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Order Bounded Elements of Topological *-algebras

C. Trapani

Abstract. Several different notions of bounded element of a topological *-algebra

A are considered. The case where boundedness is defined via the natural order of

A is examined in more details and it is proved that under certain circumstances

(in particular, when A possesses sufficiently many *-representations) order

boundedness is equivalent to spectral boundedness.

1. Introduction and preliminaries

Let A be a topological *-algebra (i.e., a *-algebra equipped with a locally convex

topology τ such that for each a ∈ A the mappings x 7→ ax , a 7→ xa and the

involution ∗ are continuous in A[τ]). The notion of bounded element of A was first

introduced by Allan [1] with the aim of developing a spectral theory for topological

*-algebras. This definition was suggested by the successful spectral analysis for

closed operators in Hilbert spaceH : a complex number λ is in the spectrum σ(T )

of a closed operator T if T −λI has no inverse in the *-algebraB(H ) of bounded

operators. What makes this definition particularly significant is the fact that σ(T )

is compact if, and only if, T is a bounded operator. Allan’s definition sounds as

follows: an element x of the topological *-algebra A[τ] is Allan bounded if there

exists λ 6= 0 such that the set {(λ−1 x)n; n= 1,2, . . .} is a bounded subset of A[τ].

There are, however, several other possibilities for defining bounded elements.

For instance, one may say that x is left τ-bounded, if there exists γx > 0 such that

pα(x y)≤ γx pα(y), ∀α ∈∆; ∀ y ∈ A,

where {pα;α ∈ ∆} is a directed family of seminorms defining the topology τ of A

[5]; or spectrally bounded if its spectrum is a bounded subset of the complex plane.

Moreover some attempts to extend this notion to the larger set-up of locally

convex quasi *-algebras [9, 11, 12] or locally convex partial *-algebras [3, 4] has

been done. But in these cases, Allan’s notion cannot be adopted, since powers of a

given element x need not be defined.
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In all cases, what one expects when dealing with bounded elements is that

they are realized by bounded operators by any (continuous, in a certain sense)

*-representation of A in Hilbert space. This could be a reasonable definition in

itself, if we were sure that A possesses sufficiently many *-representations in

Hilbert space.

Bounded elements in purely algebraic terms have been considered by Vidav [15]

and Schmüdgen [8] with respect to some (positive) wedge. We extend this purely

algebraic definition by considering as strongly positive elements those belonging

to the τ-closure in A of the, say, algebraic cone of positive elements of a *-algebra.

The main result is that order bounded elements, as we will call them, allow

equivalent characterizations in terms of continuous positive linear functionals and

also in terms of *-representations, that, in the case the positive wedge is a cone,

are sufficiently many to separate points of A.

The following preliminary definitions will be needed in the sequel. For more

details we refer to [7, 2].

LetH be a complex Hilbert space and D a dense subspace ofH . We denote by

L †(D) the set of all (closable) linear operators X such that D(X ) = D, D(X*)⊇ D

and XD ⊂ D, X*D ⊂ D. The set L †(D) is a *-algebra with respect to the

ordinary operations of addition, multiplication by scalars and multiplication and

the involution X 7→ X † := X* ↾D . We put ID = I ↾D . Then ID is the unit of L †(D).

A *-subalgebra of L †(D) is called an O*-algebra [7].

Let A be a *-algebra and Dπ a dense domain in a certain Hilbert space Hπ. A

linear map π from A into L †(Dπ) such that:

(i) π(a∗) = π(a)†, ∀ a ∈ A,

(ii) if a, b ∈ A, then π(ab) = π(a)π(b), is called a *-representation of A.

Moreover, if A has a unit e ∈ A, we assume π(e) = IDπ , the identity of Dπ.

A *-representation π of a topological *-algebra A[τ] is said to be a (τ,τw)-

continuous if, for every ξ,η ∈ Dπ, there exists a τ-continuous seminorm p on

A such that

|〈π(a)ξ|η〉| ≤ p(a), ∀ a ∈ A.

