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A New Topological Perspective on Quantization in Physics

Hooman Rahimizadeh, Stan Sholar, and Michael Berg

Abstract. We propose a new characterization of classical quantization in physics

in terms of sheaf cohomology on the site of spacetime as a smooth 4-manifold. The

perspective of sheaf cohomology is motivated by a presentation of the Aharonov-

Bohm effect in terms of the integration of differential forms.

1. Introduction

Awkward inconsistencies have notoriously plagued quantum mechanics almost

from the moment of its birth, and certainly ever since the Copenhagen

interpretation crystallized into a prevailing dogma, its ad hoc non-classical statistics

notwithstanding. A noteworthy example of this lamentable state of affairs is the

interpretational status of the Aharonov-Bohm experiment dating back to the early

1960’s. R. Doll and M. Näbauer [8] and, separately, W. Fairbank and B. Deaver

[6] provided experimental verification of the existence of a smallest amount of

flux in the sense of a quantization unit of flux in the amount of h

2e
. Prior to this,

however, in the context of their original experimental work of 1959, Y. Aharonov

and D. Bohm [1] produced a value of h

e
for this minimum unit: the Aharonov-Bohm

law. This lack of agreement reveals the presence on the scene of an unsatisfactory

foundation for interpretation of the indicated experimental data centered on

nothing less than the question of whether and how certain mainstream quantum

mechanical statistical methods should be brought to bear on the situation.

Much of this interpretational difficulty is centered on the fundamental question

of whether, and, if so, to what degree, we are dealing with a disordered quantum

mechanical system. Taking this one step further, ultimately the sticking point is

concerned with the epistemological dichotomy that pits a single system quantum

mechanical reality against that of an ensemble of many particles. Indeed, we

now find ourselves face to face with the mathematically and philosophically

unacceptable manoeuvre of requiring an individual particle (or single quantum
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mechanical system) to manifest the behavior of an ensemble, as though each

member of a set must be perfectly average.

Doubtless it is folly, however, to embark on a philosophical critique or

criticism of this conceit of quantum mechanics at this point in history simply

because, happily, the mathematical formalisms of quantum mechanics are so well

established that to attempt to find fault with this machinery is absurd: there is no

question that we are dealing with a smashingly successful theory. Additionally, if

we take into account the beautiful interplay between the so-called Schrödinger

and Heisenberg pictures, bringing the Dirac picture into play when relativistic

effects are significant, and add to the mix the overarching functional analytic

framework built on the theory of densely defined Hermitian (unitary) operators on

Hilbert spaces of states, what we have before us is unarguably an elegant and well-

developed mathematical theory geared toward quantum mechanical questions.

Going in the other direction, however, what if we take this mathematical

edifice as something of a starting point in itself and ask whether there are

mathematical constructs available that were at the same time consonant with the

foregoing functional analysis and amenable to an approach to quantum mechanical

interpretational questions (such as the aforementioned Aharanov-Bohm affair)

that would skirt ad hoc suppositions like those that mar the Copenhagen

interpretation. Additionally, with the explicit example of the Aharonov-Bohm

experiment to guide us, we suggest at the outset that such a new approach

should include the mathematical perspectives afforded by algebraic topology and

differential geometry in its modern manifestations.

Indeed, in the corresponding broader context in which the indicated physical

questions can be phrased, that of electrodynamics, we can start with a revisit

to Maxwell’s equations, noting that these can be formulated in a wonderfully

economical integral formulation [14]. We discussed this at some length in [19]

which constitutes something of a precursor to what we do in what follows (which

is however self-contained). For our present purposes all we need to do is observe

that Maxwell’s equations can be readily rendered as statements about integrals

of differential 2- and 3-forms associated with electric and magnetic fields defined

locally on spacetime as a smooth 4-manifold (cf. loc. cit., Section 2.1).

Here then, cutting to the chase, is the lynchpin of what we are attempting to

do: the quantum mechanics and local electrodynamics discussed in the foregoing,

i.e., nothing less than the behavior of quantization and the rendering of quantum

mechanical processes along the lines of what takes place with the Aharonov-Bohm

experiment, should be regarded and explicated in terms of a cohomology theory.

With the 4-manifold of spacetime as the ambient topological space we are quickly

directed to de Rham cohomology; however, for mathematical reasons that we

make clear below, it is actually sheaf cohomology that will soon take the lead

role.
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Even as the Aharonov-Bohm experiment and the inconsistencies in its

explication as related above provide us with physical rationale for what follows,

the ultimate scope of what we propose as regards new topological and differential

geometric perspectives (and methodologies) is far broader and more ambitious.

Specifically it is the case that the sheaf cohomology we bring to bear on the algebra

of smooth differential forms on spacetime (viz. a so-called de Rham complex)

makes it possible for us to define quantization itself in a very natural mathematical

way, immediately opening the door to a new characterization of phenomena within

the purview of quantum mechanics, i.e. measurables and observables, in terms of

relations between sheaves, and therefore between their fibres and stalks.

So it is, then, to boot, that given that sheaves are the mathematical tool par

excellence for addressing the question of local vs. global data and information, what

we propose here may contain the germ of a novel vision of the connection between

what Dirac refers to as physics “in the small” and physics “in the large”, in his

unsurpassed monograph [7].

