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On Cesàro Sequence Space defined

by an Orlicz Function

Indu Bala

Abstract. In this paper we provide a suitable generalization of the sequence
space cesM of Orlicz [6] by using a sequence of strictly positive real numbers
and study various topological properties and inclusion relations which generalize
several known results of Orlicz [6], Shiue [9], Sanhan and Suantai [8], and
Leibowitz [3].

1. Introduction

Lindenstrauss and Tzafriri [4] used the idea of an Orlicz function M to construct

the sequence space ℓM of all sequences of scalars (xk) such that
∞
∑

k=1

M
�

|xk|

ρ

�

<∞

for some ρ > 0. The space ℓM equipped with the norm

‖x‖ = inf

�

ρ > 0 :
∞
∑

k=1

M

�

|xk|

ρ

�

≤ 1

�

is a BK space [1, p. 300] usually called an Orlicz sequence space. The space ℓM is
closely related to the space ℓp which is an Orlicz sequence space with M(x) = x p,
1≤ p <∞. We recall [1, 4] that an Orlicz function M is a function from [0,∞) to
[0,∞) which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0
for all x > 0 and M(x) → ∞ as x → ∞. Note that an Orlicz function is always
unbounded.

An Orlicz function M is said to satisfy the ∆2-condition for all values of u if
there exists a constant K > 0 such that M(2u) ≤ K M(u), u ≥ 0. It is easy to see
[2] that always K > 2. A simple example of an Orlicz function which satisfies
the ∆2-condition for all values of u is given by M(u) = a|u|α(α > 1), since
M(2u) = a2α|u|α = 2αM(u). The Orlicz function M(u) = e|u| − |u| − 1 does not
satisfy the ∆2-condition.

The∆2-condition is equivalent to the inequality M(lu)≤ K(l)M(u)which holds
for all values of u, where l can be any number greater than unity.
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An Orlicz function M can always be represented in the following integral form

M(x) =

∫ x

0

p(t)d t

where p known as the kernel of M , is right differentiable for t ≥ 0, p(0) = 0,
p(t)> 0 for t > 0, p is non-decreasing and p(t)→∞ as t →∞.

Let w and ℓ0 denote the spaces of all scalar and real sequences, respectively. For
1< p <∞, Shiue [9] introduced the Cesàro sequence space cesp by

cesp =

�

x ∈ ℓ0 :
∞
∑

n=1

�

1

n

n
∑

k=1

|xk|

�p

<∞

�

and showed that it is a Banach space when equipped with the norm

‖x‖ =

� ∞
∑

n=1

�

1

n

n
∑

k=1

|xk|

�p�1/p

.

Some geometric properties of the Cesàro sequence space cesp were studied by many
authors. Sanhan and Suantai [8] introduced and studied a generalized Cesàro
sequence space ces(p), where p = (pn) is a bounded sequence of positive real
numbers. For any Orlicz function M , Orlicz [6] introduced and studied the Cesàro
sequence space cesM .

In this paper we propose to extend cesM to a more general space ces(M , p) in
the same manner as ℓ1 was extended to ℓ(p) (Simons [10]). We study various
algebraic and topological properties of this space. Certain inclusion relations
between ces(M , p) spaces have been established. Some information on multipliers
for ces(M , p) space has also been given. We also define composite space ces(M v , p)

by using composite Orlicz function M v .

We now introduce the generalization of Cesàro sequence space using an Orlicz
function.

Definition 1.1. Let M be an Orlicz function and p = (pn) be a bounded sequence
of positive real numbers. We define the following sequence space

ces(M , p) =

�

x ∈ w :
∞
∑

n=1

�

M

�

1
n

n
∑

k=1

|xk|

ρ

��pn

<∞ for some ρ > 0

�

.

Some well-known spaces are obtained by specializing M and p.

(i) If M(x) = x , pn = p(1≤ p <∞) for all n, then ces(M , p) = cesp (Shiue [9]).
(ii) If M(x) = x , then ces(M , p) = ces(p) (Sanhan and Suantai [8]).

(iii) If pn = 1 for all n, then ces(M , p) = cesM (Orlicz [6]) and ces(M , p) = cesΦ for
an Orlicz function Φ (Petrot and Suantai [7]).

