Weierstrass Representation for Minimal Surfaces into BCV-Spaces

M. Koivogui, L. Todjihounde, and M. Kourouma

Abstract

Bianchi-Cartan-Vranceanu spaces (BCV-spaces) are some 3-dimensional homogeneous manifolds equiped with a metric depending on 2 parameters κ and τ, and whose isometries groups are of dimension four. In this paper, we describe a Weierstrass-type representation formula for simply connected minimal surfaces immersed into BCV-spaces.

1. Introduction

The topic of Weierstrass representations for minimal surfaces has a long and rich history. It has been extensively investigated since the initial works of Weierstrass [1] and Enneper [2] in the nineteenth century on systems inducing minimal surfaces in \mathbb{R}^{3}. There exist a great number of applications of Weierstrass representations for minimal surfaces in various domains of Mathematics, Physics, Chemistry and Biology [10].

By using the standard harmonic maps equation, Mercuri, Montaldo and Piu gave in [3] a Weierstrass-type representation formula for simply connected minimal surfaces into Riemannian manifolds and they applied the obtained general structure to the case of 3-dimensional Lie groups endowed with left invariant metrics. From this setting, they discussed then some examples of minimal surfaces both in 3-dimensional Heisenberg group \mathbb{H}_{3} and in $\mathbb{H}^{2} \times \mathbb{R}$ where \mathbb{H}^{2} is the 2-dimensional hyperbolic space.

Let κ and τ be two real numbers and $D_{\kappa, \tau}$ be the domain of \mathbb{R}^{3} defined by

$$
D_{\kappa, \tau}=\left\{(x, y, z) \in \mathbb{R}^{3} / 1+\frac{\kappa}{4}\left(x^{2}+y^{2}\right)>0\right\} .
$$

By considering on $D_{\kappa, \tau}$ the 2-parameters family of homogeneous Riemannian metrics:

$$
d s_{\kappa, \tau}^{2}=\frac{d x^{2}+d y^{2}}{\left(1+\frac{\kappa}{4}\left(x^{2}+y^{2}\right)\right)^{2}}+\left(d z+\tau \frac{y d x-x d y}{1+\frac{\kappa}{4}\left(x^{2}+y^{2}\right)}\right)^{2}, \quad \tau, \kappa \in \mathbb{R}
$$

we obtain a 2-parameters family of 3-dimensional Riemannian manifolds $\left(D_{\kappa, \tau}, d s_{\kappa, \tau}^{2}\right)$, also denoted by $M^{3}(\kappa, \tau)$, called Bianchi-Cartan-Vranceanu spaces (BCV-spaces, in short).

The class of BCV-spaces contains all the Riemannian manifolds with 4-dimensional or 6-dimensional isometries groups except the hyperbolic space forms. The BCV-spaces provide model spaces of Thurston's 3-dimensional geometries (see [12]). In theoretical cosmology, the metrics on BCV-spaces are known as the Bianchi-Kantowski-Sachs type metrics used to construct some homogeneous space-times (see [11]). In these last fifteen years, many differential geometers investigate curves and surfaces with some special properties in BCVspaces [15, 16]. Surfaces with parallel fundamental forms in BCV-spaces are classified by Belkhelfa, Dillen and Inoguchi in [13], and more generally surfaces with higher order parallel second fundamental forms in BCV-spaces have been classified by J. Van der Veken [14]. In [17] and [18], the authors studied biharmonic curves in BCV-spaces and they obtained interesting classification results. A Weierstrass representation is a description of the surface by some holomorphic functions. D.A. Berdinski and I.A. Taimanov obtained in [9] a Weierstrass type representation for minimal surfaces into BCV-spaces in terms of spinors and Dirac operators.

In this paper, we describe a Weierstrass-type representation formula for minimal surfaces into BCV-spaces in terms of two complex-functions satisfying some integral conditions and we extend thus the results obtained in [3] and [4].

2. Preliminaries

Let $\left(M^{n}, g\right)$ be an n-dimensional Riemannian manifold and $f: \Sigma \subset M \rightarrow M$ be a minimal conformal immersion, where Σ is a Riemann surface. The pull-back bundle $f^{\star}(T M)$ has a metric and compatible connection, the pull-back connection induced by the Riemannian metric and the Levi-Civita connection of M. Consider the complexified bundle $\mathbb{E}=f^{\star}(T M) \otimes \mathbb{C}$.