Finally, before we get to the business at hand, the authors wish to express

their gratitude to Jan Post, and over his strenuous objections, which are hereby

overruled, stress that the ideas behind these exciting developments are entirely

his. He is the main player in this game.

2. Background from physics: casting certain physical laws in terms of

differential forms

In [18] and [19] we developed a detailed formalism for a certain

class of physical laws from the areas of quantum mechanics and (classical)

electrodynamics expressed in the language of differential forms on spacetime as

a smooth 4-manifold. We refer the reader to these articles by way of a prelude

to what follows. However, as we already indicated earlier, our goal is to make the

present discussion as self contained as possible (certainly as far as the mathematics

goes), so we reiterate a number of items from this earlier article.

If M stands for the Riemannian 4-manifold of spacetime, following standard

procedure in differential geometry, write Ωp(M) for the linear space of differential

p-forms (of class C∞) on M . Thus a typical element of Ωp(M) looks like

ω =
∑

I aI d x I , with I a p-fold multi-index as usual, and each aI an infinitely

differentiable function on M . The examples we start off with in this section are 2-

and 3-forms that have very fundamental physical interpretations.

Write, as usual, E, B, D, H, and J for, respectively, the intensity of the electric

field, the density of the magnetic field, flux density, the intensity of the magnetic

field, and electric current density. Additionally, A is the magnetic field potential, ϕ

is the electric potential, and ̺ stands for the free charge density. Then, as is well

known, Maxwell’s equations can be given as
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E= −∇ϕ−At , (2.1)

B=∇×A , (2.2)

∇ ·D= ̺ , (2.3)

∇×H−Dt = J . (2.4)

Following Minkowski [16], the indicated magnetic and electric properties of the

field can be joined into the components of spacetime tensors in such a way that E

and B are joined together into a tensor Flk while H and D get joined into G lk , with

the indices l, k ranging over the values 0,1,2,3, with 0 the time label and 1,2,3

the space labels. Then the preceding quartet is replaced by the equations

∂sFkl + ∂k Fsl + ∂l Fks = 0 , (2.5)

∂lAk − ∂kAl = 0 , (2.6)

∂kG lk = C l , (2.7)

∂kCk = 0 (2.8)

all with the usual tensor calculus conventions in place (including Einstein

summation). Here the first relation, a generalized curl, captures a local Faraday-

Maxwell law; the second relation defines vector potential (A); the third relation,

a generalized divergence, is nothing else than Ampère’s law for displacement

current; and the fourth relation expresses local charge conservation.

After this, Einstein, bringing the perspective of general relativity to bear on

the situation, replaced Minkowski’s partial derivatives by covariant derivatives.

Under this scheme (2.5) and (2.6) stay the same in appearance (even though

the operators’ meaning has changed) because of the cancelation of the Christoffel

terms. However, (2.7) and (2.8) each acquire an extra term involving Christoffel

symbols. The structural effect of this move is to expose a natural symmetry or

data pairing in the sense that (2.5), (2.6) evince what we will call the Faraday

data in Maxwell’s formalism, whereas (2.7), (2.8) constitute what we will call the

Ampère data; see [19] for further discussion. It was the Austrian physicist Friedrich

Kottler [15] who observed that in this arrangement the contravariant objects G lk

and Ck should be interpreted as tensor and vector densities of weight −1, and it

was Elie Cartan who then realized that this insight on Kottler’s part is amenable

to a phrasing in terms of the geometry and analysis of differential forms, if one

starts with Maxwell’s equations in their equivalent form as integral equations. The

upshot is that we then obtain, in addition to Gauß’ law, what we will call the

Maxwell-Faraday data

∫

∂ S

E · dl =−
∂ ϕB,S

∂ t
(2.9)
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and the Maxwell-Ampère data
∫

∂ S

B · dl = µ0 IS +µ0

∂ ϕE,S

∂ t
(2.10)

where ϕB,S and ϕE,S represent, respectively, magnetic and electric flux through the

surface S.

There are now three observations to be made regarding the content of (2.9) and

(2.10). First, Kottler’s interpretation indicates a physically meaningful duality for

the surface S. In other words, what we have here is generalized curl and divergence

acting as essentially dual operations. Second, from a strategic point of view we

should take note of the fact that we are positing Maxwell’s equations in a metric-

free environment: it is all a matter of topology. And, third, the integrals are indeed

integrals of differential forms on M , effected over the boundary of an immersed

surface S. It is the latter observation that points us in the direction of de Rham

cohomology.

To emphasize this third point even more emphatically, suppose that M is

endowed with local coordinates x i , 1 ≤ i ≤ 3, and (for time) t. If we encode the

Gauß-Ampère data of Maxwell’s formalism in terms of the earlier tensor (equipped

with an obvious new notation)
s

C and an evident companion tensor
s

G =
s

G(H,D),

we can write, e.g.,
∫∫∫

S

eCλνκd xλ1 d xν2 d xκ3 =

∫∫

∂ S

eGλνd xλ1 d xν2 (2.11)

where eGλνd xλ1 d xν2 ∈ Ω
2(M) and eCλνκd xλ1 d xν2 d xκ3 ∈ Ω

3(M), so that we recognize

in (2.9) an instance of Stokes’ theorem in its most general form [2] (also [21]):
∫

S

dω=

∫

∂ S

ω (2.12)

where d represents the exterior derivative and ∂ represents the (homological)

boundary operator. It is a commonplace of differential geometry that this lynchpin

of calculus on manifolds sits at the heart of de Rham cohomology.

