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Abstract. In this paper, we present Generalized Kudryashov-Jacobian Method (GKJM) to obtain
new type of general exact solutions for nonlinear partial differential equations. GKJM is applied to
time-fractional dispersive long wave equations. Seven types solutions of this equation are obtained
and including trigonometric function and hyperbolic function. The obtained solutions represent kink
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1. Introduction
The applications of nonlinear differential equations have much attention by researchers because
its describe various phenomena in many fields such as the fluid flow, electro chemistry, scattering
theory, transport theory, elasticity, control theory, potential theory, signal processing, image
processing, diffusion theory, kinetic theory, systems identification, biology and other areas [9,12].

Travelling wave methods have an important role to obtain exact solutions that are
described and explained these natural phenomena. Most famous of these effective methods
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are (G′/G)-expansion method [2,3,18,23,25], Exp-function method [1,6,10,16,21], generalization
of He’s Exp-Function method [7,19], a new extended Auxiliary equation method [14], modified
Kudryashov method [11,13,15] and generalized Kudryashov method [8].

Kudryashov [13] presented a wave method based on rotation function as form ai
(1+exp(η))i ,

i ∈ N . Then, Gaber [8] developed a Kudryashov’s method by replacing exp(η) with an arbitrary
function that satisfies Riccati equation, and it has a large number of solutions. In this paper, we
give another development of Kudryashov’s method by replacing exp(η) with another arbitrary
function which is a solution of auxiliary linear differential equation to give Jacobian elliptic
function.

2. Description of GKAM for PDEs
In this part, we will present the detail description of the Generalized Kudryashov Auxaliry
Method (GKAM).

We consider a given nonlinear partial differential equation for u(t, x1, x2, . . . , xn)

Θ(u,Dβ
t u,Dx1 u,D2

x1
u,D3

x1
u,Dx1 Dx2 u, . . .)= 0, (2.1)

where Θ is is a polynomial in u. We seek its wave solution [20,22],

u =U(η), η= hixi + ωtβ

Γ(1+α)
, i = 1,2, . . . . (2.2)

Consequently, eq. (2.1) is reduced to the Ordinary Differential Equation (ODE):

U(u,ωu′,hiu′,h2
i u′′,h2u′′, . . .)= 0. (2.3)

GKAM is based on the assumption that the travelling wave solutions can be expressed in
the following form

u(η)=
m∑

i=0

ai

(1+Ψ(η))i , (2.4)

where m is positive integers which are unknown to be further determined, ai is constant. In
addition, Ψ(η) is a solution of the auxiliary linear differential equation

Ψ′2(η)= R+QΨ2(η)+PΨ4(η), (2.5)

where R, Q and P are constants. The solutions Ψ(η) are the Jacobian elliptic function which
depend on the values of the constants R, Q and P (shown in Table 1). Equation (2.5) has more
40 different solutions [4].

When m → 1 Jacobian elliptic function solutions are transformed to hypergeometric function as
follow

{cn(η), dn(η)} → sech(η), {ds(η), cs(η)} → csch(η), sn(η) → tanh(η),

{sc(η), sd(η)} → sinh(η), {nc(η), nd(η)} → cosh(η), ns(η) → coth(η), {cd(η), dc(η)} → 1

When m→0 Jacobian elliptic function solutions are transformed to trigonometric function,
yields

sc(η) → tan(η), {cn(η), cd(η)} → cos(η), {sn(η), sd(η)}→ sin(η),

{nc(η), dc(η)} → sec(η), {ns(η), ds(η)} → csc(η),cs(η) → cot(η), {dn(η), nd(η)} → 1.
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Table 1. Jacobian elliptic function solution Ψ(η) of auxiliary equation (2.5)

Cases R Q P Solutions of auxiliary equation

1 1−m2 2−m2 1 cs(η)

2 1
4

1−2m2

2
1
4 ns(η)±cs(η), sn(η)

1±cn(η)

3 1−m2

4
1+m2

2
1−m2

4 nc(η)+sc(η)

4 1 2−m2 1−m2 sc(η)

5 1 2m2 −1 −m(1−m2) sd(η)

6 1 2−4m2 1 sn(η)dn(η)
cn(η)