The following inequalities (see, e.g., [5, p. 190]) are needed throughout the
paper.
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Let p = (pk) be a bounded sequence of strictly positive real numbers. If
H = supk pk, then for any complex ak and bk,

|ak + bk|
pk ≤ C(|ak|

pk + |bk|
pk ), (1.1)

where C =max(1,2H−1). Also for any complex λ,

|λ|pk ≤max(1, |λ|H ). (1.2)

2. Linear Topological Structure of ces(M , p) Space

In this section we establish some algebraic and topological properties of the
sequence space defined above.

Theorem 2.1. For any Orlicz function M, ces(M , p) is a linear space over the complex

field C.

Proof. Let x , y ∈ ces(M , p) and α,β ∈ C. In order to prove the result we need to
find some ρ3 > 0 such that

∞
∑

n=1

�

M

�

1
n

n
∑

k=1

|αxk + β yk|

ρ3

��pn

<∞ .

Since x , y ∈ ces(M , p), there exist a positive ρ1 and ρ2 such that

∞
∑

n=1

�

M

�

1
n

n
∑

k=1

|xk|

ρ1

��pn

<∞

and

∞
∑

n=1

�

M

�

1
n

n
∑

k=1
|yk|

ρ2

��pn

<∞.

Define ρ3 =max(2|α|ρ1, 2|β |ρ2). Since M is non-decreasing and convex,

∞
∑

n=1

�

M

�

1
n

n
∑

k=1

|αxk +β yk|

ρ3

��pn

≤

∞
∑

n=1

1

2pn

�

M

�

1
n

n
∑

k=1

|xk|

ρ1

�

+M

�

1
n

n
∑

k=1

|yk|

ρ2

��pn

≤max(1,2H−1)

� ∞
∑

n=1

�

M

�

1
n

n
∑

k=1
|xk|

ρ1

��pn

+

∞
∑

n=1

�

M

�

1
n

n
∑

k=1
|yk|

ρ2

��pn
�

so that αx+β y ∈ ces(M , p). This proves that ces(M , p) is a linear space over C. �
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Theorem 2.2. ces(M , p) is a topological linear space, paranormed by

g(x) = inf

�

ρpn/G :

� ∞
∑

n=1

�

M

�

1
n

n
∑

k=1
|xk|

ρ

��pn
�

1
G

≤ 1

�

, (2.1)

where H = sup pn <∞ and G =max(1, H).

The proof follows by using standard techniques and the fact that every
paranormed space is a topological linear space [11, p. 37].

Proposition 2.3 ([1, p. 300]). We have, for x in ℓM , the inequality

∑

i≥1

M

�

|x i |

‖x‖(M)

�

≤ 1,

where ‖x‖(M) = inf

�

k > 0 :
∑

i≥1
M
�

|x i |

k

�

≤ 1

�

.

Theorem 2.4. Let 1 ≤ pn < ∞, then ces(M , p) is a Fréchet space paranormed

by (2.1).

Proof. In view of Theorem 2.2, it suffices to prove the completeness of ces(M , p).
Let (x (s)) be a Cauchy sequence in ces(M , p). Let r and x0 be fixed. Then for each
ε

r x0
> 0 there exists a positive integer N such that

g(x (s) − x (t))<
ε

r x0
, for all s, t ≥ N .

Using (2.1) and Proposition 2.3, we get

� ∞
∑

n=1

�

M

�

1
n

n
∑

k=1
|x
(s)

k
− x

(t)

k
|

g(x (s) − x (t))

��pn
�1/G

≤ 1.

Thus

∞
∑

n=1

�

M

�

1
n

n
∑

k=1
|x
(s)

k
− x

(t)

k
|

g(x (s) − x (t))

��pn

≤ 1.

Since 1≤ pn <∞, it follows that M

� 1
n

n
∑

k=1
|x
(s)

k
−x

(t)

k
|

g(x (s)−x (t))

�

≤ 1, for each n≥ 1.

