^n \phi_j \frac{\partial}{\partial x_j}$$

where ϕ_j are some complex-valued functions defined on Σ , the tension field $\tau(f)$ of f can be written as:

$$\tau(f) = 4\lambda^{-2} \sum_{i} \left\{ \frac{\partial \phi_{i}}{\partial \bar{z}} + \Gamma^{i}_{jk} \bar{\phi}_{j} \phi_{k} \right\} \frac{\partial}{\partial x_{i}}$$

where Γ_{jk}^{i} are the Christoffel symbols of *M*. The section ϕ is then holomorphic if and only if

$$\widetilde{\nabla}_{\frac{\partial}{\partial \tilde{z}}}\left(\sum_{i=1}^{n}\phi_{i}\frac{\partial}{\partial x_{i}}\right) = \sum_{j}\left\{\frac{\partial\phi_{i}}{\partial \tilde{z}} + \sum_{k,j}\Gamma_{jk}^{i}\bar{\phi}_{j}\phi_{k}\right\}\frac{\partial}{\partial x_{i}} = 0;$$

or equivalently if and only if

$$\frac{\partial \phi_i}{\partial \bar{z}} + \sum_{k,j} \Gamma^i_{jk} \bar{\phi}_j \phi_k = 0, \quad i = 1, 2, \dots, n.$$
(2.2)

We have then

$$4\lambda^{-2}(\widetilde{\nabla}_{\frac{\partial}{\partial z}}\phi) = \tau(f).$$

Thus $f : \Sigma \to M$ is harmonic if and only if $\phi = \frac{\partial f}{\partial z}$ is a holomorphic section of \mathbb{E} . Relation (2.2) is a system of first order differential equations in the ϕ_i , it can be written as:

$$\frac{\partial \phi_i}{\partial \bar{z}} + 2\sum_{j>k} \Gamma^i_{jk} \operatorname{Re}(\bar{\phi}_j \phi_k) + \sum_j \Gamma^i_{jj} |\phi_j|^2 = 0, \quad i = 1, \dots, n.$$

This implies that $\frac{\partial \phi_i}{\partial z} \in \mathbb{R}$, and ensures that (locally) the 1-forms $\phi_i dz$ do not have real periods as it has been mentioned in [3]. Therefore we have the following:

Proposition 2.1 ([4]). Let (M, g) be a Riemannian manifold and (x_1, \ldots, x_n) local coordinates. Let ϕ_j , $j = 1, \ldots, n$, be complex-valued functions in an open simply connected domain $\Omega \subset \mathbb{C}$ which are solutions of (2.2). Then the map

$$f_j(u,v) = 2\operatorname{Re}\left(\int_{z_0}^z \phi_j dz\right)$$
(2.3)

is well defined and determines a minimal conformal immersion if and only if the following conditions are satisfied:

(i) $\sum_{j,k=1}^{n} g_{ij}\phi_{j}\bar{\phi}_{k} \neq 0,$ (ii) $\sum_{j,k=1}^{n} g_{ij}\phi_{j}\phi_{k} = 0.$

In [3], the authors proved that if M is a Lie group then the system (2.2) has a solution. In the next section we describe a Weierstrass representation for minimal surfaces into 3-dimensional manifold.

3. Weierstrass Representation in 3-dimensional Manifolds

Let M^3 be a 3-dimensional manifold, endowed with an analytic Riemannian metric g. We consider M^3 as a single chart and (x^1, x^2, x^3) a system of coordinates on M^3 . By the Gram-Schmidt orthonormalization, we have a basis of vector fields E_i , i = 1, 2, 3, defined by

$$E_{1} = \frac{1}{A} \left\{ \frac{\partial}{\partial x^{1}} - \frac{1}{B^{2}} (g_{12} - g^{33} g_{23} g_{13}) \frac{\partial}{\partial x^{2}} + g^{33} \left(\frac{1}{B^{2}} (g_{12} - g^{33} g_{23} g_{13}) g_{23} - g_{13} \right) \frac{\partial}{\partial x^{3}} \right\},$$