However, before we get to that, it is appropriate to add a little more

critical analysis of our motivating quantum mechanical phenomena, i.e., the

aforementioned Aharonov-Bohm effect. We stipulate at this stage that, to be sure,

the flux quantization read from the experiment of 1959 discussed in the previous

section should come in multiples of the single unit h

2e
, supporting both [8] and

[6]; in addition to these sources the reader should also consult our [19], as well as

Post’s [17]. We also demonstrated in [19] that if we start with Gauß-Ampère data

phrased in terms of differential forms by requiring that global flux conservation be

presented as
∫∫

c

F = 0 (2.13)
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for all 2-cycles c and with F (flux) an exact form, then we can retrieve the

attendant potential field as a 1-form A, and, most importantly, we obtain the

fundamental relation
∫

γ

A= n
h

2e
(2.14)

for all 1-cycles γ, with n being the number of ±-linked elementary flux units linked

by γ.

What we encounter here in altogether explicit terms is the emergence of nothing

less that the quantization of flux, as demonstrated experimentally by Aharonov

and Bohm in 1959 and explicated by Fairbank and Deaver in [6]; and the present

characterization of flux is entirely a result of intrinsic topological properties of the

potential field A∈ Ω1(M): the requisite integer multiples of h

2e
arise as periods of A.

Now for quantization via de Rham (or, rather, sheaf) cohomology.

3. Quantum mechanics, de Rham and sheaf cohomology, and spacetime

In a number of previous publications, i.e. [17], [18], [19], we have put forth

the thesis that in light of such considerations as our discussion of the Aharonov-

Bohm experiment, and a lot more besides, the ad hoc and non-classical statistical

methods introduced into quantum mechanics by Born and promoted by Bohr and

his followers, creating the dogma of the Copenhagen interpretation, should be

critically revisited and amended. In [18], and already in certain places in [17],

it was argued that a two-tier approach to quantum mechanics should be brought

to bear upon quantum reality; statistical methods naturally apply to ensembles,

or quantum systems of many particles, but for a single system, i.e. a single

particle, we propose a methodology rooted in differential geometry and algebraic

topology. What we do in the present paper is the next step in this program, namely,

the delineation of quantization itself by means of the indicated cohomological

formalism.

It is this complementarity of methodologies, contrasting disordered quantum

mechanical systems with ordered ones, that we suggest as a general

epistemological principle vis à vis the physical analysis of the microscopic domain.

As we shall demonstrate in a later publication, our approach through sheaf

(and de Rham) cohomology also makes for a number of deep connections with

physics in the macroscopic domain because what we do is in many fundamental

ways independent of the (Lorentz) metric space structure placed on spacetime

by Einstein’s relativity. But we stress at this point in the proceedings that our

set of proposals most directly pertain to the physics of the microscopic domain

where they both correct long-standing philosophical anomalies in the Copenhagen

interpretation, and provide uniform mathematical tools with which to explicate
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certain classes of (ordered) quantum mechanical phenomena, the fractional

quantum Hall effect being a prime example.

As we pointed out at the close of section 2, the lynchpin of our formalism is

the integration of differential forms over cycles, and we now come to the heart of

the matter, indeed the heart of quantum mechanics itself, viz. quantization. Our

formalism must include a mechanism whereby to “tag” admissible output, i.e.,

output in the shape of sets of integer multiples of a single unit. The motivating

example of the Aharanov-Bohm effect asks for integer multiples of the quantum

unit h

2e
, and we showed in [19] that period integrals do the job; in the present

context see (2.14). This is what we now generalize and couch in the language of

de Rham and sheaf cohomology.

Given that what we do is heavily steeped in the formalism of cohomology in

the style of Alexander Grothendieck’s revolutionary work in algebraic geometry

dating to the 1960s and 1970s, we present a primer of sorts on this material in

the Appendix to this paper. Our present objective is to lay out our novel geometric

characterization of quantization in as concise a fashion as possible. Mathematically

speaking the i’s are dotted and the t ’s are crossed in the aforementioned Appendix.