We choose r > 0 such that
�

x0

2

�

rp
�

x0

2

�

≥ 1, where p is the kernel associated

with M . Hence,

M

�

1
n

n
∑

k=1
|x
(s)

k
− x

(t)

k
|

g(x (s) − x (t))

�

≤

�

x0

2

�

rp

�

x0

2

�
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for each n ∈ N. Using the integral representation of Orlicz function M , we get

1

n

n
∑

k=1

|x
(s)

k
− x

(t)

k
| ≤

r x0

2
g(x (s) − x (t))<

ε

2
, for all s, t ≥ N .

Hence for each fixed k, (x (s)
k
) is a Cauchy sequence in C. Since C is complete, as

s→∞, x
(s)

k
→ xk, say, for each k. For given ε > 0, choose an integer n0 > 1 such

that g(x (s)− x (t))< ε for all s, t ≥ n0 and a ρ > 0, such that g(x (s)− x (t))< ρ < ε.
Since

� m
∑

n=1

�

M

�

1
n

n
∑

k=1
|x
(s)

k
− x

(t)

k
|

ρ

��pn
�1/G

≤ 1, for all s, t ≥ n0.

Now, using continuity of M and taking t →∞ in the above inequality, we get

� m
∑

n=1

�

M

�

1
n

n
∑

k=1
|x
(s)

k
− xk|

ρ

��pn
�1/G

≤ 1, for all s ≥ n0.

Letting m→∞, we get g(x (s) − x) < ρ < ε for all s ≥ n0. Thus (x (s)) converges
to x in the paranorm of ces(M , p). Since (x (s)) ∈ ces(M , p) and M is continuous, it
follows that x ∈ ces(M , p). �

3. Inclusion between ces(M , p) Spaces

We now investigate some inclusion relations between ces(M , p) spaces.

Theorem 3.1. If p = (pn) and q = (qn) are bounded sequences of positive real

numbers with 0 < pn ≤ qn < ∞ for each n, then for any Orlicz function M,

ces(M , p)⊆ ces(M ,q).

Proof. Let x ∈ ces(M , p). Then there exists some ρ > 0 such that

∞
∑

n=1

�

M

�

1
n

n
∑

k=1
|xk|

ρ

��pn

<∞ .

This implies that M

� 1
n

n
∑

k=1
|xk|

ρ

�

≤ 1 for sufficiently large values of n, say n≥ n0 for

some fixed n0 ∈ N. Since M is non-decreasing and pn ≤ qn, we have

∞
∑

n≥n0

�

M

�

1
n

n
∑

k=1

|xk|

ρ

��qn

≤

∞
∑

n≥n0

�

M

�

1
n

n
∑

k=1

|xk|

ρ

��pn

<∞.

This shows that x ∈ ces(M ,q) and completes the proof. �
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Theorem 3.2. If r = (rn) and t = (tn) are bounded sequences of positive real

numbers with 0< rn, tn <∞ and if pn =min(rn, tn), qn =max(rn, tn), then for any

Orlicz function M, ces(M , p) = ces(M , r)∩ ces(M , t) and ces(M ,q) = G, where G is

the subspace of w generated by ces(M , r)∪ ces(M , t).

Proof. It follows from Theorem 3.1 that ces(M , p)⊆ ces(M , r)∩ ces(M , t) and that

G ⊆ ces(M ,q).
For any complex λ, |λ|pn ≤ max(|λ|rn , |λ|tn ); thus ces(M , r) ∩ ces(M , t) ⊆

ces(M , p).
Let A= {n : rn ≥ tn} and B = {n : rn < tn}. If x ∈ ces(M ,q), we write

yn = xn (n ∈ A) and yn = 0 (n ∈ B);

zn = 0 (n ∈ A) and zn = xn (n ∈ B).

Then since x ∈ ces(M ,q), there exists some ρ > 0 such that

∞
∑

n=1

�

M

�

1
n

n
∑

k=1

|xk|

ρ

��qn

<∞ .

