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On Cesaro Sequence Space defined
by an Orlicz Function

Indu Bala

Abstract. In this paper we provide a suitable generalization of the sequence
space cesy; of Orlicz [6] by using a sequence of strictly positive real numbers
and study various topological properties and inclusion relations which generalize
several known results of Orlicz [6], Shiue [9], Sanhan and Suantai [8], and
Leibowitz [3].

1. Introduction

Lindenstrauss and Tzafriri [4] used the idea of an Orlicz function M to construct

[o9)

the sequence space £,, of all sequences of scalars (x;) such that Y, M (M) <00
k=1

for some p > 0. The space {,; equipped with the norm

x|l :inf{p >0: ZM(M) < 1}
k=1 p

is a BK space [1, p. 300] usually called an Orlicz sequence space. The space £, is
closely related to the space £, which is an Orlicz sequence space with M(x) = x?,
1 < p < 00. We recall [1, 4] that an Orlicz function M is a function from [0, c0) to
[0, 00) which is continuous, non-decreasing and convex with M(0) =0, M(x) > 0
for all x > 0 and M(x) — oo as x — 00. Note that an Orlicz function is always
unbounded.

An Orlicz function M is said to satisfy the A,-condition for all values of u if
there exists a constant K > 0 such that M(2u) < KM(u), u > 0. It is easy to see
[2] that always K > 2. A simple example of an Orlicz function which satisfies
the A,-condition for all values of u is given by M(u) = alu|*(a > 1), since
M(2u) = a2%u|* = 2*M(u). The Orlicz function M(u) = e — |u| — 1 does not
satisfy the A,-condition.

The A,-condition is equivalent to the inequality M (lu) < K(I)M (u) which holds
for all values of u, where [ can be any number greater than unity.
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An Orlicz function M can always be represented in the following integral form

M(x)= f p(t)dt
0

where p known as the kernel of M, is right differentiable for ¢t > 0, p(0) = 0,
p(t) > 0 for t > 0, p is non-decreasing and p(t) — oo as t — 00.

Let w and £° denote the spaces of all scalar and real sequences, respectively. For
1 <p < oo, Shiue [9] introduced the Cesaro sequence space ces, by

o0 1 n p
cesp:{xEZO:Z(—Z|xk|) <oo}
i3

n=1

and showed that it is a Banach space when equipped with the norm

00 n pN 1/p
= (X (5 25m) )
P AN L
Some geometric properties of the Cesaro sequence space ces, were studied by many
authors. Sanhan and Suantai [8] introduced and studied a generalized Cesaro
sequence space ces(p), where p = (p,) is a bounded sequence of positive real
numbers. For any Orlicz function M, Orlicz [6] introduced and studied the Cesaro

sequence space cesy;.

In this paper we propose to extend ces,, to a more general space ces(M,p) in
the same manner as ¢, was extended to £(p) (Simons [10]). We study various
algebraic and topological properties of this space. Certain inclusion relations
between ces(M, p) spaces have been established. Some information on multipliers
for ces(M, p) space has also been given. We also define composite space ces(M", p)
by using composite Orlicz function M.

We now introduce the generalization of Cesaro sequence space using an Orlicz
function.

Definition 1.1. Let M be an Orlicz function and p = (p,) be a bounded sequence
of positive real numbers. We define the following sequence space

00 %Z |Xk| Pa
ces(M,p):{xew:Z[M(k;)] <ooforsomep>0}.
n=1 P

Some well-known spaces are obtained by specializing M and p.
() If M(x) = x,p, =p(1 < p < o0) for all n, then ces(M, p) = ces, (Shiue [9]).
(i) If M(x) = x, then ces(M, p) = ces(p) (Sanhan and Suantai [8]).
(iii) If p, =1 for all n, then ces(M, p) = ces,; (Orlicz [6]) and ces(M, p) = ces4 for
an Orlicz function ® (Petrot and Suantai [7]).