Let (u, v) be a local coordinates on $\Sigma, z=u+i v$ the local conformal complex parameter and $\left(x_{1}, \ldots, x_{n}\right)$ be a system of local coordinates in a neighborhood U of M such that $U \cap f(\Sigma) \neq \varnothing$. The pull-back connection extends to a complex connection on \mathbb{E} and it is well known that \mathbb{E} has a unique holomorphic structure such that a section $\phi: \Sigma \rightarrow \mathbb{E}$ is holomorphic if and only if

$$
\begin{equation*}
\widetilde{\nabla}_{\frac{\partial}{\partial \bar{z}}} \phi=0 \tag{2.1}
\end{equation*}
$$

where $\tilde{\nabla}$ is the pull-back connection on Σ.

The induced metric on Σ is

$$
d s^{2}=\lambda^{2}\left(d u^{2}+d v^{2}\right)=\lambda^{2}|d z|^{2},
$$

and the beltrami-Laplace operator on Σ, with respect to the induced metric $d s^{2}$ is given by

$$
\Delta=\lambda^{2}\left(\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}\right) .
$$

We recall that $f: \Sigma \rightarrow M$ is harmonic if and only if its tension field $\tau(f)=$ trace $\nabla d f$ vanishes and for conformal immersions, harmonicity and minimality are equivalent.
Let us consider

$$
\phi=\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial u}-i \frac{\partial f}{\partial v}\right) .
$$

By putting

$$
\phi=\sum_{j=1}^{n} \phi_{j} \frac{\partial}{\partial x_{j}}
$$

where ϕ_{j} are some complex-valued functions defined on Σ, the tension field $\tau(f)$ of f can be written as:

$$
\tau(f)=4 \lambda^{-2} \sum_{i}\left\{\frac{\partial \phi_{i}}{\partial \bar{z}}+\Gamma_{j k}^{i} \bar{\phi}_{j} \phi_{k}\right\} \frac{\partial}{\partial x_{i}}
$$

where $\Gamma_{j k}^{i}$ are the Christoffel symbols of M.
The section ϕ is then holomorphic if and only if

$$
\widetilde{\nabla}_{\frac{\partial}{\partial \bar{z}}}\left(\sum_{i=1}^{n} \phi_{i} \frac{\partial}{\partial x_{i}}\right)=\sum_{j}\left\{\frac{\partial \phi_{i}}{\partial \bar{z}}+\sum_{k, j} \Gamma_{j k}^{i} \bar{\phi}_{j} \phi_{k}\right\} \frac{\partial}{\partial x_{i}}=0 ;
$$

or equivalently if and only if

$$
\begin{equation*}
\frac{\partial \phi_{i}}{\partial \bar{z}}+\sum_{k, j} \Gamma_{j k}^{i} \bar{\phi}_{j} \phi_{k}=0, \quad i=1,2, \ldots, n . \tag{2.2}
\end{equation*}
$$

We have then

$$
4 \lambda^{-2}\left(\widetilde{\nabla}_{\frac{\partial}{\partial \bar{z}}} \phi\right)=\tau(f) .
$$

Thus $f: \Sigma \rightarrow M$ is harmonic if and only if $\phi=\frac{\partial f}{\partial z}$ is a holomorphic section of \mathbb{E}. Relation (2.2) is a system of first order differential equations in the ϕ_{i}, it can be written as:

$$
\frac{\partial \phi_{i}}{\partial \bar{z}}+2 \sum_{j>k} \Gamma_{j k}^{i} \operatorname{Re}\left(\bar{\phi}_{j} \phi_{k}\right)+\sum_{j} \Gamma_{j j}^{i}\left|\phi_{j}\right|^{2}=0, \quad i=1, \ldots, n .
$$

This implies that $\frac{\partial \phi_{i}}{\partial \bar{z}} \in \mathbb{R}$, and ensures that (locally) the 1-forms $\phi_{i} d z$ do not have real periods as it has been mentioned in [3]. Therefore we have the following:

Proposition 2.1 ([4]). Let (M, g) be a Riemannian manifold and (x_{1}, \ldots, x_{n}) local coordinates. Let $\phi_{j}, j=1, \ldots, n$, be complex-valued functions in an open simply connected domain $\Omega \subset \mathbb{C}$ which are solutions of (2.2). Then the map

$$
\begin{equation*}
f_{j}(u, v)=2 \operatorname{Re}\left(\int_{z_{0}}^{z} \phi_{j} d z\right) \tag{2.3}
\end{equation*}
$$

is well defined and determines a minimal conformal immersion if and only if the following conditions are satisfied:
(i) $\sum_{j, k=1}^{n} g_{i j} \phi_{j} \bar{\phi}_{k} \neq 0$,
(ii) $\sum_{j, k=1}^{n} g_{i j} \phi_{j} \phi_{k}=0$.

In [3], the authors proved that if M is a Lie group then the system (2.2) has a solution. In the next section we describe a Weierstrass representation for minimal surfaces into 3-dimensional manifold.