Our physical analysis now proceeds in two parts. First, in the remainder of the

present section we quickly delineate the axioms engendering quantization; then,

second, we address the question of physical interpretation of this mathematical

formalism, and how it relates to certain themes in mainstream quantum

mechanics, in the next section. The fundamental idea driving the discussion is that,

with (2.14), for instance, as a paradigm, there should be available an algebraic

topological means whereby to require that only output data in the form of finite

subsets of the Z-module

~Z := {n~}n∈Z , (3.1)

where we have chosen Planck’s constant ~ principally for convenience (see below),

should be admissible. In other words we need a condition (or axiom) ensuring

that our period integrals will single out data belonging to ~Z, the observable or

measurable output of the corresponding quantum mechanical experiments. With

sheaf cohomology in place, and also Hodge theory, this turns out to be structurally

quite simple. To wit:

With M being spacetime, so that 0 ≤ p ≤ 4 = dim(M), and with the object

J p defined below (cf. (3.4)), define the relation ≡ (mod ·J p) as follows: for

ω,τ ∈ Ωp(M),

ω≡ τ(mod ·J p) (3.2)

if and only if, for all p-chains γ on M ,
∫

γ

(ω− τ) ∈ ~Z . (3.3)
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It is a triviality to check that (3.2) and (3.3) define a relation on Ωp(M) which

is reflexive, symmetric, and transitive; in other words, we have an equivalence

relation on each Ωp(M) and it is immediate that this equivalence factors through to

Ωp(M)†, the sheaf of germs of smooth p-forms on M (see the Appendix for specifics

about such sheaves of germs). Therefore, by the usual convention regarding

equivalence relations of this type, J p can be identified with the “0-class”

J p =

�
ω ∈ Ωp(M)

����
∫

γ

ω ∈ ~Z, for all p-chains γ

�
(3.4)

and we get, too, in the obvious notation J p† for the image of J p in Ωp(M)†.

Obviously J p is a Z-submodule of Ωp(M). Quantization is therefore part and

parcel of requiring that the differential forms that can play are elements of J p

for some p. This is clearly an intrinsic characterization, so the next task before is to

address the issue of how to get at this restriction extrinsically; we make a start to

this discussion in the next section. With apologies for the concomitant increase in

abstraction (and accordingly again referring to the Appendix), we close the present

section with a few observations regarding the cohomological specifics accruing to

stipulations we just made. First off, we are of course in a position to write down

the following short exact sequence

0−→J p† ι
−→ Ωp(M)† −→ coker(ι)−→ 0 (3.5)

which we regard as living in the abelian category of sheaves over spacetime.

Here coker(ι) is really nothing else that the quotient sheaf Ωp(M)†/J p†

(whose construction may actually require a little extra, namely, the process of

sheafification; see [12], for instance). This in turn yields another fine resolution

0−→ Ω0(M)†/J 0† η
−→ Ω•(M) (3.6)

where η is the natural map on the set of representatives of the earlier equivalence

relation acting on Ω0(M)†. (This definition may actually involve the Axiom of

Choice.) Bringing in the machinery of sheaf cohomology, there are actually

two cohomology theories (or cohomology functors) that can be ascribed to the

geometrical data Ω•(M) with an eye toward quantization. To wit, we have

H•(M ,J 0†) = R•(M ,J 0†) (3.7)

by virtue of the obvious fine resolution

0−→J 0† −→ Ω•(M)†, (3.8)

and we have

H•(M ,Ω0(M)†/J 0†) = R•Γ(M ,Ω0(M)†/J 0†) (3.9)

in view of (3.7).

So this provides the first part of the scaffolding for a full treatment of

quantization along the indicated novel geometrical lines.
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4. Physical aspects of our approach to quantization

The crux of our scheme for quantization via an equivalence relation (i.e. (3.2)

and (3.3)) on suitable differential forms is the stipulation that for any given p, the

ideal, or Z-module, J p provides us with the differential forms that have meaning

in quantum mechanical processes. This immediately raises the obvious question of

why this should be so. This question is clearly central to our entire enterprise of

quantum mechanics: why should nature’s laws be structured in such a way that

phrasing them in the present language of period integrals reveals that in order to

have quantization (philosophically speaking an empirically verified reality), an a

priori selection procedure appears to be in place, singling out the elements of J p?

One way of looking at this situation, admittedly embodying only an embryonic

idea at this stage, is to note that the form of the equivalence relation we propose

naturally provides us with what we might characterize as a moduli space. In

other words, as per (3.6), the quotient sheaf Ω0(M)†/J 0†, and more generally

the objects Ωp(M)†/J p†, provide a natural mathematical construct for carrying

out physical, or quantum mechanical, procedures and calculations replete with

the guarantee that the output will be quantized. Thus, by positing that we are

actually working in a moduli space setting we gain the immediate advantage of

having quantization brought out without ad hoc stipulations that seek to jettison

various notions from, for instance, classical mechanics, ultimately making for a

dissonance between classical and quantum physics that flies in the face of all

proper epistemology.

To be sure, there is a lot still hiding in the shadows as far as the ramifications of

our proposals regarding quantization are concerned, but there is a great advantage

to be gained already simply by stressting that our approach centers on geometry:

quantum mechanics as such “lives” on a moduli space. Thus, there is no question

of our asking for, say, non-classical statistics in the sense of the Copenhagen

interpretation of quantum mechanics, ascribing to a single particle individually,

i.e. to a single quantum mechanical system, the data coming from an ensemble of

such particles, as though an average trait must be descriptive of every element

of a sample space. There does remain a separate issue to be discussed in our

scheme, namely, the transition between the macroscopic and microscopic domains

of discourse as exemplified by the fact that classical mechanics applies at larger

scales (and non-relativistic speeds), whereas things are very different at smaller

(simultaneously relativistic) scales. But we propose that this seemingly anomalous

state of affairs should be treated geometrically in the sense we employ above.