$$E_{2} = \frac{1}{B} \left\{ \frac{\partial}{\partial x^{2}} - g^{33} g_{23} \frac{\partial}{\partial x^{3}} \right\},$$

$$E_{3} = \frac{1}{\sqrt{g_{33}}} \frac{\partial}{\partial x^{3}}.$$
(3.1)

where

$$g_{ij} = g\left(\frac{\partial}{\partial x^{i}}; \frac{\partial}{\partial x^{j}}\right), \quad g^{ij} = [g_{ij}]^{-1},$$

$$A = \sqrt{g_{11} - \frac{1}{B^{2}}(g_{12} - g^{33}g_{13}g_{23})^{2} - g^{33}(g_{13})^{2}},$$

$$B = \sqrt{g_{22} - g^{33}(g_{23})^{2}}.$$

In some open set $\Omega \subset \Sigma$ the section $\phi = \frac{\partial f}{\partial z} \in \Gamma(f^*(TM) \otimes \mathbb{C})$ can be decomposed with respect to the coordinates vector fields as

$$\phi = \sum_{i=1}^{3} \phi_i \frac{\partial}{\partial x^i} = \sum_{i=1}^{3} \psi_i E_i, \qquad (3.2)$$

for some open complex functions ϕ_i , $\psi_i : \Omega \to \mathbb{C}$. Moreover, there exists an invertible matrix $Mat = (m_{ij})_{i,j=1,2,3}$ with the functions entries $m_{ij} : f(\Omega) \to \mathbb{R}$, i, j = 1, 2, 3, satisfying

$$\phi_i = \sum_j m_{ij} \psi_j,$$

where

$$Mat = \begin{bmatrix} A^{-1} & 0 & 0 \\ -(g_{12} - g^{33}g_{23}g_{13})(AB^2)^{-1} & B^{-1} & 0 \\ (A)^{-1}[g^{33}((B^2)^{-1}(g_{12} - g^{33}g_{23}g_{13})g_{23} - g_{13})] & -g^{33}g_{23}B^{-1} & \sqrt{g^{33}} \end{bmatrix}.$$
(3.3)

By (3.2), we have

$$\widetilde{\nabla}_{\frac{\partial}{\partial \tilde{z}}}\left(\sum_{i}\psi_{i}E_{i}\right)=\sum_{i}\left\{\frac{\partial\psi_{i}}{\partial \tilde{z}}E_{i}+\sum_{j,k}\psi_{k}\bar{\psi}_{j}g(\nabla_{E_{j}}E_{k},E_{i})E_{i}\right\}.$$

This means that the section ϕ is holomorphic if and only if

$$\frac{\partial \psi_i}{\partial \bar{z}} + \sum_{j,k} \psi_k \bar{\psi}_j g(\nabla_{E_j} E_k, E_i) = 0, \quad i = 1, 2, 3.$$
(3.4)

Theorem 3.1. Let ψ_i , i = 1, 2, 3 be complex-valued functions defined in a simply connected domain $\Omega \subset \mathbb{C}$ such as the following conditions are satisfied:

(i)
$$\sum_{i=1}^{n} \psi_i \tilde{\psi}_i \neq 0$$
,
(ii) $\sum_{i=1}^{n} \psi_i^2 = 0$,
(iii) ψ_i are solutions of (3.4).
Then the map $f := (x^1, x^2, x^3) : \Omega \to (M^3, g)$, defined by
 $x^1(p) = 2 \operatorname{Re} \int_{p_0}^{p} \left(\sqrt{(g_{11} - (g_{22} - g^{33}(g_{23})^2)^{-1}(g_{12} - g^{33}g_{13}g_{23})^2 - g^{33}(g_{13})^2} \right)^{-1} \psi_1 d\rho$,
 $x^2(p) = 2 \operatorname{Re} \int_{p_0}^{p} -(g_{22} - g^{33}(g_{23})^2)^{-1}(g_{12} - g_{13}g_{23}g^{33})\psi_1$
 $+ \left(\sqrt{g_{22} - g^{33}(g_{23})^2} \right)^{-1} \psi_2 d\rho$,
 $x^3(p) = 2 \operatorname{Re} \int_{p_0}^{p} [(g_{22} - g^{33}(g_{23})^2)^{-1}(g_{23}g^{33}(g_{12} - g_{13}g_{23}g^{33}) - g^{33}g_{13}]\psi_1$
 $- \left(\sqrt{g_{22} - g^{33}(g_{23})^2} \right)^{-1} g_{23}g^{33}\psi_2 + \sqrt{g^{33}}\psi_3 d\rho$, (3.5)