3. Weierstrass Representation in 3-dimensional Manifolds

Let M^{3} be a 3-dimensional manifold, endowed with an analytic Riemannian metric g. We consider M^{3} as a single chart and (x^{1}, x^{2}, x^{3}) a system of coordinates on M^{3}. By the Gram-Schmidt orthonormalization, we have a basis of vector fields $E_{i}, i=1,2,3$, defined by

$$
\begin{align*}
E_{1}= & \frac{1}{A}\left\{\frac{\partial}{\partial x^{1}}-\frac{1}{B^{2}}\left(g_{12}-g^{33} g_{23} g_{13}\right) \frac{\partial}{\partial x^{2}}\right. \\
& \left.+g^{33}\left(\frac{1}{B^{2}}\left(g_{12}-g^{33} g_{23} g_{13}\right) g_{23}-g_{13}\right) \frac{\partial}{\partial x^{3}}\right\}, \\
E_{2}= & \frac{1}{B}\left\{\frac{\partial}{\partial x^{2}}-g^{33} g_{23} \frac{\partial}{\partial x^{3}}\right\}, \\
E_{3}= & \frac{1}{\sqrt{g_{33}}} \frac{\partial}{\partial x^{3}} . \tag{3.1}
\end{align*}
$$

where

$$
\begin{aligned}
g_{i j} & =g\left(\frac{\partial}{\partial x^{i}} ; \frac{\partial}{\partial x^{j}}\right), \quad g^{i j}=\left[g_{i j}\right]^{-1}, \\
A & =\sqrt{g_{11}-\frac{1}{B^{2}}\left(g_{12}-g^{33} g_{13} g_{23}\right)^{2}-g^{33}\left(g_{13}\right)^{2}}, \\
B & =\sqrt{g_{22}-g^{33}\left(g_{23}\right)^{2}} .
\end{aligned}
$$

In some open set $\Omega \subset \Sigma$ the section $\phi=\frac{\partial f}{\partial z} \in \Gamma\left(f^{*}(T M) \otimes \mathbb{C}\right)$ can be decomposed with respect to the coordinates vector fields as

$$
\begin{equation*}
\phi=\sum_{i=1}^{3} \phi_{i} \frac{\partial}{\partial x^{i}}=\sum_{i=1}^{3} \psi_{i} E_{i} \tag{3.2}
\end{equation*}
$$

for some open complex functions $\phi_{i}, \psi_{i}: \Omega \rightarrow \mathbb{C}$. Moreover, there exists an invertible matrix Mat $=\left(m_{i j}\right)_{i, j=1,2,3}$ with the functions entries $m_{i j}: f(\Omega) \rightarrow \mathbb{R}$, $i, j=1,2,3$, satisfying

$$
\phi_{i}=\sum_{j} m_{i j} \psi_{j}
$$

where

$$
\text { Mat }=\left[\begin{array}{ccc}
A^{-1} & 0 & 0 \tag{3.3}\\
-\left(g_{12}-g^{33} g_{23} g_{13}\right)\left(A B^{2}\right)^{-1} & B^{-1} & 0 \\
(A)^{-1}\left[g^{33}\left(\left(B^{2}\right)^{-1}\left(g_{12}-g^{33} g_{23} g_{13}\right) g_{23}-g_{13}\right)\right] & -g^{33} g_{23} B^{-1} & \sqrt{g^{33}}
\end{array}\right] .
$$

By (3.2), we have

$$
\widetilde{\nabla}_{\frac{\partial}{\partial \bar{z}}}\left(\sum_{i} \psi_{i} E_{i}\right)=\sum_{i}\left\{\frac{\partial \psi_{i}}{\partial \bar{z}} E_{i}+\sum_{j, k} \psi_{k} \bar{\psi}_{j} g\left(\nabla_{E_{j}} E_{k}, E_{i}\right) E_{i}\right\} .
$$

This means that the section ϕ is holomorphic if and only if

$$
\begin{equation*}
\frac{\partial \psi_{i}}{\partial \bar{z}}+\sum_{j, k} \psi_{k} \bar{\psi}_{j} g\left(\nabla_{E_{j}} E_{k}, E_{i}\right)=0, \quad i=1,2,3 \tag{3.4}
\end{equation*}
$$

Theorem 3.1. Let $\psi_{i}, i=1,2,3$ be complex-valued functions defined in a simply connected domain $\Omega \subset \mathbb{C}$ such as the following conditions are satisfied:
(i) $\sum_{i=1}^{n} \psi_{i} \bar{\psi}_{i} \neq 0$,
(ii) $\sum_{i=1}^{n} \psi_{i}^{2}=0$,
(iii) ψ_{i} are solutions of (3.4).