The following inequalities (see, e.g., [5, p. 190]) are needed throughout the
paper.
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Let p = (px) be a bounded sequence of strictly positive real numbers. If
H = supy py, then for any complex a; and by,

lai + bilP* < C(lag Pk + b [P), (1.1
where C = max(1,271). Also for any complex A,

[A[Px < max(1,|A7). (1.2)

2. Linear Topological Structure of ces(M, p) Space

In this section we establish some algebraic and topological properties of the
sequence space defined above.

Theorem 2.1. For any Orlicz function M, ces(M, p) is a linear space over the complex
field C.

Proof. Let x,y € ces(M,p) and a,f8 € C. In order to prove the result we need to
find some p5 > 0 such that

=2 laxy + Byl

R

Since x, y € ces(M, p), there exist a positive p; and p, such that

-Zlkl

R[5 =

. iéw .
3 [u(=5—)] <

Define p; = max(2|a|p;,2|f|p,). Since M is non-decreasing and convex,

and

- Z laxy + Byl

S(E )

I—
TP
o~

n Z |yl

JIRoECI

so that ax+ Sy € ces(M, p). This proves that ces(M, p) is a linear space over C. [J

0 n X
< max(l,ZHl)(Z [M(i

n=1
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Theorem 2.2. ces(M, p) is a topological linear space, paranormed by

1
n |

g(x):inf{ppn/G : (Z {M(T)}pn)a < 1}, 2.1)
n=1

where H =supp, < oo and G = max(1, H).

»
I D=
N

The proof follows by using standard techniques and the fact that every
paranormed space is a topological linear space [11, p. 37].

Proposition 2.3 ([1, p. 300]). We have, for x in £,;, the inequality

|x;|
S ) <o,
<7 Tixllon

where [|x]| ) :inf{k >0: ZM(%) < 1}.

i>1
Theorem 2.4. Let 1 < p, < oo, then ces(M,p) is a Fréchet space paranormed
by (2.1).

Proof. In view of Theorem 2.2, it suffices to prove the completeness of ces(M, p).
Let (x®)) be a Cauchy sequence in ces(M, p). Let r and x, be fixed. Then for each
ﬁ > 0 there exists a positive integer N such that

0

€
g(x® —x)y< — foralls,t >N.
rXxo

Using (2.1) and Proposition 2.3, we get

1 Z |x(S) (t)

N PN\ 1/G
(Z[M(W)H <1,

0 %Z (S) t)| N
;[ (W)] <1.

1 Z |X(A) (f)l

(X(s) x(©)

Thus

Since 1 < p,, < 00, it follows that M <1, foreachn=>1.

We choose r > 0 such that ( )rp (X") > 1, where p is the kernel associated
with M. Hence,
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for each n € N. Using the integral representation of Orlicz function M, we get

1< rx €
- Z |x,(<s) - x,(f)| < 2g(xW —xM)< = foralls,t>N.
n 2 2

Hence for each fixed k, (x,(:)) is a Cauchy sequence in C. Since C is complete, as

s — 00, x](() — X, say, for each k. For given € > 0, choose an integer n, > 1 such

that g(x® —x) < e forall s, t > ny and a p > 0, such that g(x®) —xV) < p <e.
Since

m %lez(j)_xz(ct)l P~ 1/G
(ST TN o sz
n=1 P

Now, using continuity of M and taking t — oo in the above inequality, we get

m 2 Z |x(S) — Xl P 1/G
(Z [M(—)] ) <1, foralls>n,.
n=1 P

Letting m — oo, we get g(x®) — x) < p < € for all s > n,. Thus (x*) converges
to x in the paranorm of ces(M, p). Since (x®)) € ces(M, p) and M is continuous, it
follows that x € ces(M, p). O

3. Inclusion between ces(M, p) Spaces

We now investigate some inclusion relations between ces(M, p) spaces.

Theorem 3.1. If p = (p,) and q = (q,) are bounded sequences of positive real
numbers with 0 < p, < q, < oo for each n, then for any Orlicz function M,
ces(M,p) C ces(M, q).

