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Abstract. In this present work, authors studied and investigated the concept of (p, q)-Chebyshev
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1. Introduction
Let A denote the class of all functions f (z) which are analytic in the open unit disk
U= {z ∈C : |z| < 1} of the form:

f (z)= z+
∞∑

k=2
akzk = z+a2z2 +a3z3 + . . . (z ∈U). (1.1)

Further, we shall denote the subclass of all functions in A which are univalent in U is denoted
by S .
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The well known example for the class S is the Koebe function

K(z)= z
(1− z)2 =

∞∑
n=1

nzn = z+2z2 +3z3 +·· · (z ∈U)

which maps U onto the complex plane except for a slit along the negative real axis from w =−∞
to w =−1

4 . The Koebe one-quater theorem [4] states that the image of U under every function
f (z) from S contains a disk of radius 1/4. Hence every univalent function f has an inverse f −1

satisfying f −1( f (z))= z, (z ∈U) and

f −1( f (w))= w, (|w| < r0( f ), r0( f )≥ 1/4)

where

g(w)= f −1(w)= w−a2w2 + (2a2
2 −a3)w3 − (5a3

2 −5a2a3 +a4)w4 + . . . . (1.2)

Historically speaks, the interest on estimates the initial coefficients |a2| and |a3| on bi-
univalent functions for the different subclasses are keep on by the researchers in the filed of
geometric function theory. The functions in the class Σ, Brannan and Clunie [8], and Srivastava
et al. [13] proved some results within these coefficient for different classes. Moreover, Brannan
and Taha [2] introduced the bi-univalent function class Σ for certain subclasses of S ∗(α) and
C (α). Several authors worked on Chebyshev polynomial expansion to find coefficient estimates
for bi-univalent functions defined in the open unit diskṠtill it attracts more attention on
researches in this field.

Most recent studies of Kizilates et al. [9] and Altinkaya et al. [1] motivated us to define the
new class of Sakaguchi type function subordinate to (p, q)− Chebyshev polynomials.

Let f (z) and g(z) be two analytic functions, we say that f (z) is subordinate to g(z) written

f (z)≺ g(z) (z ∈U)

if there exist an analytic function ω such that

ω(0)= 0, |ω(z)| < 1 and f (z)= g(ω(z)).

Chebyshev polynomial of the second kind is the natural generalization of Chebyshev
polynomial of first kind. It can be used in different areas of mathematics like theory of
approximation, linear algebra, discrete analysis, representation theory etc., and also in physics
[3,5–7,9–12,14].

For n ≥ 2 and 0< q < p ≤ 1, the recurrence relation for the (p, q)-Chebyshev polynomials of
second kind is defined by:

Un(x,s, p, q)= (pn + qn)xUn−1(x,s, p, q)+ (pq)n−1sUn−2(x,s, p, q),

with the initial values U0(x,s, p, q)= 1 and U1(x,s, p, q)= (p+ q)x and s is a variable.
In slight view of this recurrence relation, we will give the list of some special cases of the

(p, q)-Chebyshev polynomials of second kind as follows:

(i) Un(x/2,s, p, q)= Fn(x,s, p, q) (p, q)-Fibonacci polynomial,

(ii) Un(x,−1,1,1)=Un(x) second kind of Chebyshev polynomials,

(iii) Un(x/2,1,1)= Fn+1(x) Fibonacci polynomials,

(iv) Un(1/2,1,1)= Fn+1 Fibonacci numbers,
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(v) Un(x,1,1,1)= Pn+1(x) Pell polynomials,

(vi) Un(1,1,1,1)= Pn+1 Pell numbers,

(vii) Un(1/2,2y,1,1)= Jn+1(y) Jacobsthal polynomials,

(viii) Un(1/2,2,1,1)= Jn+1 Jacobsthal numbers.

Generating functions are very powerful tool in geometric function theory. Let us turn to the
concept of defining the generating function of (p, q)-Chebyshev polynomial of second kind.

Gp,q(z)= 1
1− xpzηp − xqzηq −spqz2ηp,q

=
∞∑

n=0
Un(x,s, p, q)zn (z ∈U), (1.3)

where ηq f (z)= f (qz), known as Fibonacci operator introduced and studied by [11]. Similarly,
the operator ηp,q f (z)= f (pqz).