is a conformal minimal immersion.

Proof. Using (3.1) and (3.2), we get

$$\phi_{1} = \left(\sqrt{(g_{11} - (g_{22} - g^{33}(g_{23})^{2})^{-1}(g_{12} - g^{33}g_{13}g_{23})^{2} - g^{33}(g_{13})^{2}}\right)^{-1}\psi_{1},$$

$$\phi_{2} = -(g_{22} - g^{33}(g_{23})^{2})^{-1}(g_{12} - g_{13}g_{23}g^{33})\psi_{1} + i\left(\sqrt{g_{22} - g^{33}(g_{23})^{2}}\right)^{-1}\psi_{2},$$

$$\phi_{3} = (g_{22} - g^{33}(g_{23})^{2})^{-1}(g_{23}g^{33}(g_{12} - g_{13}g_{23}g^{33}) - g^{33}g_{13}]\psi_{1}$$

$$-\left(\sqrt{g_{22} - g^{33}(g_{23})^{2}}\right)^{-1}g_{23}g^{33}\psi_{2} + 2\sqrt{g^{33}}\psi_{3}.$$

comproposition 2.1, the theorem is proved.

From proposition 2.1, the theorem is proved.

Remark 3.2. If $M = \mathbb{R}^3$ and g the flat metric on M, we have a Weierstrass representation for minimal surfaces in \mathbb{R}^3 , see [4].

Since the parameter z is conformal, we have

$$\psi_1^2 + \psi_2^2 + \psi_3^2 = 0. \tag{3.6}$$

From (3.6) we have

$$(\psi_1 - i\psi_2)(\psi_1 + i\psi_2) = -\psi_3^2$$
,

which suggests the definition of two new complex functions

$$G := \sqrt{\frac{1}{2}(\psi_1 - i\psi_2)} , \qquad H := \sqrt{-\frac{1}{2}(\psi_1 + i\psi_2)} .$$
(3.7)

The functions G and H are single-valued complex functions which satisfy

$$\psi_1 = G^2 - H^2, \qquad \psi_2 = i(G^2 + H^2), \qquad \psi_3 = 2GH.$$
 (3.8)

In the following, we give a Weierstrass representation for minimal surfaces into BCV-spaces.

4. Weierstrass Representation in BCV-space $M^3(\kappa, \tau)$

Let κ and τ be two real numbers, with $\tau \ge 0$. Bianchi-Cartan-Vranceanu space (BCV-space) $M^3(\kappa, \tau)$ is defined as the set

$$D_{\kappa,\tau} = \left\{ (x, y, z) \in \mathbb{R}^3 / 1 + \frac{\kappa}{4} (x^2 + y^2) > 0 \right\}$$

endowed with the metric

$$ds_{\kappa,\tau}^{2} = \frac{dx^{2} + dy^{2}}{(1 + \frac{\kappa}{4}(x^{2} + y^{2}))^{2}} + \left(dz + \tau \frac{ydx - xdy}{1 + \frac{\kappa}{4}(x^{2} + y^{2})}\right)^{2}.$$
(4.1)

It was Cartan [8] who obtained this family of spaces by classifying of threedimensional Riemannian manifolds with four-dimensional isometry group. They also appeared in the work L. Bianchi [5, 6], and G. Vranceanu [7]. The complete classification of BCV-spaces is as follows:

- if $\kappa = \tau = 0$, then $M^3(\kappa, \tau) \cong \mathbb{R}^3$;
- if $\kappa = 4\tau^2 \neq 0$, then $M^3(\kappa, \tau) \cong \mathbb{S}^3(\frac{\kappa}{4}) \setminus \{\infty\}$;

- if $\kappa > 0$ and $\tau = 0$, then $M^3(\kappa, \tau) \cong (\mathbb{S}^2(\kappa) \setminus \{\infty\}) \times \mathbb{R}$;
- if $\kappa < 0$ and $\tau = 0$, then $M^3(\kappa, \tau) \cong \mathbb{H}^2(\kappa) \times \mathbb{R}$;
- if $\kappa > 0$ and $\tau \neq 0$, then $M^3(\kappa, \tau) \cong SU(2) \setminus \{\infty\}$;
- if $\kappa < 0$ and $\tau \neq 0$, then $M^3(\kappa, \tau) \cong \widetilde{SL}(2, \mathbb{R})$;
- if $\kappa = 0$ and $\tau \neq 0$, then $M^3(\kappa, \tau) \cong Nil_3$.

By the Gram-Schmidt orthonormalization the following vectors fields form an orthonormal frame on $M^3(\kappa, \tau)$:

$$E_{1} = \left(1 + \frac{\kappa}{4}(x^{2} + y^{2})\frac{\partial}{\partial x} - \tau y\frac{\partial}{\partial z}\right);$$

$$E_{2} = \left(1 + \frac{\kappa}{4}(x^{2} + y^{2})\frac{\partial}{\partial y} + \tau x\frac{\partial}{\partial z}\right); \quad E_{3} = \frac{\partial}{\partial z}.$$
(4.2)

The corresponding Lie Bracket are

$$[E_1; E_2] = -\frac{\kappa}{2} y E_1 + \frac{\kappa}{2} x E_2 + 2\tau E3; \quad [E_1; E_3] = 0; \quad [E_2; E_3] = 0.$$
(4.3)

With respect to this orthonormal basis, the Levi-Civita connection can be computed as:

$$\begin{split} \nabla_{E_1} E_1 &= \frac{\kappa}{2} y E_2 & \nabla_{E_1} E_2 = -\frac{\kappa}{2} y E_1 + \tau E_3, \quad \nabla_{E_1} E_3 = -\tau E_2, \\ \nabla_{E_2} E_1 &= -\frac{\kappa}{2} x E_2 - \tau E_3, & \nabla_{E_2} E_2 = \frac{\kappa}{2} x E_1, & \nabla_{E_2} E_3 = \tau E_1, \\ \nabla_{E_3} E_1 &= -\tau E_2, \quad \nabla_{E_3} E_2 = \tau E_1, \quad \nabla_{E_3} E_3 = 0. \end{split}$$

We have by Kozul's formula

$$g(\nabla_{E_1}E_1, E_2) = \frac{\kappa}{4}y, \quad g(\nabla_{E_1}E_2, E_1) = -\frac{\kappa}{4}y, \quad g(\nabla_{E_1}E_2, E_3) = \frac{\tau}{2}, \quad g(\nabla_{E_1}E_3, E_2) = -\frac{\tau}{2},$$

$$g(\nabla_{E_2}E_1, E_2) = -\frac{\kappa}{4}x, \quad g(\nabla_{E_2}E_1, E_3) = -\frac{\tau}{2}, \quad g(\nabla_{E_2}E_2, E_1) = \frac{\kappa}{4}x, \quad g(\nabla_{E_2}E_3, E_1) = \frac{\tau}{2},$$

$$g(\nabla_{E_3}E_1, E_2) = -\frac{\tau}{2}, \quad g(\nabla_{E_3}E_2, E_1) = \frac{\tau}{2}.$$

The matrice (3.3) is then given by

$$\begin{bmatrix} 1 + \frac{\kappa}{4}(x^2 + y^2) & 0 & 0 \\ 0 & 1 + \frac{\kappa}{4}(x^2 + y^2) & 0 \\ -\tau y & \tau x & 1 \end{bmatrix}.$$