Then the map $f:=\left(x^{1}, x^{2}, x^{3}\right): \Omega \rightarrow\left(M^{3}, g\right)$, defined by

$$
\begin{align*}
& x^{1}(p)= 2 \operatorname{Re} \int_{p_{0}}^{p}\left(\sqrt{\left(g_{11}-\left(g_{22}-g^{33}\left(g_{23}\right)^{2}\right)^{-1}\left(g_{12}-g^{33} g_{13} g_{23}\right)^{2}-g^{33}\left(g_{13}\right)^{2}\right.}\right)^{-1} \psi_{1} d \rho \\
& x^{2}(p)= 2 \operatorname{Re} \int_{p_{0}}^{p}-\left(g_{22}-g^{33}\left(g_{23}\right)^{2}\right)^{-1}\left(g_{12}-g_{13} g_{23} g^{33}\right) \psi_{1} \\
& \quad+\left(\sqrt{g_{22}-g^{33}\left(g_{23}\right)^{2}}\right)^{-1} \psi_{2} d \rho \\
& x^{3}(p)=2 \operatorname{Re} \int_{p_{0}}^{p}\left[\left(g_{22}-g^{33}\left(g_{23}\right)^{2}\right)^{-1}\left(g_{23} g^{33}\left(g_{12}-g_{13} g_{23} g^{33}\right)-g^{33} g_{13}\right] \psi_{1}\right. \\
& \quad-\left(\sqrt{g_{22}-g^{33}\left(g_{23}\right)^{2}}\right)^{-1} g_{23} g^{33} \psi_{2}+\sqrt{g^{33}} \psi_{3} d \rho \tag{3.5}
\end{align*}
$$

is a conformal minimal immersion.

Proof. Using (3.1) and (3.2), we get

$$
\begin{aligned}
\phi_{1}= & \left(\sqrt{\left(g_{11}-\left(g_{22}-g^{33}\left(g_{23}\right)^{2}\right)^{-1}\left(g_{12}-g^{33} g_{13} g_{23}\right)^{2}-g^{33}\left(g_{13}\right)^{2}\right.}\right)^{-1} \psi_{1}, \\
\phi_{2}= & -\left(g_{22}-g^{33}\left(g_{23}\right)^{2}\right)^{-1}\left(g_{12}-g_{13} g_{23} g^{33}\right) \psi_{1}+i\left(\sqrt{g_{22}-g^{33}\left(g_{23}\right)^{2}}\right)^{-1} \psi_{2}, \\
\phi_{3}= & \left(g_{22}-g^{33}\left(g_{23}\right)^{2}\right)^{-1}\left(g_{23} g^{33}\left(g_{12}-g_{13} g_{23} g^{33}\right)-g^{33} g_{13}\right] \psi_{1} \\
& -\left(\sqrt{g_{22}-g^{33}\left(g_{23}\right)^{2}}\right)^{-1} g_{23} g^{33} \psi_{2}+2 \sqrt{g^{33}} \psi_{3} .
\end{aligned}
$$

From proposition 2.1, the theorem is proved.
Remark 3.2. If $M=\mathbb{R}^{3}$ and g the flat metric on M, we have a Weierstrass representation for minimal surfaces in \mathbb{R}^{3}, see [4].

Since the parameter z is conformal, we have

$$
\begin{equation*}
\psi_{1}^{2}+\psi_{2}^{2}+\psi_{3}^{2}=0 . \tag{3.6}
\end{equation*}
$$

From (3.6) we have

$$
\left(\psi_{1}-i \psi_{2}\right)\left(\psi_{1}+i \psi_{2}\right)=-\psi_{3}^{2}
$$

which suggests the definition of two new complex functions

$$
\begin{equation*}
G:=\sqrt{\frac{1}{2}\left(\psi_{1}-i \psi_{2}\right)}, \quad H:=\sqrt{-\frac{1}{2}\left(\psi_{1}+i \psi_{2}\right)} . \tag{3.7}
\end{equation*}
$$

The functions G and H are single-valued complex functions which satisfy

$$
\begin{equation*}
\psi_{1}=G^{2}-H^{2}, \quad \psi_{2}=i\left(G^{2}+H^{2}\right), \quad \psi_{3}=2 G H \tag{3.8}
\end{equation*}
$$

In the following, we give a Weierstrass representation for minimal surfaces into BCV-spaces.