7 1 2 m2 sn(η)cn(η)
dn(η)

3. Application PDE
We apply the GKAM to find exact solutions for the following the (2+1)-dimensions of dispersive
long wave equations which are called Wu-Zhang (WZ) equations [17,24]

Dβ
t u+u Dxu+vD yu+Dxw = 0,

Dβ
t v+u Dxv+vD yv+D yw = 0,

Dβ
t w+Dx(uw)+D y(vw)+ 1

3
(D3

xu+D2
yDxu+D2

xD yv+D3
yv)= 0, (3.1)

where u(t, x, y), v(t, x, y) and w(t, x, y), this equations describe nonlinear and dispersive long
gravity waves traveling in two horizontal directions on shallow waters of uniform depth.

We perform the transformation η= hx+ky+ ωtβ
Γ(1+α) , eq. (3.1) can be reduced into an ODEs

gU ′+hVU ′+kVU ′+hW ′ = 0,

gV ′+hUV ′+kVV ′+kW ′ = 0,

gW ′+h(VU ′+UV )+k(VW ′+WV ′)+ 1
3

(h3 +hk2)U ′′′+ 1
3

(kh2 +k3)V ′′′ = 0, (3.2)

where U ′ = ∂U
∂η

.
We can freely know that the solution do not depend on the balancing the highest order linear

and nonlinear terms [5], we have:

U(η)= a0 + a1

1+Ψ(η)
, V (η)= b0 + b1

1+Ψ(η)
, W(η)= c0 + c1

1+Ψ(η)
+ c2

(1+Ψ(η))2 . (3.3)

Substituting from eq. (3.3) into eq. (3.2) and by comparing the coefficients of all powers of Ψ(η),
we get the following equations,

−ωa1 −ha1a0 −ka1b0 −hc1 = 0, −ωb1 −hb1a0 −kb1b0 −kc1 = 0,

−ωa1 −ha1a0 −ha2
1 −ka1b0 −ka1b1 −hc1 −2hc2 = 0,

−ωb1 −hb1a0 −hb1a1 −kb1b0 −kb2
1 −kc1 −2kc2 = 0,

−ha1c0 − 1
3

h3a1Q−kb0c1 −kb1c0 −ha0c1 −2h3a1P −2k3b1P

− 1
3

k2ha1Q−2k2ha1P − 1
3

k3b1Q− 1
3

h2kb1Q−2h2kb1P −ωc1 = 0,
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4
3

k2ha1Q−2gc2 −2ha1c0 −2ha0c2 + 4
3

h3a1Q+ 4
3

k3b1Q−2kbc1

−2kb1c−2kbc2 −2kb1c1 + 4
3

h2kb1Q−2ha1c1 −2ωc1 −2ha0c1 = 0,

−2ha0c2 −2k2ha1R−2h2kb1R−ωc1 −2ωc2 −2h3a1R−2k3b1R

− 1
3

k3b1Q−ha0c1 −ha1c0 −2ha1c1 −3ha1c2 −3kb1c2 −kbc1

−kb1c−2kb1c1− 1
3

h2kb1Q−2kbc2 − 1
3

h3a1Q− 1
3

k2ha1Q = 0. (3.4)

Solving the system of algebraic equations with bu using Maple, we obtain the following solutions:

a0 =− (2P +Q)(h2 +k2)+ (kb0 +ω)
√

3(Q+P +R)

h
√

3(Q+P +R)
,

a1 = 2
3

h
√

3(Q+P +R),

b1 = 2
3

k
√

3(Q+P +R), (b0 is arbitrary)

c1 = 2
3

(2P +Q)(h2 +k2),

c2 = 2
3

(P +Q+R)(h2 +k2),

c0 =− (2P2 +3PQ+RQ+6RP)(h2 +k2)
3(P +Q+R)

. (3.5)

Substituting these results into eq. (3.2), we obtain the following solutions for WZ equations

u(t, x, y)= (2P +Q)(h2 +k2)+ (kb0 +ω)
√

3(Q+P +R)

h
√

3(Q+P +R)
+ 2

3
h
√

3(Q+P +R)
1+φ(η)

,

v(t, x, y)= b0 + 2
3

k
√

3(Q+P +R)
1+φ(η)

,

w(t, x, y)=− (2P2 +3PQ+RQ+6RP)(h2 +k2)
3(P +Q+R)

+ 2
3

(2P +Q)(h2 +k2)
1+φ(η)

+ 2
3

(P +Q+R)(h2 +k2)
(1+φ(η))2 ,

(3.6)

where η= hx+ky+ ωtβ
Γ(1+α) .