According to (3.4) the section $\phi = \psi_1 E_1 + \psi_2 E_2 + \psi_3 E_3$ is holomorphic if and only if

$$\frac{\partial \psi_1}{\partial \bar{z}} - \frac{\kappa}{4} y \psi_2 \bar{\psi}_1 + \frac{\kappa}{4} x \psi_2 \bar{\psi}_2 + \frac{\tau}{2} \psi_2 \bar{\psi}_3 + \frac{\tau}{2} \psi_3 \bar{\psi}_2 = 0,
\frac{\partial \psi_2}{\partial \bar{z}} + \frac{\kappa}{4} y \psi_1 \bar{\psi}_1 - \frac{\tau}{2} \psi_1 \bar{\psi}_3 - \frac{\kappa}{4} x \psi_1 \bar{\psi}_2 - \frac{\tau}{2} \psi_3 \bar{\psi}_1 = 0,
\frac{\partial \psi_3}{\partial \bar{z}} - \frac{\tau}{2} \psi_1 \bar{\psi}_2 + \frac{\tau}{2} \psi_2 \bar{\psi}_1 = 0.$$
(4.4)

Let us now write equations (4.4), which ensures that ϕ is holomorphic section, in term of the functions *G* and *H*:

If ψ satisfies (3.8) then

$$G\frac{\partial G}{\partial \bar{z}} = \frac{\kappa}{8}yi(|G|^4 - G^2\bar{H}^2) - \frac{\kappa}{8}x(|G|^4 + G^2\bar{H}^2) - \frac{i\tau}{2}G\bar{H}(|G|^2 - |H|^2),$$
(4.5)

$$H\frac{\partial H}{\partial \bar{z}} = \frac{\kappa}{8}yi(|H|^4 - H^2\bar{G}^2) + \frac{\kappa}{8}x(|H|^4 + H^2\bar{G}^2) - \frac{i\tau}{2}H\bar{G}(|G|^2 - |H|^2),$$
(4.6)

$$H\frac{\partial G}{\partial \bar{z}} + G\frac{\partial H}{\partial \bar{z}} = -\frac{i\tau}{2}(|G|^4 - |H|^4).$$
(4.7)

Therefore, Theorem 3.1 can be written as:

Theorem 4.1. Let G and H be complex-valued functions defined in a simply connected domain $\Omega \subset \mathbb{C}$ such that:

- (i) G and H are not identically zeros.
- (ii) G and H are solutions of (4.5)-(4.7).

Then the map $f := (x, y, z) : \Omega \to M^3(\kappa, \tau)$, defined by

$$x(p) = 2\operatorname{Re} \int_{p_0}^{p} (1 + \frac{\kappa}{4}(x^2 + y^2))(G^2 - H^2)d\rho , \qquad (4.8)$$

$$y(p) = 2 \operatorname{Re} \int_{p_0}^{p} (1 + \frac{\kappa}{4} (x^2 + y^2)) i(G^2 + H^2) d\rho , \qquad (4.9)$$

$$z(p) = 2\operatorname{Re} \int_{p_0}^{p} -y\tau(G^2 - H^2) + ix\tau(G^2 + H^2) + 2GHd\rho, \qquad (4.10)$$

is a conformal minimal immersion.

Proof. Using (4.2), we get

$$\phi_1 = \left(1 + \frac{\kappa}{4}(x^2 + y^2)\right)\psi_1, \quad \phi_2 = \left(1 + \frac{\kappa}{4}(x^2 + y^2)\right)\psi_2, \quad \phi_3 = -\tau y\psi_1 + \tau x\psi_2 + \psi_3.$$
From Theorem 3.1 and (3.8), we have the result

em 3.1 and (3.8), we have the result.

Remark 4.2. Equations (4.5) and (4.6) are non-linear partial differential equations with non-constant coefficients and it is more complicated to find explicitly solutions ϕ_i , i = 1, 2, 3. By replacing κ by $\delta = 1 + \frac{\kappa}{4}(x^2 + y^2)$, with $|\delta| > 2$ and δ is constant, we obtain the new metric

$$ds_{\delta,\tau}^2 = \frac{dx^2 + dy^2}{\delta^2} + \left(dz + \tau \frac{ydx - xdy}{\delta}\right)^2,\tag{4.11}$$

which looks like a Heisenberg metric but is not isometric to a Heisenberg metric.