A linear functional ω on A is called positive if ω(a∗a) ≥ 0, for every a ∈ A. To

every positive linear functional ω on A there corresponds a Hilbert space Hω and

a linear map λω from A into a dense subspace λω(A)⊂Hω and a *-representation

πω acting on a dense domain Dπω such that λω(A)⊂ Dπω ⊂Hπ and

ω(b∗xa) = 〈πω(x)λω(a)|λω(b)〉, ∀ a, b, x ∈ A.

The representation πω can be taken to be closed [7]. If A has a unit e, then there

exists a vector ξω such that λω(A) = {πω(a)ξω, a ∈ A} and

ω(x) = 〈πω(x)ξω|ξω〉, ∀ x ∈ A.

We will refer to πω as to the GNS *-representation of A defined by ω.
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2. Topological algebras with sufficiently many *-representations

Throughout this paper we will consider only topological *-algebras possessing

sufficiently many continuous *-representations. More precisely

Definition 2.1. A topological *-algebra A[τ] is called faithfully representable,

shortly an FR*-algebra, if for every x ∈ A \ {0} there exists a (τ,τw)-continuous

*-representation π of A such that π(x) 6= 0.

We denote by Repc(A) the family of all (τ,τw)-continuous *-representation

of A.

The next result is easily proved.

Lemma 2.2. Let A[τ] be a topological *-algebra. The following statements are

equivalent.

(i) A is an FR*-algebra.

(ii) For every x ∈ A\{0}, there exists a τ-continuous positive linear functional ω

such that ω(x∗x)> 0

3. Order bounded elements

3.1. Order structure

Let A be a *-algebra. We denote by

A
+
alg
=

� n
∑

k=1

x∗
k
xk, xk ∈ A, n ∈ N

�

the set (wedge) of positive elements of A.

If A[τ] is a topological *-algebra, strongly positive elements of A are then

defined as members of A+
alg

τ
. We put A+ := A

+
alg

τ
.

The set A+ is an m-admissible wedge in the sense of Schmüdgen [7, Sect. 1.4];

i.e.,

(1) e ∈ A+;

(2) x + y ∈ A+, ∀ x , y ∈ A+;

(3) λx ∈ A+, ∀ x ∈ A+, λ≥ 0;

(4) a∗xa ∈ A+, ∀ x ∈ A+, a ∈ A.

A
+ defines an order on the real vector space Ah= {x ∈A : x = x∗} by x ≤ y ⇔

y − x ∈ A+.

The following statement is easily proved.

Proposition 3.1. If x ≥ 0, then π(x)≥ 0, for every π ∈ Repc(A).

Theorem 3.2. Assume that A+∩ (−A+) = {0}. For every a ∈ A+, a 6= 0, there exists

a τ-continuous linear functional ω on A with the properties

(a) ω(x)≥ 0, ∀ x ∈ A+;
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(b) ω(a)> 0.

Proof. Consider the real vector space Ah. The set {a} is obviously convex and

compact and does not intersect (−A+). Hence by [6, Chapter 2, §5, Proposition 4],

there exists a closed hyperplane separating these two sets. Let g(x) = 0 be the

equation of this hyperplane. Then, either g(a)> 0 and g(−A+)< 0 (in which case

we take ω= g) or the contrary (in this case we take ω=−g). �

Definition 3.3. A linear functional ω on A is called strongly positive if ω(x) ≥ 0,

∀ x ∈ A+.

Clearly, if ω is positive and τ-continuous, then it is strongly positive.

The set of strongly positive linear functionals on A will be denoted by P (A),

while Pc(A) will denote the subset of P (A) consisting of its τ-continuous

elements.

Definition 3.4. A family of strongly positive linear functionalsF on A[τ] is called

sufficient if for every x ∈ A+, x 6= 0 there exists ω ∈ F such that ω(x)> 0.

Corollary 3.5. Let A[τ] be a topological *-algebra. The following statements are

equivalent.

(i) A
+ ∩ (−A+) = {0}, i.e. A+ is a cone.

(ii) Pc(A) is sufficient.

(iii) A[τ] is an FR*-algebra.

