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1. Introduction
Graph theory is an important tool to characterize algebraic structures and there are various
graphs associated with an algebraic structure. But among these, the one that characterizes a
particular type of algebraic structure is of much interest. In this paper, we consider the double
total graph for which the complete graphs are characterized by fusible rings. All rings considered
here are finite commutative rings with unity. Many authors widely studied the unit graph [2]
and the total graph [1]. In general the total graph and the unit graph are disconnected. The
double total graph [6] is a connected graph containing the unit graph of the ring as a subgraph
([6, Proposition 3.12]).

http://doi.org/10.26713/cma.v12i1.1466
https://orcid.org/0000-0003-4716-1189
https://orcid.org/0000-0003-1402-6300


204 A Note on the Double Total Graph Tu(Γ(R)) and Tu(Γ(Zn ×Zm)): N. R. Singh and S. Dutta

For definitions, terminologies and results on graph theory readers are referred to [8].

Definition 1.1 ([4]). A nonzero element a ∈ R is said to be unit fusible if it can be expressed as
the sum of a zero divisor and a unit in R. A ring R is unit fusible if every non zero element of R
is fusible.

Remark 1.2. It is well known that for the complete graph Kn, the genus g(Kn)=d(n−3)(n−4)/12e
when n ≥ 3 and for the complete bipartite graph Kn,m, the genus g(Kn,m) = d(n−2)(m−2)/4e
when n,m ≥ 2.

Remark 1.3. In a graph G, g(G) = 1 if G contains a K5 or a K3,3 but does not contain any of
the graphs K8−K3 or K8− (2K2∪P3) or K8−K2,3, where G−H denotes edges of G minus edges
of H.

Theorem 1.4 ([5]). If G is a split graph then G contains no induced subgraph isomorphic to
2K2, C4 or C5.

It is known that Tu(Γ(R)) is a connected graph with diam(Tu(Γ(R))) ≤ 2 and every vertex
in Z(R) is adjacent to every vertex in U(R). If |Z(R)| ≥ 2, |U(R)| ≥ 2 then gr(Tu(Γ(R)))= 3 or 4.
Tu(Γ(R)) is a complete graph if and only if R is a reduced unit fusible ring with Char(R)= 2.

In Section 2 of this note, we find the degree of any vertex in Tu(Γ(R)) for a weakly unit
fusible ([6, Definition 3.7]) ring R and the domination number γ(Tu(Γ(R))). In Section 3, we
find properties of Tu(Γ(Zn ×Zm)). In Section 4, we characterize the rings R in terms of toroidal
Tu(Γ(R)).

2. Properties of Tu(Γ(R))
This section is devoted to deduce some properties of Tu(Γ(R)).

Proposition 2.1. Let R be a local ring with |R/M| = 2, where M is the unique maximal ideal of
R. Then Tu(Γ(R)) is a complete bipartite graph.

Proof. For every pair x, y ∈ M, x is not adjacent to y since R is a local ring. Also as |R/M| = 2,
we have R = M ∪ (M +a) = M ∪ (M + (−a)) where a ∈ R \ M is a fixed element of R. Then for
every u1,u2 ∈ R \ M, we have u1 = m+a and u2 = m′−a, where m,m′ ∈ M. If u1 +u2 ∈ R \ M
then m+m′ ∈ R \M which is a contradiction. So u1 is not adjacent to u2 for every u1,u2 ∈ R \M.
Hence Tu(Γ(R)) is a complete bipartite graph.

We find the degree of any vertex of Tu(Γ(R)) for a weakly unit fusible ring R in the following
proposition.

Proposition 2.2. If R is weakly unit fusible and v ∈ Tu(Γ(R)) then deg(v) = |R| − |Nil(R)| or
deg(v)= |R|− (|Nil(R)|+1).

Proof. Let Nil(R) = {n1, . . . ,nk} be the set of distinct nilpotent elements of R. Let x ∈ Nil(R).
Then x is adjacent to u, for all u ∈U(R) since (−u)+ (x+u) = x ∈ Z(R). Let w ∈ Z(R) \ Nil(R).
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Then x+w = x+ (z+u), for some z ∈ Z(R) since R is weakly unit fusible. Therefore, we can
choose a unit (−u) such that (−u)+ x+ w = (−u)+ x+ z + u = x+ z ∈ Z(R). Hence, deg(x) =
|U(R)|+ |Z(R)|− |Nil(R)| = |R|− |Nil(R)|.