4. Weierstrass Representation in BCV-space $M^{3}(\kappa, \tau)$

Let κ and τ be two real numbers, with $\tau \geq 0$. Bianchi-Cartan-Vranceanu space (BCV-space) $M^{3}(\kappa, \tau)$ is defined as the set

$$
D_{\kappa, \tau}=\left\{(x, y, z) \in \mathbb{R}^{3} / 1+\frac{\kappa}{4}\left(x^{2}+y^{2}\right)>0\right\}
$$

endowed with the metric

$$
\begin{equation*}
d s_{\kappa, \tau}^{2}=\frac{d x^{2}+d y^{2}}{\left(1+\frac{\kappa}{4}\left(x^{2}+y^{2}\right)\right)^{2}}+\left(d z+\tau \frac{y d x-x d y}{1+\frac{\kappa}{4}\left(x^{2}+y^{2}\right)}\right)^{2} . \tag{4.1}
\end{equation*}
$$

It was Cartan [8] who obtained this family of spaces by classifying of threedimensional Riemannian manifolds with four-dimensional isometry group. They also appeared in the work L. Bianchi [5, 6], and G. Vranceanu [7]. The complete classification of BCV-spaces is as follows:

- if $\kappa=\tau=0$, then $M^{3}(\kappa, \tau) \cong \mathbb{R}^{3}$;
- if $\kappa=4 \tau^{2} \neq 0$, then $M^{3}(\kappa, \tau) \cong \mathbb{S}^{3}\left(\frac{\kappa}{4}\right) \backslash\{\infty\}$;
- if $\kappa>0$ and $\tau=0$, then $M^{3}(\kappa, \tau) \cong\left(\mathbb{S}^{2}(\kappa) \backslash\{\infty\}\right) \times \mathbb{R}$;
- if $\kappa<0$ and $\tau=0$, then $M^{3}(\kappa, \tau) \cong \mathbb{H}^{2}(\kappa) \times \mathbb{R}$;
- if $\kappa>0$ and $\tau \neq 0$, then $M^{3}(\kappa, \tau) \cong S U(2) \backslash\{\infty\}$;
- if $\kappa<0$ and $\tau \neq 0$, then $M^{3}(\kappa, \tau) \cong \widetilde{S L}(2, \mathbb{R})$;
- if $\kappa=0$ and $\tau \neq 0$, then $M^{3}(\kappa, \tau) \cong N i l_{3}$.

By the Gram-Schmidt orthonormalization the following vectors fields form an orthonormal frame on $M^{3}(\kappa, \tau)$:

$$
\begin{align*}
& E_{1}=\left(1+\frac{\kappa}{4}\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x}-\tau y \frac{\partial}{\partial z}\right) ; \\
& E_{2}=\left(1+\frac{\kappa}{4}\left(x^{2}+y^{2}\right) \frac{\partial}{\partial y}+\tau x \frac{\partial}{\partial z}\right) ; \quad E_{3}=\frac{\partial}{\partial z} . \tag{4.2}
\end{align*}
$$

The corresponding Lie Bracket are

$$
\begin{equation*}
\left[E_{1} ; E_{2}\right]=-\frac{\kappa}{2} y E_{1}+\frac{\kappa}{2} x E_{2}+2 \tau E 3 ; \quad\left[E_{1} ; E_{3}\right]=0 ; \quad\left[E_{2} ; E_{3}\right]=0 \tag{4.3}
\end{equation*}
$$

With respect to this orthonormal basis, the Levi-Civita connection can be computed as:

$$
\begin{array}{lll}
\nabla_{E_{1}} E_{1}=\frac{\kappa}{2} y E_{2} & \nabla_{E_{1}} E_{2}=-\frac{\kappa}{2} y E_{1}+\tau E_{3}, & \nabla_{E_{1}} E_{3}=-\tau E_{2}, \\
\nabla_{E_{2}} E_{1}=-\frac{\kappa}{2} x E_{2}-\tau E_{3}, & \nabla_{E_{2}} E_{2}=\frac{\kappa}{2} x E_{1}, & \nabla_{E_{2}} E_{3}=\tau E_{1}, \\
\nabla_{E_{3}} E_{1}=-\tau E_{2}, \quad \nabla_{E_{3}} E_{2}=\tau E_{1}, & \nabla_{E_{3}} E_{3}=0 . &
\end{array}
$$

We have by Kozul's formula

$$
\begin{aligned}
& g\left(\nabla_{E_{1}} E_{1}, E_{2}\right)=\frac{\kappa}{4} y, \quad g\left(\nabla_{E_{1}} E_{2}, E_{1}\right)=-\frac{\kappa}{4} y, g\left(\nabla_{E_{1}} E_{2}, E_{3}\right)=\frac{\tau}{2}, \quad g\left(\nabla_{E_{1}} E_{3}, E_{2}\right)=-\frac{\tau}{2}, \\
& g\left(\nabla_{E_{2}} E_{1}, E_{2}\right)=-\frac{\kappa}{4} x, g\left(\nabla_{E_{2}} E_{1}, E_{3}\right)=-\frac{\tau}{2}, \quad g\left(\nabla_{E_{2}} E_{2}, E_{1}\right)=\frac{\kappa}{4} x, g\left(\nabla_{E_{2}} E_{3}, E_{1}\right)=\frac{\tau}{2}, \\
& g\left(\nabla_{E_{3}} E_{1}, E_{2}\right)=-\frac{\tau}{2}, \quad g\left(\nabla_{E_{3}} E_{2}, E_{1}\right)=\frac{\tau}{2} .
\end{aligned}
$$