Substituting results eq. (3.6) into eq. (3.3) and with the aid of Table 1, we obtain the following
exact solutions for WZ equations:

Case (1): When R = 1−m2, Q = 2−m2 and P = 1

u(t, x, y)= (4−m2)(h2 +k2)+ (kb0 +ω)
√

6(2−m2)

h
√

6(2−m2)
+ 2

3
h
√

6(2−m2)
1+cs(η)

,

v(t, x, y)= b0 + 2
3

k
√

6(2−m2)
1+cs(η)

,

w(t, x, y)=− (14−9m2 + (1−m2)(2−m2))(h2 +k2)
6(2−m2)

+ 2
3

(4−m2)(h2 +k2)
1+cs(η)

+ 4
3

(2−m2)(h2 +k2)
(1+cs(η))2 ,

(3.7)
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where η= hx+ky+ ωtβ
Γ(1+α) .

Case (2): When R = 1
4 , Q = 1−2m2

2 and P = 1
4

u(t, x, y)= (1−m2)(h2 +k2)+ (kb0 +ω)
√

3(1−m2)

h
√

3(1−m2)
+ 2

3
h
√

3(1−m2)
1+ns(η)±cs(η)

,

v(t, x, y)= b0 + 2
3

k
√

3(1−m2)
1+ns(η)±cs(η)

,

w(t, x, y)=−1
3

(h2 +k2)+ 2
3

(1−m2)(h2 +k2)
1+ns(η)±cs(η)

+ 4
3

(1−m2)(h2 +k2)
(1+ns(η)±cs(η))2 , (3.8)

where η= hx+ky+ ωtβ
Γ(1+α) .

Case (3): When R = 1−m2

4 , Q = 1+m2

2 and P = 1−m2

4

u(t, x, y)=−h2 +k2 + (kb0 +ω)
p

3
3h

+ 3h
1+nc(η)±sc(η)

,

v(t, x, y)= b0 + 3k
1+nc(η)±sc(η)

,

w(t, x, y)=−1
3

(1−m2)(h2 +k2)+ 2
3

(h2 +k2)
1+nc(η)±sc(η)

− 2
3

(h2 +k2)
(1+nc(η)±sc(η))2 , (3.9)

where η= hx+ky+ ωtβ
Γ(1+α) .

Case (4): When R = 1, Q = 2−m2 and P = 1−m2

u(t, x, y)=− (4−3m2)(h2 +k2)+ (kb0 +ω)
√

6(2−m2)

h
√

6(2−m2)
+ 2

3
h
√

6(2−m2)
1+sc(η)

,

v(t, x, y)= b0 + 2
3

k
√

6(2−m2)
1+sc(η)

,

w(t, x, y)=− (13−20m2 +5m4)(h2 +k2)
6(2−m2)

+ 2
3

(4−3m2)(h2 +k2)
1+sc(η)

− 4
3

(2−m2)(h2 +k2)
(1+sc(η))2 ,

(3.10)

where η= hx+ky+ ωtβ
Γ(1+α) .

Case (5): When R =−m2(1−m2), Q = 2m2 −1 and P = 1

u(t, x, y)=− (1+2m2)(h2 +k2)+ (kb0 +ω)
√

3(2m2 +m(1−m2)2)

h
√

3(2m2 +m(1−m2)2)
+ 2

3

√
3(2m2 +m(1−m2)2)

1+sd(η)
,

v(t, x, y)= b0 + 2
3

√
3(2m2 +m(1−m2)2)

1+sd(η)
,

w(t, x, y)=− (6m2 −1+m(5−2m4)(1−m2)2)(h2 +k2)
m(2m+ (1−m2)2)

+ 2
3

(1+2m2)(h2 +k2)
1+sd(η)