By the Gram-Schmidt orthonormalization the following vectors fields form an orthonormal frame on $M^3(\delta, \tau)$:

$$E_1 = \delta \frac{\partial}{\partial x} - \tau y \frac{\partial}{\partial z}; \qquad E_2 = \delta \frac{\partial}{\partial y} + \tau x \frac{\partial}{\partial z}; \qquad E_3 = \frac{\partial}{\partial z}.$$
 (4.12)

The corresponding Lie Bracket are

$$[E_1; E_2] = 2\delta\tau E_3 ; \quad [E_1; E_3] = 0 ; \quad [E_2; E_3] = 0 .$$
(4.13)

With respect to this orthonormal basis, the Levi-Civita connection can be computed as:

$$\begin{split} \nabla_{E_1} E_1 &= 0, & \nabla_{E_1} E_2 = \delta \tau E_3, & \nabla_{E_1} E_3 = -\delta \tau E_2, \\ \nabla_{E_2} E_1 &= -\delta \tau E_3, & \nabla_{E_2} E_2 = 0, & \nabla_{E_2} E_3 = \delta \tau E_1, \\ \nabla_{E_3} E_1 &= -\delta \tau E_2, & \nabla_{E_3} E_2 = \delta \tau E_1, & \nabla_{E_3} E_3 = 0. \end{split}$$

We have by Kozul's formula

$$\begin{split} g(\nabla_{E_1}E_2, E_3) &= \delta\tau \,, \quad g(\nabla_{E_1}E_3, E_2) = -\delta\tau \,, \quad g(\nabla_{E_2}E_1, E_3) = -\delta\tau \,, \\ g(\nabla_{E_2}E_3, E_1) &= \delta\tau \,, \quad g(\nabla_{E_3}E_1, E_2) = -\delta\tau \,, \quad g(\nabla_{E_3}E_2, E_1) = \delta\tau \,. \end{split}$$

According to (3.4), the section $\phi = \psi_1 E_1 + \psi_2 E_2 + \psi_3$ is holomorphic if and only if

$$\frac{\partial \psi_1}{\partial \bar{z}} + 2\delta\tau \operatorname{Re}(\psi_2 \bar{\psi}_3) = 0 ;$$

$$\frac{\partial \psi_2}{\partial \bar{z}} - 2\delta\tau \operatorname{Re}(\psi_1 \bar{\psi}_3) = 0 ; \quad \frac{\partial \psi_3}{\partial \bar{z}} - 2i\delta\tau \operatorname{Im}(\psi_1 \bar{\psi}_2) = 0.$$
(4.14)

Equations (4.14) can be written in terms of the functions G and H defined by (3.7).

$$\frac{\partial G}{\partial \bar{z}} = -i\delta\tau \bar{H}(|G|^2 - |H|^2), \qquad (4.15)$$

$$\frac{\partial H}{\partial \bar{z}} = -i\delta\tau \bar{G}(|G|^2 - |H|^2).$$
(4.16)

Therefore, Theorem 4.1 becomes:

Theorem 4.3. Let G and H be complex-valued functions defined in a simply connected domain $\Omega \subset \mathbb{C}$ such that:

- (i) *G* and *H* are not identically zeros.
- (ii) *G* and *H* are solutions of (4.15)-(4.16).

Then the map $f := (x, y, z) : \Omega \to M^3(\delta, \tau)$, defined by

$$\begin{cases} x(p) = 2 \operatorname{Re} \int_{p_0}^p \delta(G^2 - H^2) d\rho, \\ y(p) = 2 \operatorname{Re} \int_{p_0}^p i \delta(G^2 + H^2) d\rho, \\ z(p) = 2 \operatorname{Re} \int_{p_0}^p -y \tau(G^2 - H^2) + i x \tau(G^2 + H^2) + 2GHd\rho, \end{cases}$$

is a conformal minimal immersion.