The matrice (3.3) is then given by

$$
\left[\begin{array}{ccc}
1+\frac{\kappa}{4}\left(x^{2}+y^{2}\right) & 0 & 0 \\
0 & 1+\frac{\kappa}{4}\left(x^{2}+y^{2}\right) & 0 \\
-\tau y & \tau x & 1
\end{array}\right] .
$$

According to (3.4) the section $\phi=\psi_{1} E_{1}+\psi_{2} E_{2}+\psi_{3} E_{3}$ is holomorphic if and only if

$$
\begin{align*}
& \frac{\partial \psi_{1}}{\partial \bar{z}}-\frac{\kappa}{4} y \psi_{2} \bar{\psi}_{1}+\frac{\kappa}{4} x \psi_{2} \bar{\psi}_{2}+\frac{\tau}{2} \psi_{2} \bar{\psi}_{3}+\frac{\tau}{2} \psi_{3} \bar{\psi}_{2}=0 \\
& \frac{\partial \psi_{2}}{\partial \bar{z}}+\frac{\kappa}{4} y \psi_{1} \bar{\psi}_{1}-\frac{\tau}{2} \psi_{1} \bar{\psi}_{3}-\frac{\kappa}{4} x \psi_{1} \bar{\psi}_{2}-\frac{\tau}{2} \psi_{3} \bar{\psi}_{1}=0 \tag{4.4}\\
& \frac{\partial \psi_{3}}{\partial \bar{z}}-\frac{\tau}{2} \psi_{1} \bar{\psi}_{2}+\frac{\tau}{2} \psi_{2} \bar{\psi}_{1}=0
\end{align*}
$$

Let us now write equations (4.4), which ensures that ϕ is holomorphic section, in term of the functions G and H :

If ψ satisfies (3.8) then

$$
\begin{align*}
& G \frac{\partial G}{\partial \bar{z}}=\frac{\kappa}{8} y i\left(|G|^{4}-G^{2} \bar{H}^{2}\right)-\frac{\kappa}{8} x\left(|G|^{4}+G^{2} \bar{H}^{2}\right)-\frac{i \tau}{2} G \bar{H}\left(|G|^{2}-|H|^{2}\right), \tag{4.5}\\
& H \frac{\partial H}{\partial \bar{z}}=\frac{\kappa}{8} y i\left(|H|^{4}-H^{2} \bar{G}^{2}\right)+\frac{\kappa}{8} x\left(|H|^{4}+H^{2} \bar{G}^{2}\right)-\frac{i \tau}{2} H \bar{G}\left(|G|^{2}-|H|^{2}\right), \tag{4.6}\\
& H \frac{\partial G}{\partial \bar{z}}+G \frac{\partial H}{\partial \bar{z}}=-\frac{i \tau}{2}\left(|G|^{4}-|H|^{4}\right) \tag{4.7}
\end{align*}
$$

Therefore, Theorem 3.1 can be written as:
Theorem 4.1. Let G and H be complex-valued functions defined in a simply connected domain $\Omega \subset \mathbb{C}$ such that:
(i) G and H are not identically zeros.
(ii) G and H are solutions of (4.5)-(4.7).

Then the map $f:=(x, y, z): \Omega \rightarrow M^{3}(\kappa, \tau)$, defined by

$$
\begin{align*}
& x(p)=2 \operatorname{Re} \int_{p_{0}}^{p}\left(1+\frac{\kappa}{4}\left(x^{2}+y^{2}\right)\right)\left(G^{2}-H^{2}\right) d \rho, \tag{4.8}\\
& y(p)=2 \operatorname{Re} \int_{p_{0}}^{p}\left(1+\frac{\kappa}{4}\left(x^{2}+y^{2}\right)\right) i\left(G^{2}+H^{2}\right) d \rho, \tag{4.9}\\
& z(p)=2 \operatorname{Re} \int_{p_{0}}^{p}-y \tau\left(G^{2}-H^{2}\right)+i x \tau\left(G^{2}+H^{2}\right)+2 G H d \rho, \tag{4.10}
\end{align*}
$$