It is apposite to note in this connection that our earlier paradigm of the

Aharonov-Bohm experiment certainly points in this direction in no uncertain terms.

This particular theme was explored in some detail already in [18], where the

proposal was put forth that in the microscopic domain there should be, so to
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speak, a two-tiered reality in place. By means of analyzing the Aharonov-Bohm

experiment it was argued there that a more conservative (and mathematically

reasonable) approach to the according quantum mechanical phenomena would

be forthcoming by stipulating that a path integral formalism (of the sort we start

with in the present paper) not only replaces certain problematical approaches in

quantum mechanics done according to the Copenhagen recipe, but it opens up

a more holistic way of approaching the whole quantum mechanical enterprise.

We pursue the latter theme in two upcoming publications, one presenting a

careful historical-critical dissection of a number of themes comprising part of the

Copenhagen interpretation and placing our approach to quantization by means of

sheaf cohomology in a proper historical framework, the other addressing, among

other things, broader connections with themes belonging to the geometry of space-

time and attendant symmetry considerations. These, and especially the latter,

will hopefully serve to bolster our emerging thesis that differential geometry and

sheaf cohomology centered on the ideas of de Rham point toward a more organic

presentation of quantum mechanics and open the door to connecting it smoothly

to other parts of physics, especially general relativity, all without doing violence to

either mathematical of philosophical sensibilities.

5. Appendix. Background from algebraic topology: manifolds, de Rham

cohomology, sheaf cohomology

As promised, in this section we collect mainly algebraic topological and

algebraic geometric material relevant to the preceding. Most, if not all, of the

differential geometric material underlying it all is standard and can be found in

any number of textbooks on the subject, e.g. Bott’s and Tu’s beautifully written

book [2]. However, for the specific business of making the transition from de Rham

cohomology to sheaf cohomology we refer the reader to the (now unfortunately

rather rare) text [5] by Chern. This latter source also contains a very readable

and compact discussion of Grothendieck’s proof [11] of de Rham’s theorem, which

is at the heart of the transition just mentioned. Speaking of Grothendieck, for

the details of sheaf cohomology, his classic SGA series [10] is still definitive,

but more accessible treatments are readily available; see e.g. [3] and [22] for

general themes and the gorgeous work [13], for example, for computation of sheaf

cohomology by resolutions.

As we mentioned before, for our purposes the ambient space is a finite

dimensional smooth manifold; we note that the class of smooth manifolds is

of course a subclass of the class of topological spaces. So, if M is (now not

just spacetime but) any such smooth manifold of dimension n < ∞, then we

have, immediately, that locally (i.e., at and in a neighborhood of every x ∈ M)

there are tangent space structures available: for every x ∈ M there is an open
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neighborhood of x , say, Ux , in M , and a diffeomorphism from Ux into Rn such

that if we have local coordinates (x1, . . . , xn) in Ux , then the set
n
∂

∂ x1 , . . . , ∂

∂ xn

o

yields a basis for the tangent space Tx (M) at x; in other words, Tx (M) =⊕n

ν=1R
∂

∂ xν
. Under these circumstances the cotangent space at x is the dual space

HomR(Tx(M),R) = T ∗
x
(M) =
⊕n

ν=1Rd xν , spanned by the first differentials of the

local coordinates. Thus, if 〈 , 〉 denotes the standard dual vector space pairing, we

have the fundamental relationship
D
∂

∂ xµ
, d xν
E
= δµν (Kronecker’s delta) in place.

The preceding local data is rendered global simply by defining T (M) = ∪x Tx(M)

and T ∗(M) = ∪x T ∗
x
(M).

The cotangent bundle T ∗(M) is dealt an exterior product structure via the

wedge product by defining

d xν ∧ d xµ =−d xµ ∧ d xν , (5.1)

d xν ∧ d xν = 0 . (5.2)

Consequently we can iteratively build expressions of the form d xν1∧d xν2∧ . . .∧

d xνp subject to the rules, first, that if σ is any permutation of 1,2,. . . , p, then

d xνσ(1) ∧ d xνσ(2) ∧ . . .∧ d xνσ(p) = (−1)sgn(σ)d xν1 ∧ d xν2 ∧ . . .∧ d xνp (5.3)

and, second, if, for some i 6= j we have νi 6= ν j , then

d xν1 ∧ d xν2 ∧ . . .∧ d xνp = 0 . (5.4)

The class of p-forms on M , written Ωp(M), as we have already seen above,

obtains as the free abelian group on the set of all R-linear expressions generated

by the objects f (x1, x2, . . . , x p)d xν1 ∧ d xν2 ∧ . . . ∧ d xνp with each f of class C∞.