Proof. Let x € ces(M, p). Then there exists some p > 0 such that

S

n=1
This implies that M :T < 1 for sufficiently large values of n, say n > n,, for

some fixed n, € N. Since M is non-decreasing and p, < q,, we have

S AN AN
SCE S ()]

This shows that x € ces(M, q) and completes the proof. O

M=

1
n

]
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Theorem 3.2. If r = (r,) and t = (t,) are bounded sequences of positive real
numbers with 0 < r,, t,, < oo and if p, = min(r,, t,,), q, = max(r,, t,,), then for any
Orlicz function M, ces(M,p) = ces(M,r) Nces(M,t) and ces(M,q) = G, where G is
the subspace of w generated by ces(M,r) Uces(M, t).
Proof. It follows from Theorem 3.1 that ces(M,p) € ces(M,r) Nces(M, t) and that
G Cces(M,q).
For any complex A, |A[P» < max(|]A|™,|A|"); thus ces(M,r) N ces(M,t) <
ces(M, p).
LetA={n:r,>t,}and B={n:r, < t,}. If x € ces(M, q), we write
Yo=Xx,(n€A) and ¥, =0 (neB);
2z, =0(neA) and 2, = X, (n€B).

Then since x € ces(M, q), there exists some p > 0 such that

-Zlkl

R[]

Lyl % Z

S -2 -n (5

n=1 neB neA

Now

1
n

»
T
i

) <

and so y € ces(M,r) € G. Similarly, z € ces(M,t) € G. Thus, x =y +z € G. We
have proved that ces(M,q) € G, which gives the required result. O

Corollary 3.3. The three conditions ces(M,r) € ces(M,t), ces(M,p) = ces(M,r)
and ces(M, t) = ces(M, q) are equivalent.

Corollary 3.4. ces(M,r) = ces(M,t) if and only if ces(M, p) = ces(M, q).

Finally some information on multipliers for ces(M, p) is given below. For any set
E of sequences the space of multipliers of E, denoted by S(E), is given by

S(E)={a€w:ax €E forall x € E}.

Theorem 3.5. For an Orlicz function M which satisfies the A,-condition, we have
Lo, C S(ces(M, p)).

Proof. Leta =(ay) € ly, T =sup,|a| and x = (x;) € ces(M, p). Then
00 % Z |xk| P
Z [M(L)] < oo forsomep >0.

Ie)

n=1
Since M satisfies the A,-condition, there exists a constant K such that

n
1 Z lag x| 1 Z |ag | 1|

S S )
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&Y X n
<KQA+[TTD] [M(%)]p < o0,

n=1
where [T] denotes the integer part of T. Hence a € S(ces(M, p)). O
4. Composite Space ces(M", p) using Composite Orlicz Function M"”

Taking Orlicz function M" instead of M in the space ces(M,p), we can define
the composite space ces(M”, p) as follows.

Definition 4.1. For a fixed natural number v, we define

n
00 %Z |xk| P
ces(M”,p) = {x ew :Z [M”(L)] < oo for some p > 0}.
n=1 p

Theorem 4.2. For any Orlicz function M and v € N,
(1) ces(M",p) C ces(p) if there exists a constant o > 1 such that M(t) > at for all
t=>0.
(ii) Suppose there exists a constant 3, 0 < 8 < 1 such that M(t) < St forall t >0
and let m,v € N be such that m < v, then ces(p) C ces(M™,p) C ces(M", p).

Proof. (i) Since M(t) > at for all t > 0 and M is non-decreasing and convex, we
have M"(t) > a”t for each v € N. Let x € ces(M"”, p). Using (1.2), we have

M=

1
n ||

Z (% Z |xk|)p" < max(l,pH)max(l,a_VH)Z [MV (%)]pn

n=1 k=1 n=1

and hence x € ces(p).

(ii) Since M(t) < Bt for all t > 0 and M is non-decreasing and convex, we have
M™(t) < ™t for each m € N. The first inclusion is easily proved by using (1.2). To
prove the second inclusion, suppose that v —m = r and let x € ces(M™, p). Again,
using (1.2), we have

n n
n 2 bl 0 ¥ 2

2 (5)] zmecom B e (5]

and hence x € ces(M", p). O

i)

Example 4.3. The examples of functions satisfying the conditions given in
Theorem 4.2(i),(ii) are M;(t) = e* —1 > t and M,(t) = f—jt <tforallt >0,
respectively.
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