is a conformal minimal immersion.
Proof. Using (4.2), we get
$\phi_{1}=\left(1+\frac{\kappa}{4}\left(x^{2}+y^{2}\right)\right) \psi_{1}, \quad \phi_{2}=\left(1+\frac{\kappa}{4}\left(x^{2}+y^{2}\right)\right) \psi_{2}, \phi_{3}=-\tau y \psi_{1}+\tau x \psi_{2}+\psi_{3}$.
From Theorem 3.1 and (3.8), we have the result.
Remark 4.2. Equations (4.5) and (4.6) are non-linear partial differential equations with non-constant coefficients and it is more complicated to find explicitly solutions $\phi_{i}, i=1,2,3$. By replacing κ by $\delta=1+\frac{\kappa}{4}\left(x^{2}+y^{2}\right)$, with $|\delta|>2$ and δ is constant, we obtain the new metric

$$
\begin{equation*}
d s_{\delta, \tau}^{2}=\frac{d x^{2}+d y^{2}}{\delta^{2}}+\left(d z+\tau \frac{y d x-x d y}{\delta}\right)^{2} \tag{4.11}
\end{equation*}
$$

which looks like a Heisenberg metric but is not isometric to a Heisenberg metric.
By the Gram-Schmidt orthonormalization the following vectors fields form an orthonormal frame on $M^{3}(\delta, \tau)$:

$$
\begin{equation*}
E_{1}=\delta \frac{\partial}{\partial x}-\tau y \frac{\partial}{\partial z} ; \quad E_{2}=\delta \frac{\partial}{\partial y}+\tau x \frac{\partial}{\partial z} ; \quad E_{3}=\frac{\partial}{\partial z} \tag{4.12}
\end{equation*}
$$

The corresponding Lie Bracket are

$$
\begin{equation*}
\left[E_{1} ; E_{2}\right]=2 \delta \tau E_{3} ; \quad\left[E_{1} ; E_{3}\right]=0 ; \quad\left[E_{2} ; E_{3}\right]=0 . \tag{4.13}
\end{equation*}
$$

With respect to this orthonormal basis, the Levi-Civita connection can be computed as:

$$
\begin{array}{lll}
\nabla_{E_{1}} E_{1}=0, & \nabla_{E_{1}} E_{2}=\delta \tau E_{3}, & \nabla_{E_{1}} E_{3}=-\delta \tau E_{2}, \\
\nabla_{E_{2}} E_{1}=-\delta \tau E_{3}, & \nabla_{E_{2}} E_{2}=0, & \nabla_{E_{2}} E_{3}=\delta \tau E_{1}, \\
\nabla_{E_{3}} E_{1}=-\delta \tau E_{2}, & \nabla_{E_{3}} E_{2}=\delta \tau E_{1}, & \nabla_{E_{3}} E_{3}=0
\end{array}
$$

We have by Kozul's formula

$$
\begin{array}{lll}
g\left(\nabla_{E_{1}} E_{2}, E_{3}\right)=\delta \tau, & g\left(\nabla_{E_{1}} E_{3}, E_{2}\right)=-\delta \tau, & g\left(\nabla_{E_{2}} E_{1}, E_{3}\right)=-\delta \tau \\
g\left(\nabla_{E_{2}} E_{3}, E_{1}\right)=\delta \tau, & g\left(\nabla_{E_{3}} E_{1}, E_{2}\right)=-\delta \tau, & g\left(\nabla_{E_{3}} E_{2}, E_{1}\right)=\delta \tau
\end{array}
$$

According to (3.4), the section $\phi=\psi_{1} E_{1}+\psi_{2} E_{2}+\psi_{3}$ is holomorphic if and only if

$$
\begin{align*}
& \frac{\partial \psi_{1}}{\partial \bar{z}}+2 \delta \tau \operatorname{Re}\left(\psi_{2} \bar{\psi}_{3}\right)=0 \\
& \frac{\partial \psi_{2}}{\partial \bar{z}}-2 \delta \tau \operatorname{Re}\left(\psi_{1} \bar{\psi}_{3}\right)=0 ; \quad \frac{\partial \psi_{3}}{\partial \bar{z}}-2 i \delta \tau \operatorname{Im}\left(\psi_{1} \bar{\psi}_{2}\right)=0 \tag{4.14}
\end{align*}
$$

Equations (4.14) can be written in terms of the functions G and H defined by (3.7).

$$
\begin{align*}
& \frac{\partial G}{\partial \bar{z}}=-i \delta \tau \bar{H}\left(|G|^{2}-|H|^{2}\right) \tag{4.15}\\
& \frac{\partial H}{\partial \bar{z}}=-i \delta \tau \bar{G}\left(|G|^{2}-|H|^{2}\right) \tag{4.16}
\end{align*}
$$

Therefore, Theorem 4.1 becomes:
Theorem 4.3. Let G and H be complex-valued functions defined in a simply connected domain $\Omega \subset \mathbb{C}$ such that:
(i) G and H are not identically zeros.
(ii) G and H are solutions of (4.15)-(4.16).