2. The Class SΣ(G , s, t) and the Fekete- Szegö Problem
From the above brief introduction, in this section we defining the new class SΣ(G , s, t) by
combining the concept of Sakaguchi type functions and subordination with (p, q)-Chebyshev
polynomial.

Definition 1. The function f ∈ Σ is said to be in the class SΣ(G , s, t) if it holds the following
subordination:

(s− t)z f (z)
f (sz)− f (tz)

≺Gp,q(z) (z ∈U), (2.1)

and
(s− t)ωg(ω)
g(sω)− g(tω)

≺Gp,q(ω) (ω ∈U), (2.2)

where g(ω)= f −1(ω), s, t ∈C with s 6= t, |t| ≤ 1.

Remark 1. For p = q = 1 and s=−1, the above class can be reduced to the subclass SΣ(H , z, x)
and defined as

(s− t)z f (z)
f (sz)− f (tz)

≺H (z, x) (z ∈U)

and
(s− t)ωg(ω)
g(sω)− g(tω)

≺H (ω, x) (ω ∈U). (2.3)

Let φ and ϕ be two analytic functions defined in U such that φ(0)=ϕ(0)= 0 and |φ(z)| < 1,
|ϕ(ω)| < 1, that is

|φ(z)| = |c1z+ c2z2 + c3z3 + . . . | < 1, (z ∈U), (2.4)

|ϕ(ω)| = |d1ω+d2ω
2 +d3ω

3 + . . . | < 1, (ω ∈U) (2.5)

and it is well known that

|cn| ≤ 1, |dn| ≤ 1, n ∈N. (2.6)
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Theorem 1. Let f ∈A be in the class SΣ(G , s, t). Then

|a2| ≤
(p+ q)x

√
(p+ q)x√

|(3−2s−2t+ st)(p+ q)2x2 − (2− s− t)2
(
(p2 + q2)(p+ q)x2 + pqs

) | ,
|a3| ≤ (p+ q)x

[
1

(3− s2 − t2 − st)
+ (p+ q)x

(2− s− t)2

]
and for any real µ,

|a3 −µa2
2| ≤


(p+ q)x

(3− s2 − t2 − st)
if |µ−1| ≤σ1

(p+ q)3x3|µ−1|
(3−2s−2t+ st)(p2 + q2)x2 − (2− s− t)2

[
(p2 + q2)x2(p+ q)+ pqs

] if |µ−1| ≥σ1

where

σ1 =
(3−2s−2t+ st)− (2− s− t)2

(
(p2+q2)
(p+q) + pqs

(p+q)2x2

)
(3− s2 − t2 − st)

.

Proof. Let f ∈ SΣ(G , s, t), then there exist an analytic functions φ and ϕ defined in (2.4) and
(2.5) such that

(s− t)z f (z)
f (sz)− f (tz)

=Gp,q(φ(z)) (2.7)

and
(s− t)ωg(ω)
g(sω)− g(tω)

=Gp,q(ϕ(ω)). � (2.8)

Using the above equations, we have
(s− t)z f (z)
f (sz)− f (tz)

=U0(x,s, p, q)+U1(x,s, p, q)φ(z)+U2(x,s, p, q)φ2(z)+ . . . ,

(s− t)ωg(ω)
g(sω)− g(tω)

=U0(x,s, p, q)+U1(x,s, p, q)ϕ(ω)+U2(x,s, p, q)ϕ2(ω)+ . . . .

Now from the series expansion of φ(z) and ϕ(ω), we write
(s− t)z f (z)
f (sz)− f (tz)

= 1+U1(x,s, p, q)c1z+ [
U1(x,s, p, q)c2 +U2(x,s, p, q)c2

1
]

z2 + . . . , (2.9)

(s− t)ωg(ω)
g(sω)− g(tω)

= 1+U1(x,s, p, q)d1ω+ [
U1(x,s, p, q)d2 +U2(x,s, p, q)d2

1
]
ω2 + . . . . (2.10)

If we equate the coefficients of z and z2 on both sides of (2.9) and (2.10), then we have

(2− s− t)a2 =U1(x,s, p, q)c1, (2.11)

(3− s2 − t2 − st)a3 − (2s+2t− s2 − t2 −2st)a2
2 =U1(x,s, p, q)c2 +U2(x,s, p, q)c2

1 (2.12)

and

− (2− s− t)a2 =U1(x,s, p, q)d1, (2.13)