Thus, a typical element of Ωp(M) looks like

ω=
∑

1≤ν1≤ν2≤...≤νp≤n

fν1ν2...νp
(x1, x2, . . . , x p)d xν1 ∧ d xν2 ∧ . . .∧ d xνp . (5.5)

If, for convenience, we just write I for the ordered multi-index 1 ≤ ν1 ≤ ν2 ≤

. . . ≤ νp ≤ n, then we get the obvious notational simplification

ω=
∑

I
fI d x I . (5.6)

The exterior derivative d possesses one more property, one that defines it as a

differential and a coboundary operator:

d ◦ d = d2 = 0 . (5.7)

It is this property that gives rise to de Rham cohomology. Specifically, seeing

that d must obey the rule

dω= d

�∑
I
fI d x I

�
=
∑

I
d fI ∧ d x I (5.8)
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and seeing that each d fI is a total differential in the sense of elementary calculus,

a trivial calculation shows that dω must be a (p + 1)-form; in other words, we

have, for all p ≥ 0,

d : Ωp(M)−→ Ωp+1(M) . (5.9)

But now, using (5.7), we obtain from (5.9) that we have a cochain complex

Ω0(M)
d
−→ Ω1(M)

d
−→ Ω2(M)

d
−→ . . .

d
−→ Ωn−2(M)

d
−→ Ωn−1(M)

d
−→ Ωn(M) (5.10)

denoted Ω•(M), for which we have that Ω0(M) = C∞(M), the map Ω0(M)
d
−→

Ω1(M) is injective (i.e., one-one), and Ω0(M) ≃ R (because there are only n

differentials available, so that an (n+ 1)-form must vanish by virtue of (5.4).

This said, de Rham cohomology is defined as the following data (of finite

dimensional R-vector (sub)spaces) attached to Ω•(M):

Hν
dR
(M) :=

ker(Ων(M)
d
−→ Ων+1(M))

im(Ων−1(M)
d
−→ Ων(M))

(5.11)

or, more compactly, if we write dν for Ων(M)
d
−→ Ων+1(M),

Hν
dR
(M) =

ker(dν)

im(dν−1)
. (5.12)

In view of the finite length of Ω•(M) it follows that if ν < 0 or ν > n= dim(M),

then Hν
dR
(M) = 0.

Of course, the elements of ker(d p) are, by definition, the closed p-forms, while

the elements of im(d p−1) ⊂ H
p

dR
(M) are the exact p-forms. A propos, the fact

that im(d p−1) ⊂ ker(d p) is of course just a restatement of (5.7). Going in the

other direction, if M is a real manifold, then the Poincaré Lemma asserts that

on any contractible domain in M every closed p-form is also exact, i.e. the

preceding containment is an equality: im(d p−1) = ker(d p), whence Hν
dR
(M) = 0.

This immediately leads to the observation that nonvanishing de Rham cohomology

Hν
dR
(M), with 1 ≤ ν ≤ dim(M), must be a measure of the local geometric

singularity of M . This was of some importance in Section 3, in the discussion

of quantization. Before we get to physics, however, we need a reformulation of

de Rham cohomology in more flexible terms, specifically vis à vis the interplay

between local and global data. This is provided by the theory of sheaves on

topological spaces and the attendant sheaf cohomology. Given any topological

space X , e.g. a differentiable manifold (X = M), a sheaf over X is any topological

space F equipped with a projection mapping π : F −→X that is in fact a local

homeomorphism: every point x ∈ X possesses an open neighborhood Ux (with

x ∈ Ux) such that the restricted mapping π−1|Ux
is a homeomorphism from Ux

onto its image in F . It is standard fare ([22], [12]) that this amounts to realizing
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F as
∐

x∈XFx , where Fx is just the fibre π−1(x) of F over x . And then the

topology on F is just the topology induced by that of X via π and π−1. Beyond

this there is the hugely important complementary perspective that realizes sheaves

as contravariant functors on X ’s topology, with additional structure, of course.

Specifically, one realizes X ’s topology as the category Top(X )whose objects are the

open sets U ⊂ X of X ’s topology, and whose morphisms are the inclusions U ⊂ V

(for both U and V open in X ); then the sheaf F is realized as the contravariant

functor

F : Top(X ) −→ Ab (5.13)

where the target category Ab is the category of abelian groups (with group

homomorphisms as morphisms), such that (qua morphisms and contravariance)

the image of an inclusion U ⊂ V under the functor F is a group homomorphism

(“restriction”) from the abelian group F (V ) to the abelian group F (U), written

̺V
U

: F (V ) −→ F (U) subject to the rule that if W ⊂ U ⊂ V in Top(X ) then

̺V
W
= ̺U

W
◦ ̺V

U
. In addition a sheaf (as opposed to a mere presheaf, defined by

the preceding requirements) must satisfy two more axioms: say that U ∈ Top(X )

is covered by open sets, i.e., U = ∪αUα; then, first, the condition that for each

index α there exists a so-called section σα ∈ F (Uα) for which we have that, for

all α,β , ̺
Uα
Uα∩Uβ

(σα) = ̺
Uβ
Uα∩Uβ

(σβ ), implies the existence of a section σ ∈ F (U )

for which ̺U
Uα
(σ) = σα for all indices α; and, second, if, with σ ∈ F (U ), we have

that ̺U
Uα
(σ) = 0 for every index α, then in fact the section σ vanishes on all of U ,

which means simply that as an element of the abelian group F (U ), σ = 0. This

latter way of phrasing things is part and parcel of the fact that the two foregoing

characterizations of F as a sheaf are equivalent.