Proof. (i)⇒(ii) is Theorem 3.2. As for (ii)⇒(i), if x ∈ A+∩(−A+) and ω ∈ Pc(A),

then ω(−x) = −ω(x) ≥ 0. Hence ω(x) = 0. Since ω is arbitrary, it follows that

x = 0. (ii) ⇔ (iii) follows from Lemma 2.2. Finally we prove that (iii)⇔(i).

Let x ∈ A
+ ∩ (−A+), x 6= 0. Then there exist π ∈ Repc(A) and ξ ∈ Dπ such

that 〈π(x)ξ|ξ〉 6= 0. Since x is the limit of a net of elements of A
+
alg

, we get

〈π(x)ξ|ξ〉> 0. Similarly, 〈π(−x)ξ|ξ〉 > 0. This is a contradiction. �

Proposition 3.6. Let A[τ] be an FR*-algebra withPc(A) sufficient. Assume that the

following condition (P) holds

If y ∈ A and ω(a∗ ya)≥ 0, for every ω ∈ Pc(A) and a ∈ A, then y ∈ A+.

Then, for an element x ∈ A, the following statements are equivalent.

(i) x ∈ A+;

(ii) ω(x)≥ 0, for every ω ∈ Pc(A)

(iii) π(x)≥ 0, for every π ∈ Repc(A).

Proof. (i)⇒(ii) is a trivial consequence of the definition of strongly positive

element and of the continuity of every ω ∈ Pc(A) w. r. to τ.

(ii)⇒(iii): Let π be (τ,τw)-continuous *-representation π of A. Define ωξ(x) :=

〈π(x)ξ|ξ〉 with ξ ∈ Dπ, ‖ξ‖ = 1. Then ωξ ∈ Pc(A), since

|ωξ(x)|= |〈π(x)ξ|ξ〉| ≤ p(x)
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for some τ-continuous seminorm p on A. Then, if a satisfies (ii), 〈π(a)ξ|ξ〉 ≥ 0,

for every ξ ∈ Dπ.

(iii)⇒(i): Let ω ∈ Pc(A) and let πω be the corresponding GNS representation.

Then, πω is (τ,τw)-continuous. Indeed,

|〈πω(x)λω(a)|λω(b)〉|= |ω(b
∗xa)| ≤ p(x), ∀ x ∈ A; a, b ∈ A,

for some τ-continuous seminorm p on A (due to the continuity of ω and of the

multiplications). If (iii) holds, then πω(x) ≥ 0. This implies that ω(a∗xa) ≥ 0, for

every a ∈ A. The statement then follows from the assumption (P). �

Remark 3.7. If A has a unit, (P) is equivalent to the following

(P′) If y ∈ A and ω(y)≥ 0, for every ω ∈ Pc(A), then y ∈ A+.

Remark 3.8. The condition (P) together with A
+ ∩ (−A+) = {0} implies that,

for every nonzero x ∈ A, there exists ω ∈ Pc(A) such that ω(x) 6= 0. Indeed, if

ω(x) = 0 for every ω ∈ Pc(A), then x ∈ A+ and also −x ∈ A+; hence x = 0.

3.2. Order bounded elements

Let A[τ] be a topological *-algebra with unit e. As we have seen in Section 3.1,

A[τ] has a natural order related to the topology τ. This order can be used to define

bounded elements. In what follows, we will assume that A has a unit e.

Let x ∈ A; put ℜ(x) = 1

2
(x + x∗), ℑ(x) = 1

2i
(x − x∗). Then ℜx ,ℑ(x) ∈ Ah (the

set of selfadjoint elements of A) and x =ℜ(x) + iℑ(x).

Definition 3.9. An element x ∈ A is called order bounded if there exists γ≥ 0 such

that

±ℜ(x)≤ γe; ±ℑ(x) ≤ γe.

We denote by Ab the family of order bounded elements.

Proposition 3.10. The following statements hold:

(1) αx +β y ∈ Ab, ∀ x , y ∈ Ab, α,β ∈ C.

(2) x ∈ Ab⇔ x∗ ∈ Ab.

(3) x , y ∈ Ab⇒ x y ∈ Ab.