(6− s2 − t2 −2s−2t)a2
2 − (3− s2 − t2 − st)a3 =U1(x,s, p, q)d2 +U2(x,s, p, q)d2

1. (2.14)

From (2.11) and (2.13), it is clear that

c1 =−d1 . (2.15)

Communications in Mathematics and Applications, Vol. 12, No. 3, pp. 691–697, 2021



Studies on Coefficient Estimates and Fekete-Szegö Problem. . . : D. Kavitha and K. Dhanalakshmi 695

Also squaring and adding of (2.11) and (2.13),
2(2− s− t)2a2

2

U2
1 (x,s, p, q)

= c2
1 +d2

1 . (2.16)

Now, by adding (2.12) and (2.14) we get

2(3−2s−2t+ st)a2
2 =U1(x,s, p, q)(c2 +d2)+U2(x,s, p, q)(c2

1 +d2
1). (2.17)

Making use of (2.16) in (2.17)[
2(3−2s−2t+ st)U2

1 (x,s, p, q)−2(2− s− t)2U2(x,s, p, q)
]
a2

2 =U3
1 (x,s, p, q)(c2 +d2), (2.18)

a2
2 =

U3
1 (x,s, p, q)(c2 +d2)[

2(3−2s−2t+ st)U2
1 (x,s, p, q)−2(2− s− t)2U2(x,s, p, q)

] . (2.19)

From (2.15) and (2.18) together with (2.6), we obtained that

|a2| ≤
(p+ q)x

√
(p+ q)x√

|(3−2s−2t+ st)(p+ q)2x2 − (2− s− t)2
(
(p2 + q2)(p+ q)x2 + pqs

) | . (2.20)

In order to estimates the bound on |a3|, we subtract (2.15) from (2.13) and get

2(3− s2 − t2 − st)(a3 −a2
2)=U1(x,s, p, q)(c2 −d2)+U2(x,s, p, q)(c2

1 −d2
1). (2.21)

In view of (2.16) and (2.17), the above equation becomes

a3 = U1(x,s, p, q)(c2 −d2)
2(3− s2 − t2 − st)

+ U2
1 (x,s, p, q)(c2

1 +d2
1)

2(2− s− t)2 .

Finally, we find the desired inequality using (2.6),

|a3| ≤ (p+ q)x
[

1
(3− s2 − t2 − st)

+ (p+ q)x
(2− s− t)2

]
. (2.22)

For any real µ,

a3 −µa2
2 = (1−µ)a2

2 + (a3 −a2
2)

= U1(x,s, p, q)
2

[(
y(µ)+ 1

(3− s2 − t2 − st)

)
c2 +

(
y(µ)− 1

(3− s2 − t2 − st)

)
d2

]
,

where

y(µ)= U2
1 (x,s, p, q)(1−µ)

(3−2s−2t+ st)U2
1 (x,s, p, q)− (2− s− t)2U2(x,s, p, q)

.

Hence, we have reached the desired assertion of the Theorem 1,

|a3 −µa2
2| ≤

{ (p+q)x
(3−s2−t2−st) , 0≤ |y(µ)| ≤ 1

(3−s2−t2−st) ,

(p+ q)x|y(µ)| |y(µ)| ≤ 1
(3−s2−t2−st) .

Next, we have some special case of Theorem 1 for different values of the parameters p, q, s
as corollaries.

Corollary 1. Let f ∈A be in the class SΣ(H , z, x). Then

|a2| ≤ 2x
p

2x√
|4(3−2s−2t+ st)x2 − (2− s− t)2(4x2 −1)|

,

|a3| ≤ 2x
[

1
(3− s2 − t2 − st)

+ 2x
(2− s− t)2

]
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and for any real µ,

|a3 −µa2
2| ≤


2x

(3− s2 − t2 − st)
if |µ−1| ≤σ2

8x3|µ−1|
(3−2s−2t+ st)2x2 − (2− s− t)2[4x2(p+ q)−1]

if |µ−1| ≥σ2 ,

where

σ2 = (3−2s−2t+ st)− (2− s− t)2(4x2 −1)
4x2(3− s2 − t2 − st)

.

3. Conclusion
In the field of geometric function theory, the problem of finding Fekete-Szegö result has always
been main interest and attention of active researchers. With the concept of (p, q)-Chebyshev
polynomial of second kind, we have derived the initial coefficients and Fekete-Szegö theorem
for the subclass od bi-univalent function with respect to the subordination defined in the open
unit disk.
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