Indeed, write Γ(U ,F ) for the set of continuous sections of the topological space

F over the base topological space X , i.e.

Γ(U ,F ) = {σ : U
cts
−→F | π ◦σ = id|U}, (5.14)

so that Γ(U ,F ) is an abelian group in its own right. Next, define the stalk of F ,

regarded as a functor (as immediately above), over the point x ∈ X , to be

lim
−→
x∈U

F (U) =
de f
∪x∈UF (U)/s (5.15)

where the equivalence relation s is defined by the rule: given σ,τ ∈ ∪x∈UF (U),

we have σ s τ if and only if, given that σ ∈ F (U) and τ ∈ F (V ) (with x ∈ U , V

as indicated), there exists an open W ⊂ U ∩ V such that ̺U
W
(σ) = ̺V

W
(τ). One

shows (e.g. [22]) that this stalk is nothing else than our earlier fibre Fx and that,

in point of fact, the abelian groups F (U ) and Γ(U ,F ) can be identified:

F (U )≈ Γ(U ,F ) . (5.16)
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Accordingly, the phrase “section of F over U” can be used ambiguously, or avec

un peu d’abus de langage, as above, without penalty. To boot, we are at liberty to

refer to Fx as both the stalk and the fibre of F over x .

Now, with the notion of the sheaf F over X characterized in two equivalent

ways we are in the fortunate position of being able to define the cohomology of the

topological space X with values in F in two rather natural fashions. First, with F

also being a topological space it is natural to develop H•(X ,F ), i.e. the collective

data Hν(X ,F ), ν ∈ Z, of abelian groups (possibly with additional structure: we

will eventually be working with vector spaces), by means of a variant of the

classical Čech process; this is in fact the original approach taken by Serre in [20].

For our purposes it is far more advantageous, however, to employ Grothendieck’s

development of sheaf cohomology (cf. [10], [12]) by means of derived functors

and injective and acyclic resolutions; see [13] for additional background in this

connection. Although it requires a bit of work to prove this, for the spaces we are

concerned with, namely smooth manifolds, the two indicated cohomology theories

are equivalent.

First some generalities. Given any abelian category A (meaning that A admits

injective, or one-one, morphisms, as well as surjective, or onto, morphisms) we

can form short exact sequences which are, by definition, diagrams in A of the form

0−→ A′
f
−→ A

g
−→ A′′ −→ 0, (5.17)

which is to say, diagrams of concatenated morphisms of A, such that f (resp. g)

is injective (resp. surjective), and im( f ) = ker(g), this last condition conveying

the meaning of exactness at the “vertex” A. In general, given a concatenation, or

sequence, of any number, finite or infinite, of morphisms of A, the sequence is

exact if and only if it is exact at each vertex.

If B is a second abelian category (of course, we allow A = B), a covariant

functor T : A−→B is left exact if, given any short exact sequence in A of the form

(4.17), the sequence

0−→ T (A′)
T ( f )
−→ T (A)

T (g)
−→ T (A′′) (5.18)

is exact in B. Thus, while T ( f ) is still required to be one-one, T (g) need no

longer be onto. Next, an object I in A is said to be injective if, given any injective

mapping 0 −→ A′
f
−→ A and any morphism A′

ι
−→ I , there exists a morphism

A
̟
−→ I yielding the factorization ι =̟ ◦ f ; we say that A has “enough injectives”

if every object A in A can be fitted into a long exact sequence as follows:

0−→ A
ǫ
−→ I0 d0

−→ I1 d1

−→ I2 d2

−→ . . .
dν−1

−→ Iν
dν

−→ Iν+1 dν+1

−→ . . . (5.19)
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so that we have, for all ν , dν ◦ dν−1 = 0; the mapping ǫ is called an augmentation,

and we often abbreviate this long exact sequence as

0−→ A
ǫ
−→ I• (5.20)

and this sequence is called an injective resolution of A. With all this in place, the

usual cohomology of the “deleted” chain complex

0−→ T (I0)
T (d0)
−→ T (I1)

T (d1)
−→ T (I2)

T (d2)
−→ . . .

T (dν−1)
−→ T (Iν)

T (dν )
−→ T (Iν+1)

T (dν+1)
−→ . . . ,

(5.21)

(or briefly just T (I•)), being the abelian group data

Hν(T (I•)) := ker(T (dν)/im(T (dν−1), (5.22)

is defined to be the right derived functor data for T (A) as an object in B, written

as RνT (A), ν ∈ Z, or, briefly, R•T (A), of course. In other words,

RνT (A) = Hν(T (I•)) (5.23)

Cohomology is designed to be homotopy invariant, so, given that injective

resolutions of the same object are (chain) homotopic, any of them will do the job;

see [13] and [9] in this connection. Furthermore, we can require (loc. cit.) that

the resolution in question be acyclic with respect to the functor T . By definition, an

objectA in A is T -acyclic if its own cohomology vanishes in degrees ≥ 1, and it is

a standard result in homological algebra (cf. [4], [9]) that if we have an injective

resolution 0−→ A
ǫ
−→ I• for A as well as a T -acyclic resolution 0−→ A

δ
−→A • for

the same object, then the application of T yields chain homotopic images: there is

a natural chain homotopy from 0 −→ T (A)
T (ǫ)
−→ T (I•) to 0 −→ T (A)

T (δ)
−→ T (A •).