(4) a ∈ Ab⇔ aa∗ ∈ Ab.

Hence, Ab is a *-algebra.

Proof. See [8, Lemma 2.1]. �

For x ∈ Ah, put

‖x‖b := inf{γ > 0 : −γe ≤ x ≤ γe}.

‖ · ‖b is a seminorm on the real vector space (Ab)h.

Lemma 3.11. If A∩ (−A+) = {0}, ‖ · ‖b is a norm on (Ab)h.
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Proof. Put E = {γ > 0 : −γe ≤ x ≤ γe}. If inf E = 0, then for every ε > 0 there

exists γε ∈ E such that γε < ε. This implies that −εe ≤ x ≤ εe. If ω ∈ Pc(A), we

get −εω(e) ≤ ω(x) ≤ εω(e) (we may suppose ω(e) > 0 for every ω ∈ Pc(A),

since the Cauchy-Schwarz inequality implies that, if ω(e) = 0, ω ≡ 0). Hence,

ω(x) = 0. By the sufficiency of Pc(A), it follows that x = 0. �

Proposition 3.12. If x ∈ Ab, then π(x) is a bounded operator, for every (τ,τw)-

continuous *-representation of A. Moreover, if x = x∗, ‖π(x)‖ ≤ ‖x‖b .

Proof. It follows easily from Proposition 3.1 and from the definitions. �

Theorem 3.13. Let A[τ] be a topological *-algebra with unit e and assume that

condition (P) holds. For x ∈ A, the following statements are equivalent.

(i) x is order bounded.

(ii) There exists γx > 0 such that

|ω(a∗xa)| ≤ γxω(a
∗a), ∀ω ∈ Pc(A), a ∈ A.

(iii) There exists γx > 0 such that

|ω(b∗xa)| ≤ γxω(a
∗a)1/2ω(b∗b)1/2, ∀ω ∈ Pc(A), a, b ∈ A.

(iv) π(x) is bounded, for every π ∈ Repc(A), and

sup{‖π(x)‖, π ∈ Repc(A)}<∞}.

Proof. It is sufficient to consider the case x = x∗ and again we suppose ω(e)> 0,

for every ω ∈ Pc(A).

(i)⇒ (ii): If x = x∗ is order bounded, then also x2 is order bounded. Thus, for

some µ > 0, a∗x2a ≤ µ2a∗a, for every a ∈ A. Hence,

|ω(a∗xa)| ≤ω(a∗a)1/2ω(a∗x2a)1/2 ≤ µω(a∗a), ∀ω ∈ Pc(A), a ∈ A.

(ii)⇒ (i): Assume now that there exists γx > 0 such that

|ω(a∗xa)| ≤ γxω(a
∗a), ∀ω ∈ Pc(A), a ∈ A

and define

γ̃ := sup{|ω(a∗xa)| :ω ∈ Pc(A), a ∈ A,ω(a∗a) = 1}.

Then, for an arbitrary ω′ ∈ Pc(A), we get,

ω′(γ̃e± x) = γ̃ω′(e)±ω′(x) =ω′(e)(γ̃±ω′(u∗xu))≥ 0,

where u= e

ω′(e)1/2
.

Hence, ω′(γ̃e± x) ≥ 0, for every ω′ ∈ Pc(A). Then, by (P), −γ̃e ≤ x ≤ γ̃e; i.e.

x is order bounded.

(i)⇒ (iii): The GNS representation πω is (τ,τw)-continuous, hence, by Proposition

3.12, if x = x∗ ∈ A, πω(x) is bounded and ‖π(x)‖ ≤ ‖x‖b . Thus,

|ω(b∗xa)|= |〈πω(x)λω(a)|λω(b)〉| ≤ ‖πω(x)‖‖λω(a)‖‖λω(b)‖

≤ ‖x‖bω(a
∗a)1/2ω(b∗b)1/2
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(iii)⇒ (ii) is obvious.

(iii)⇒ (iv): Let π ∈ Repc(A) and ξ ∈ Dπ. Put ωξ(y) := 〈π(y)ξ|ξ〉, y ∈ A.