Now

∞
∑

n=1

�

M

�

1
n

n
∑

k=1
|yk|

ρ

��rn

=
∑

n∈A

+
∑

n∈B

=
∑

n∈A

�

M

�

1
n

n
∑

k=1
|xk|

ρ

��qn

<∞

and so y ∈ ces(M , r) ⊆ G. Similarly, z ∈ ces(M , t) ⊆ G. Thus, x = y + z ∈ G. We
have proved that ces(M ,q)⊆ G, which gives the required result. �

Corollary 3.3. The three conditions ces(M , r) ⊆ ces(M , t), ces(M , p) = ces(M , r)

and ces(M , t) = ces(M ,q) are equivalent.

Corollary 3.4. ces(M , r) = ces(M , t) if and only if ces(M , p) = ces(M ,q).

Finally some information on multipliers for ces(M , p) is given below. For any set
E of sequences the space of multipliers of E, denoted by S(E), is given by

S(E) = {a ∈ w : ax ∈ E for all x ∈ E}.

Theorem 3.5. For an Orlicz function M which satisfies the ∆2-condition, we have

ℓ∞ ⊂ S(ces(M , p)).

Proof. Let a = (ak) ∈ ℓ∞, T = supk |ak| and x = (xk) ∈ ces(M , p). Then

∞
∑

n=1

�

M

�

1
n

n
∑

k=1

|xk|

ρ

��pn

<∞ for some ρ > 0 .

Since M satisfies the ∆2-condition, there exists a constant K such that

∞
∑

n=1

�

M

�

1
n

n
∑

k=1

|ak xk|

ρ

��pn

≤

∞
∑

n=1

�

M

�

1
n

n
∑

k=1

|ak| |xk|

ρ

��pn
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≤

∞
∑

n=1

�

M

�
(1+ [T]) 1

n

n
∑

k=1

|xk|

ρ

��pn

≤ (K(1+[T]))H
∞
∑

n=1

�

M

�

1
n

n
∑

k=1
|xk|

ρ

��pn

<∞,

where [T] denotes the integer part of T . Hence a ∈ S(ces(M , p)). �

4. Composite Space ces(M v, p) using Composite Orlicz Function M v

Taking Orlicz function M v instead of M in the space ces(M , p), we can define
the composite space ces(M v , p) as follows.

Definition 4.1. For a fixed natural number v, we define

ces(M v , p) =

�

x ∈ w :
∞
∑

n=1

�

M v

�

1
n

n
∑

k=1

|xk|

ρ

��pn

<∞ for some ρ > 0

�

.

Theorem 4.2. For any Orlicz function M and v ∈ N,

(i) ces(M v , p)⊆ ces(p) if there exists a constant α ≥ 1 such that M(t)≥ αt for all

t ≥ 0.

(ii) Suppose there exists a constant β , 0< β ≤ 1 such that M(t)≤ β t for all t ≥ 0
and let m, v ∈ N be such that m< v, then ces(p)⊆ ces(Mm, p)⊆ ces(M v , p).

Proof. (i) Since M(t) ≥ αt for all t ≥ 0 and M is non-decreasing and convex, we
have M v(t)≥ αv t for each v ∈ N. Let x ∈ ces(M v , p). Using (1.2), we have

∞
∑

n=1

�

1

n

n
∑

k=1

|xk|

�pn

≤max(1,ρH)max(1,α−vH)

∞
∑

n=1

�

M v

�

1
n

n
∑

k=1

|xk|

ρ

��pn

and hence x ∈ ces(p).

(ii) Since M(t) ≤ β t for all t ≥ 0 and M is non-decreasing and convex, we have
Mm(t)≤ βm t for each m ∈ N. The first inclusion is easily proved by using (1.2). To
prove the second inclusion, suppose that v −m = r and let x ∈ ces(Mm, p). Again,
using (1.2), we have

∞
∑

n=1

�

M v

�

1
n

n
∑

k=1

|xk|

ρ

��pn

≤max(1,β rH)

∞
∑

n=1

�

Mm

�

1
n

n
∑

k=1

|xk|

ρ

��pn

and hence x ∈ ces(M v , p). �

Example 4.3. The examples of functions satisfying the conditions given in

Theorem 4.2(i),(ii) are M1(t) = et − 1 ≥ t and M2(t) =
t2

1+t
≤ t for all t ≥ 0,

respectively.
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