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1. Introduction
Let V be a positive random variable with characteristic function ϕV (u) and W be a random
variable following the power distribution with distribution function FW (w)= wa, where 0≤ w ≤ 1
and a is a positive real number. If V and W are independent then the random variable C =VW
is said a-unimodal [2,3,7]. It is readily shown that the characteristic function of C has the form

ϕC(u)= a
∫ 1

0
ϕV (uw)wa−1dw .

Moreover, let N be a discrete random variable following the Poisson distribution with
parameter λ and {Tn, n = 1,2, . . .} be a sequence of positive and independent random variables
distributed as the random variable T with characteristic function ϕT(u).
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If N, {Tn, n = 1,2, . . .} are independent then the random variable

J = T1 +T2 + . . .+TN

is said a Poisson random sum [6]. It is also readily shown that the characteristic function of has
the form

ϕJ(u)= exp
{
λ[ϕT(u)−1]

}
.

It is generally recognized that the class of a-unimodal random variables constitute a
useful analytical tool for investigating ordinary unimodality, stability, convexity, exponentiality,
normality, concavity and other fundamental properties of a wide variety of probability
distributions [5]. It is also generally recognized that Poisson random sums are extremely
powerful analytical tools for studying infinitely divisible distributions, mixtures of distributions,
service systems, power mixtures of distributions, stochastic processes and many other structural
classes of probability theory [10].

From a theoretical point of view it can be said that the results of the present paper constitute
the continuous analogue of the discrete results established by Artikis and Artikis [4]. The main
contribution of this paper is incorporated in the following section.

2. Characterization of a Probability Distribution
The present section of the paper characterizes an important probability distribution by
incorporating the fundamental concept of equality in distribution of two Poisson random sums
and making use of characteristic functions. More precisely, this section concentrates on the
solution of an integral equation for characteristic functions [1].

Theorem. Let X be a positive random variable with differential infinite divisible characteristic
function ϕX (u) and let Y be a Poisson random sum with characteristic function

ϕΥ(u)= exp
{
λ[ϕX (u)−1]

}
, λ> 0.

We suppose that S is a positive random variable with finite mean and characteristic function
ϕS(u) and L is a Poisson random sum of a-unimodal random variables with characteristic
function

ϕL(u)= exp
{
λ

[
a

∫ 1

0
ϕX (uw)ϕS(uw)wa−1dw−1

]}
,

then the characteristic function of the random variable X has the form

ϕX (u)= exp
{

a
∫ u

0

ϕS(w)−1
w

dw
}

if, and only if

Y d= L, (2.1)

where d= denotes equality in distribution.

Proof. Only the sufficiency condition will be proved since the necessity condition can be proved
by reversing the argument. If we use the characteristic function ϕY (u) and the characteristic
ϕL(u) in (2.1) we get the integral equation

exp
{
λ[ϕX (u)−1]

}= exp
{
λ

[
a

∫ 1

0
ϕX (uw)ϕS(uw)wa−1dw−1

]}
,
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or equivalently the integral equation

exp
{
λ[ϕX (u)−1]

}= exp
{
λ

[
a
ua

∫ u

0
ϕX (w)ϕS(w)wa−1dw−1

]}
. (2.2)

It is easily shown that the integral equation in (2.2) can be written in the form

ϕX (u)= a
ua

∫ u

0
ϕX (w)ϕS(w)wa−1dw. (2.3)

Multiplying both sides of the integral equation in (2.3) by ua, we get the integral equation

uaϕX (u)= a
∫ u

0
ϕX (w)ϕS(w)wa−1dw (2.4)

and then differentiating the integral equation in (2.4), we get the integral equation

aua−1ϕX (u)+ua dϕX (u)
du

= aϕX (u)ϕS(u)ua−1

which for u 6= 0 can be written in the form
u
a

dϕX (u)
du

=ϕX (u)ϕS(u)−ϕX (u). (2.5)

If we integrate in (2.5) with due regard to the boundary conditions

ϕX (0)= 1

and

ϕL (0)= 1,

we obtain the characteristic function

ϕX (u)= exp
{

a
∫ u

0

ϕS(w)−1
w

dw
}

.

It is of some particular practical importance to mention that the characteristic function ϕX (u)
has been established as a member of the extremely significant class of selfdecomposable
characteristic functions [11]. More precisely, such an establishment substantially extents
the practical and theoretical applicability of the random variable X in a very wide variety of
scientific disciplines [8,9,12].

3. Conclusions
The presence of selfdecomposable distributions in various research areas of probability theory
frequently facilitates the formulation, investigation and implementation of analytical activities
in such areas. Incorporation of integral equations of characteristic functions, belonging to
well known classes of probability distributions, strongly support the role of the property of
selfdecomposability as strong research tool.
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