Then ωξ ∈ Pc(A). Hence by (iii), |ωξ(x)| ≤ γxωξ(e). Or, in other terms,

|〈π(x)ξ|ξ〉 ≤ γx‖ξ‖
2. This, in turn easily implies that |〈π(x)ξ|η〉| ≤ γx‖ξ‖‖η‖,

for every ξ,η ∈ Dπ. Hence π(x) is bounded and ‖π(x)‖ ≤ γx .

(iv)⇒(i): Put γx := sup{‖π(x)‖, π ∈ Repc(A)}. Then

|〈π(x)ξ|ξ〉 ≤ ‖π(x)ξ‖ ≤ γx‖ξ‖
2, ∀ξ ∈ Dπ.

Hence, −γx IDπ ≤ π(x)≤ γx IDπ . In particular this holds for the GNS representation

associated to every ω ∈ Pc(A). Therefore,

ω(x + γx e)≥ 0 and ω(x − γx e)≤ 0, ∀ω ∈ Pc(A).

By (P) it follows that −γx e ≤ x ≤ γx e. �

Let x be order bounded and define

q(x) = sup{|ω(b∗xa)|; ω ∈ Pc(A), a, b ∈ A;ω(a∗a) =ω(b∗b) = 1}.

Lemma 3.14. q(x) = ‖x‖b , for every x = x∗ ∈ Ab.

Proof. The proof of Proposition 3.12 shows that for x = x∗,

‖x‖b ≤ sup{|ω(a∗xa)| :ω ∈ Pc(A), a ∈ A,ω(a∗a) = 1}.

Hence, ‖x‖b ≤ q(x), for every x = x∗ ∈ Ab. For any γ > 0 such that −γe ≤

x ≤ γe, we have, by the proof of Theorem 3.13, q(x) ≤ γ; whence the statement

follows. �

Since q extends ‖ · ‖b, we adopt the notation ‖ · ‖b for both. It is easy to see that

‖ · ‖b is a norm on Ab such that, for every x , y ∈ Ab,

(i) ‖x∗‖b = ‖x‖b;

(ii) ‖x y‖b ≤ ‖x‖b ‖y‖b.

Moreover, for every x ∈ Ab,

‖x‖b = sup{‖π(x)‖, π ∈ Repc(A)}. (3.1)

Proposition 3.15. Let A be a FR*-algebra. Then ‖ · ‖b is C∗-norm on Ab.

Proof. This follows easily from (3.1). �

The family of functionals Pc(A) may be used to define on A some more

topologies. In what follows we will use the strong* topology τs∗ , defined by the

family of seminorms

x ∈ A→max{ω(x∗x)1/2,ω(x x∗)1/2}, ω ∈ Pc(A).

Proposition 3.16. A be a FR*-algebra with unit e and assume that A is τs∗ -complete.

Then Ab is a C*-algebra with norm ‖ · ‖b.
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Proof. Since ‖ · ‖b is a C*-norm on Ab, we need only to prove the completeness of

Ab.

Let {xn} be a Cauchy sequence with respect to the norm ‖ · ‖b. Then {x∗
n
} is

Cauchy too. Hence, for every ω ∈ Pc(A) and a ∈ A we have

ω(a∗(x∗
n
− x∗

m
)(xn − xm)a)→ 0, as n, m→∞

and

ω(a∗(xn − xm)(x
∗
n
− x∗

m
)a)→ 0, as n, m→∞.

Therefore, {xn} is Cauchy also with respect to τs∗ . Then, there exists x ∈ A such

that xn

τs∗

→ x . Since

ω(a∗x∗xa) = lim
n→∞
ω(a∗x∗

n
xna)≤ limsup

n→∞
‖xn‖

2
b
ω(a∗a)

and limsup
n→∞

‖xn‖
2
b
< ∞ (by the boundedness of the sequence {‖xn‖b}), we

conclude that x is order bounded. Finally, by the Cauchy condition, for every ε > 0,

there exists nε ∈ N such that, for every n, m > nε, ‖xn − xm‖b < ε. This implies

that

ω(a∗(x∗
n
− x∗

m
)(xn − xm)a)< εω(a

∗a), ∀ϕ ∈M , a ∈ A.