Then the map $f:=(x, y, z): \Omega \rightarrow M^{3}(\delta, \tau)$, defined by

$$
\left\{\begin{array}{l}
x(p)=2 \operatorname{Re} \int_{p_{0}}^{p} \delta\left(G^{2}-H^{2}\right) d \rho \\
y(p)=2 \operatorname{Re} \int_{p_{0}}^{p} i \delta\left(G^{2}+H^{2}\right) d \rho \\
z(p)=2 \operatorname{Re} \int_{p_{0}}^{p}-y \tau\left(G^{2}-H^{2}\right)+i x \tau\left(G^{2}+H^{2}\right)+2 G H d \rho
\end{array}\right.
$$

is a conformal minimal immersion.

References

[1] K. Weierstrass, Forsetzung der Undersuchung ber die Minimalfl chen, Mathematische werke, Vol. 3, Verlagsbuchhandlung, Hillesheim, 1866, 219-248.
[2] A. Enneper, Nachr k nigl. Gesell. Wissensch. Georg, Augutus-Univ., G ttingen 12(1868), 258.
[3] F. Mercuri, S. Montaldo and P. Piu, A Weierstrass representation formula for minimal surfaces in \mathbb{H}_{3} and $\mathbb{H}^{2} \times \mathbb{R}$, Acta Mathematica Sinica, English series 22(6) (November 2006), 1603-1612.
[4] R. Osserman, A Survey of Minimal Surfaces, Van Nostrand, 1969.
[5] L. Bianchi, Lezioni di geometrie differenziale, E. Spoeri Librao-Editore, 1894.
[6] L. Bianchi, Sugli sazi a tre dimensioni che ammetono un groupo continuo di moveimenti, Memorie di Mathematica di Fisica della Societa. It aliana delle Scienze, Serie Tereza XI(1898), 267-352.
[7] G. Vranceanu, Le on de G ometrie Diff rentielle I, Ed. Acad. Rep. Pop. Roun., Bucarest 1947.
[8] E. Cartan, Le on sur la g ometrie des espaces de Riemann, 2nd edition, Gauthier-Villards, Paris, 1946.
[9] D.A. Berdinski and I.A. Taimanov, Surfaces in three-dimensional Lie groups, Sibirsk. Mat., Zh. 46)6) (2005), 1248-1264; translation in Siberian Math. J. 46(6) (2005), 1005-1019.
[10] D. Nelson, T. Piran and S. Weinberg, Statistical Mechanics of Membranes and Surfaces, World Scientific, Singapore, 1999.
[11] M. Lachi ze-Rey and J. Luminet, Cosmic topology, Phys. Rep. 254 (1995), 135-214.
[12] W.M. Thurston, Three dimensional Geometry and topology I, Princeton Math. Series., Vol. 35 (S. Levy (editor)).
[13] M. Belkhelfa, F. Dillen and J. Inoguchi, Surfaces with parallel second fundamental form in Bianchi-Cartan-Vrranceanu spaces, in: PDEs, submanifolds and Affine Differential Geometry, B. Opozda, U. Simon and M. Wiehe (editors), Banach Center Publ. 57, Polish Acad. Sci. Warsaw, 2002, pp. 67-87.
[14] J. Van der Veken, Higher order parallel surfaces in three-dimensional homogeneous spaces, preprint, 2006, DG/0604541.
[15] Abdullah Yildirim, On Lorentzian BCV spaces, International Journal of Mathematical Archive 3(4) (2012), 1365-1371.
[16] Abdullah Yildirim, On Sassakian BCV spaces, International Mathematical Forum 6(34) (2011), 1669-1684.
[17] R. Caddeo, S. Montaldo, C. Oniciuc and P. Piu, The Euler-Lagrange method for biharmonic curves, Mediter. J. Math. 3(3-4) (2006), 449-465.
[18] J.T. Cho, J. Inoguchi and J.E. Lee, Biharmonic curves in 3-dimensional Sassakian space forms, Ann. Mat. Pura Appl., to appear.
M. Koivogui, Institut de Math matiques et de Sciences Physiques, B.P. 613, PortoNovo, B nin.
E-mail: koivoguimkayanfa@ymail.com
L. Todjihounde, Institut de Math matiques et de Sciences Physiques, B.P. 613, PortoNovo, B nin.
E-mail: leonardt@imsp-uac.org
M. Kourouma, Ufr de Math matiques et informatique, Universit de cocody, C te d'Ivoire.
E-mail: mkouroumafr@yahoo.fr

Received March 1, 2012
Accepted June 26, 2012