− 2
3

m(2m+ (1−m2)2)(h2 +k2)
(1+sd(η))2 , (3.11)

where η= hx+ky+ ωtβ
Γ(1+α) .
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Case (6): When R = 1, Q = 2−4m2 and P = 1

u(t, x, y)=−4(1−m2)(h2 +k2)+ (kb0 +ω)
√

12(1−m2)

h
√

12(1−m2)
+ 2

3
cn(η)

√
12(1−m2)

cn(η)+sn(η)dn(η)
,

v(t, x, y)= b0 + 2
3

cn(η)
√

12(1−m2)
cn(η)+sn(η)dn(η)

,

w(t, x, y)=−4(1−m2)(h2 +k2)
3(1−m2)

+ 8
3

cn(η)(1−m2)(h2 +k2)
cn(η)+sn(η)dn(η)

− 8
3

cn2(η)(1−m2)(h2 +k2)
(cn(η)+sn(η)dn(η))2 , (3.12)

where η= hx+ky+ ωtβ
Γ(1+α) .

Case (7): When R = 1, Q = 2 and P = m2

u(t, x, y)=−2(1+m2)(h2 +k2)+ (kb0 +ω)
√

3(3+m2)

h
√

3(3+m2)
+ 2

3
dn(η)

√
3(3+m2)

dn(η)+sn(η)cn(η)
,

v(t, x, y)= b0 + 2
3

dn(η)
√

3(3+m2)
dn(η)+sn(η)cn(η)

,

w(t, x, y)=−4(1+6m2 +m4)(h2 +k2)
3(3+m2)

+ 4
3

dn(η)(1+m2)(h2 +k2)
dn(η)+sn(η)cn(η)

− 2
3

dn2(η)(3+m2)(h2 +k2)
(dn(η)+sn(η)cn(η))2 , (3.13)

where η= hx+ky+ ωtα
Γ(1+α) .

4. Graphics and Discussion
In this section, we show graphical simulations of the solutions eqs. (3.7)-(3.13). GKAM can be
present a huge number of solutions, including trigonometric function, hyperbolic function and
Jacobi elliptic function. The obtained solutions of govern PDE represent kink wave, anti-kink
wave, singular wave, and periodic wave. Figure 1 shows anti-kink wave solution of eq. (3.7)
when β= 0.25 and m = 0. Figure 2 shows singular periodic wave solution eq. (3.8) when β= 0.5
and m = 0. Figure 3 shows kink wave solution of eq. (3.9) when β = 0.5 and m = 1. Figure 4
shows anti-kink wave solution of eq. (3.10) when β= 0.75 and m = 1. Figure 5 shows kink wave
solution of eq. (3.11) when β= 0.5 and m = 1. Figure 6 shows solitary wave solution of (3.12)
when β= 0.5 and m = 0. Figure 7 shows periodic wave solution of eq. (3.13) when β= 0.5 and
m = 0.

5. Conclusion
In this paper, new modification of Kudryashov method is represented to obtain more general
exact solutions for time fractional WZ equations. A fractional similarity transformation is
implemented to reduced time fractional WZ equations to ordinary differential equations. GKJM
is applied to obtained a new type solutions for WZ equations. The exact solution of WZ equations
are drawn by using of MAPLE 15. The exact solutions is shown a various waves as kink wave,
anti-kink wave, singular wave, and periodic wave.
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Figure 1. 3D graph of u-solution (3.7) when b0 =−1, h = 1, k = 0.1, ω= 1

Figure 2. 3D graph of u-solution (3.8) when b0 =−1, h =−0.1, k = 0.1, ω= 1

Figure 3. 3D graph of u-solution (3.9) when b0 = k =−1, h = 1, ω= 0.1
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Figure 4. 3D graph of u-solution (3.10) when b0 = k = 1, h =−1, ω= 0.1

Figure 5. 3D graph of u-solution (3.11) when b0 = k =−1, h = 0.1, ω= 1

Figure 6. 3D graph of u-solution (3.12) when b0 =−1, h = k =ω= 0.1
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Figure 7. 3D graph of u-solution (3.13) when b0 =−1, h = k =ω= 1
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