References

- [1] K. Weierstrass, Forsetzung der Undersuchung ber die Minimalfl chen, *Mathematische werke*, Vol. 3, Verlagsbuchhandlung, Hillesheim, 1866, 219–248.
- [2] A. Enneper, Nachr k nigl. Gesell. Wissensch. Georg, Augutus-Univ., G ttingen 12(1868), 258.

- [3] F. Mercuri, S. Montaldo and P. Piu, A Weierstrass representation formula for minimal surfaces in \mathbb{H}_3 and $\mathbb{H}^2 \times \mathbb{R}$, *Acta Mathematica Sinica*, English series **22**(6) (November 2006), 1603–1612.
- [4] R. Osserman, A Survey of Minimal Surfaces, Van Nostrand, 1969.
- [5] L. Bianchi, Lezioni di geometrie differenziale, E. Spoeri Librao-Editore, 1894.
- [6] L. Bianchi, Sugli sazi a tre dimensioni che ammetono un groupo continuo di moveimenti, Memorie di Mathematica di Fisica della Societa. It aliana delle Scienze, Serie Tereza XI(1898), 267–352.
- [7] G. Vranceanu, *Le on de G ometrie Diff rentielle I*, Ed. Acad. Rep. Pop. Roun., Bucarest 1947.
- [8] E. Cartan, *Le on sur la g ometrie des espaces de Riemann*, 2nd edition, Gauthier-Villards, Paris, 1946.
- [9] D.A. Berdinski and I.A. Taimanov, Surfaces in three-dimensional Lie groups, Sibirsk. Mat., Zh. 46)6) (2005), 1248–1264; translation in Siberian Math. J. 46(6) (2005), 1005–1019.
- [10] D. Nelson, T. Piran and S. Weinberg, Statistical Mechanics of Membranes and Surfaces, World Scientific, Singapore, 1999.
- [11] M. Lachi ze-Rey and J. Luminet, Cosmic topology, Phys. Rep. 254 (1995), 135–214.
- [12] W.M. Thurston, Three dimensional Geometry and topology I, *Princeton Math. Series.*, Vol. 35 (S. Levy (editor)).
- [13] M. Belkhelfa, F. Dillen and J. Inoguchi, Surfaces with parallel second fundamental form in Bianchi-Cartan-Vrranceanu spaces, in: PDEs, submanifolds and Affine Differential Geometry, B. Opozda, U. Simon and M. Wiehe (editors), Banach Center Publ. 57, Polish Acad. Sci. Warsaw, 2002, pp. 67–87.
- [14] J. Van der Veken, Higher order parallel surfaces in three-dimensional homogeneous spaces, preprint, 2006, DG/0604541.
- [15] Abdullah Yildirim, On Lorentzian BCV spaces, International Journal of Mathematical Archive 3(4) (2012), 1365–1371.
- [16] Abdullah Yildirim, On Sassakian BCV spaces, *International Mathematical Forum* 6(34) (2011), 1669–1684.
- [17] R. Caddeo, S. Montaldo, C. Oniciuc and P. Piu, The Euler-Lagrange method for biharmonic curves, *Mediter. J. Math.* 3(3-4) (2006), 449–465.
- [18] J.T. Cho, J. Inoguchi and J.E. Lee, Biharmonic curves in 3-dimensional Sassakian space forms, *Ann. Mat. Pura Appl.*, to appear.

M. Koivogui, Institut de Math matiques et de Sciences Physiques, B.P. 613, Porto-Novo, B nin.

E-mail: koivoguimkayanfa@ymail.com

L. Todjihounde, Institut de Math matiques et de Sciences Physiques, B.P. 613, Porto-Novo, B nin.

E-mail: leonardt@imsp-uac.org

M. Kourouma, Ufr de Math matiques et informatique, Universit de cocody, C te d'Ivoire.

E-mail: mkouroumafr@yahoo.fr

Received March 1, 2012 Accepted June 26, 2012