Then if we fix n> nε and let m→∞, we obtain

ω(a∗(x∗
n
− x∗)(xn − x)a)≤ εω(a∗a), ∀ϕ ∈M , a ∈ A.

This, in turn, implies that ‖xn − x‖b ≤ ε, for n≥ nε. �

3.3. Spectral boundedness

Once one has at hand the algebra Ab of bounded elements of a topological

*-algebra A, it is natural to use it for a coherent definition of spectrum and

investigate on the relationship between the order boundedness of an element

x ∈ A and the boundedness of its spectrum. But for making this meaningful one

has to suppose that Ab is large enough to avoid trivial situations. Thus, in this

section we will consider only an FR*-algebra A satisfying the following condition

(A) Ab is a C*-algebra, τs∗ -dense in A.

Definition 3.17. Let A be an FR*-algebra A, with unit e, and satisfying (A). The

resolvent ρ◦(x) of x is defined by

ρ◦(x) = {λ ∈ C : (x −λe)−1exists in Ab}.

The spectrum of x is defined as σ◦(x) := C \ρ◦(x).

In similar way as in [9] it can be proved that: (a) ρ◦(x) is an open subset of

the complex plane; (b) the map λ ∈ ρ◦(x) 7→ (x − λe)−1 ∈ Ab is analytic in each

connected component of ρ◦(x); (c) σ◦(x) is nonempty.

As usual, we define the spectral radius of x ∈ A by

r◦(x) := sup{|λ| : λ ∈ σ◦(x)}.
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Theorem 3.18. Let A be an FR*-algebra A, with unit e, and satisfying (A). Then

r◦(x) <∞ if and only if x ∈ Ab.

Proof. If x ∈ Ab, then σ◦(x) coincides with the spectrum of x as an element of the

C*-algebra Ab and so σ◦(x) is compact. Conversely, assume that r◦(x) <∞. Then

the function λ 7→ (x − λe)−1 is ‖ · ‖b-analytic in the region |λ| > r◦(x). Therefore

it has there a ‖ · ‖b-convergent Laurent expansion

(x − λe)−1 =

∞
∑

k=1

ak

λk
, |λ|> rM (x),

with ak ∈ Ab for each k ∈ N. As usual

ak =
1

2πi

∫

γ

(x −λe)−1

λ−k+1
dλ, k ∈ N,

where γ := {λ ∈ C : |λ| = R : R > r◦(x)} and the integral on the r.h.s. is meant to

converge with respect to ‖ · ‖b.

Using the previous integral representation and the continuity, for every ω ∈

Pc(A) and b, b′ ∈ A, we have

ω(b′
∗
xak b) =ω(b′

∗
ak+1 b).

This implies that xak = ak+1.

In particular,

ω(b′
∗
(xa1)b) =

1

2πi

∫

γ

ω(b′
∗
x(x −λe)−1 b)dλ

=−ω(b′
∗
x b).

Hence xa1 = −x . Thus finally x = −a2 ∈ Ab. �

Corollary 3.19. Let A be an FR*-algebra A, with unit e, and satisfying (A). Then
¨

r◦(x)≤ ‖x‖b if x ∈ Ab

r◦(x) = +∞ if x 6∈ Ab.

3.4. Concluding remark

As we have seen the notion of order boundedness for elements of a topological

*-algebra A has plenty of interesting consequences on the structure of A, at least

if A has sufficiently many representations. There are however several questions

that remain unsolved. The first one concerns the size of the algebra Ab of order

bounded elements, since the density of Ab in A cannot be deduced from the set-up

presented in this paper and probably requires tighter assumptions on the topology

τ of A. The second one is about the notion of left τ-bounded element given in the

Introduction: as shown in [3] for the case of locally convex partial *-algebras, this

definition leads to reasonable results on the spectral behavior. It is not difficult to

see that left τ-boundedness implies, in the case of topological *-algebras, Allan
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boundedness; thus it is really worth investigating it in detail. We leave both these

questions to future papers.
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