Because chain homotopic cochains yield the same cohomology (loc. cit.), we get

that

RνT (A) = Hν(T (A •)) . (5.24)

Consequently, we can (and will) simply agree that as a matter of course, we

choose T -acyclic resolutions to compute the right derived functors of T .

At this stage we can bring this machinery to bear on the situation of a sheaf

F on a topological space X . The main player in the game is the so-called global

sections functor, Γ(X , _), mapping sheaves over X to abelian groups. It is a standard

result in sheaf theory (cf. [12], [22]) that the global sections functor is left exact,

therefore, as per the preceding we can form the indicated right derived functors

RνΓ(X , _)which, by definition, provide our cohomology: the cohomology of X with

values in the sheaf F is given by

H•(X ,F ) := R•Γ(X ,F ) . (5.25)

By our earlier remarks, for the spaces we are working with, this gives the

same group theoretic data (up to isomorphism) as what the aforementioned Čech

process gives.
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This agreement of cohomology theories holds true, then, in particular for the

smooth manifold M for which we already have in place the de Rham cohomology

H•
dR
(M) as given by (5.12). Is there a way to realize this cohomology as a sheaf

cohomology? In other words, is there a sheaf on M , say G , with the property that

Hν
dR
(M) ≈ Hν(M ,G ), for all ν? It turns out that nothing less than Grothendieck’s

famous proof of the de Rham isomorphism theorem comes into play here, in a

particularly elegant manner.

The de Rham theorem asserts that H•
dR
(M) is essentially the only cohomology on

M in the sense that, for example, H•
dR
(M) must agree with the usual cohomologies

one builds on a topological space like M , e.g., singular or Čech cohomology (which

are eo ipso isomorphic to each other). So the claim is that H•
dR
(M) ≈ H•

Č ech
(M ,R),

taking our cohomology with real coefficients. Grothendieck’s way of proving this

(in [11]) is as follows (we use Chern’s rendering of the argument in [5]): first note

that the constant sheaf R on X (gotten by requiring that for all x ∈ M , Fx = R)

admits a very special Γ(M , _)-acyclic resolution, namely.

0−→ R
ǫ
−→ Ω0(M)†

d0

−→ Ω1(M)†
d1

−→ Ω2(M)†
d2

−→ . . .

dp−1

−→ Ωp(M)†
dp

−→ Ωp+1(M)†
dp+1

−→ . . . (5.26)

where, generally, Ωp(M)† is the sheaf (!) of germs of smooth p-forms on M .

Grothendieck establishes that each such sheaf is “fine”, meaning that given any

locally finite open cover {Uα}α of M , there exists a set of sheaf endomorphisms

ϕα : Ωp(M)† −→ Ωp(M)† with the property that
∑
αϕα = id and if x /∈ Uα, then

ϕα(Ω
p(M)†

x
= 0, and observes that fine sheaves are in fact Γ(M , _)-acyclic. But

then, in accord with the above discussion, the cohomology of M with coefficients

in the constant sheaf R is realized as R•Γ(M ,R), i.e., as the data given by the

derived functors RpΓ(M ,R) = H p( Ω•(M)†), given (5.23). However, RpΓ(M ,R)

can readily be identified with H
p

Čech
(M ,R), and it follows from the characterization

(5.25) that H p(Ω•(M)†) ≈ H
p

dR
(Ω•(M)†) = H•

dR
(M), briefly. But then, since,

qua sheaf cohomologies, RpΓ(M ,R) ≈ H
p

Č ech
(M ,R), it follows that, for all p,

H
p

dR
(M)≈ H

p

Čech
(M ,R), or, simply put, H•

dR
(M)≈ H•

Č ech
(M ,R), as required.

By the way, the point of contact between Grothendieck’s remarkably short proof

of this deep theorem and other proofs, e.g., that given by Weil in [23], is the

observation that for each degree p, the sheaf Ωp(M)† is fine. In a way this is an

encapsulation of the geometry at the center of the argument, rendered in particular

topological and, given the nature of germs of p-forms, analytic terms.

We note, too, that, as we already hinted above, the usual formulation of the de

Rham theorem involves other than Čech cohomology: its most frequent (albeit

entirely equivalent) phrasing involves singular cohomology ([21], [23]), and

brings out explicitly that the final isomorphism, H
p

dR
(M)g−→H

p

sing
(M ,R), is induced

by the mapping taking any p-form ω to the mapping γ 7−→
∫
γ
ω, from the class of
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p-cycles γ to R. The upshot is that since this isomorphism is surjective, we can find,

for any pre-assigned set of periods, a closed p-form and an attendant collection of

p-cycles such that the indicated integrations of the form yield these pre-assigned

periods. It is this feature of de Rham’s theorem that figures most prominently in

what came before, regarding quantization.
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