Let x ∈ U(R). Then x is adjacent to z for all z ∈ Z(R). Since R is a ring with unity and
{n1, . . . ,nk} are the k distinct nilpotent elements of R. For i = 1,2, . . . ,k, ni + x being a unit leads
to the existence of at least k units. Let {x,u2, . . . ,uk} be the set of k units of R. Now ni + x = ui

for all i ≤ k. Therefore, x is adjacent to all elements of U(R) except −u1, . . . ,−uk. If x is one of
−ui then deg(x)= |Z(R)|+ (|U(R)|− |Nil(R)|)−1= |R|− (|Nil(R)|+1). If x is not any one of −ui

then deg(x)= |Z(R)|+ (|U(R)|− |Nil(R)|)= |R|− |Nil(R)|.
Finally, let x ∈ Z(R) \ Nil(R). Since there are k nilpotent elements, there exists a set

consisting of at least k elements say {x,w2, . . . ,wk} in Z(R) \ Nil(R). Then x is adjacent to
all elements of Z(R)\Nil(R) except −w1, . . . ,−wk elements of Z(R)\Nil(R). If x is one of −wi

then deg(x) = |Z(R)|+ (|U(R)|− |Nil(R)|)−1 = |R|− (|Nil(R)|+1) and if x is not any one of −ui

then deg(x)= |Z(R)|+ (|U(R)|− |Nil(R)|)= |R|− |Nil(R)|.
Hence the result follows.

In the next three propositions we note the domination number of Tu(Γ(R)).

Proposition 2.3. Let R be a finite commutative ring with |Nil(R)| ≥ 2 and |U(R)| ≥ 2.
Then γ(Tu(Γ(R)))= 2.

Proof. Since |Nil(R)| ≥ 2 and |U(R)| ≥ 2, we have {1,0} as a dominating set.
Hence, γ(Tu(Γ(R)))= 2.

The following propositions hold clearly.

Proposition 2.4. If Nil(R)= {0} then γ(Tu(Γ(R)))= 1.

Proposition 2.5. If U(R)= {1} then γ(Tu(Γ(R)))= 1.

3. Properties of Tu(Γ(Zn ×Zm))
In this section, we prove some properties of the double total graph of Zn×Zm. For the properties
of the ring Zn ×Zm readers are referred to [3].

Proposition 3.1. Zn ×Zm is weakly unit fusible.

Proof. It is enough to show that (a,b) ∈ Z(Zn ×Zm)\Nil(Zn ×Zm) can be written as the sum of
a unit and a zero divisor. Let n = pα1

1 × . . .× pαk
k and m = qβ1

1 × . . .× qβl
l .

Case 1: If neither a nor b is nilpotent, then (a,b)= (spα1
1 × . . .× pαi−1

i−1 × pαi+1
i+1 × . . .× pαk

k , rqβ1
1 × . . .

× qβ j−1
j−1 × qβ j+1

j+1 × . . .× qβl
l ), where s < pi and r < q j . Now (a,b)= (pi, q j)+ (a,b)− (pi, q j). We have

(pi, q j) is a zero divisor since pi and q j are zero divisors, and (a,b)− (pi, q j) is a unit since
(a− pi,n)= 1 and (b− q j,m)= 1.
Case 2: If one of a or b, say b is nilpotent, then (a,b)= (spα1

1 ×. . .×pαi−1
i−1 ×pαi+1

i+1 ×. . .×pαk
k ,b), where

b ∈ Nil(Zm). Now (a,b) = (pi,u)+ (a,b)− (pi,u), where u ∈ U(Zm). Since pi ∈ Z(Zn) therefore
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(pi,u) ∈ Z(Zn ×Zm), and since b+ (−u) ∈U(Zm) and (a− pi,n)= 1, therefore (a,b)− (pi,u) is a
unit.
Hence the proposition.

In the following proposition, we find when is Tu(Γ(Zn ×Zm)) a regular graph.

Proposition 3.2. If n = 2i , m = 2 j , i, j ∈ N, then Tu(Γ(Zn ×Zm)) is a nm−φ(n)φ(m) regular
graph.

Proof. U(Zn ×Zm) and Nil(Zn ×Zm) are two independent sets having the same number of
elements. We claim that the vertices in W(Zn ×Zm) = Z(Zn ×Zm) \ Nil(Zn ×Zm) forms a
complete bipartite graph with each partite set having |W(Zn ×Zm)|/2 number of vertices. Let
w ∈W(Zn ×Zm) then w = (u,n) or w = (n,u) where u ∈U(Zn) and z ∈Nil(Zm) or n ∈Nil(Zn) and
u ∈U(Zm). We claim that S = {(z,u)|z ∈Nil(Zn),u ∈U(Zm)} and T = {(u, z)|u ∈U(Zn), z ∈Nil(Zm)}
are the two partite sets. Let oi , e j for i, j ∈N represent odd and even numbers respectively. Let
w1,w2 ∈ S then w1 = (z1,u1),w2 = (z2,u2). Now w1+w2 = (z1+ z2,u1+u2)= (e1, e2). This implies
that u+w1+w2 = (o1, o2)+(e3, e4)= (o3, o4) ∉ Z(Zn×Zm). Therefore, w1 and w2 are not adjacent.
Similarly, if v1,v2 ∈ T then v1 = (u1, z1),v2 = (u2, z2). Now v1 + v2 = (u1 + u2, z1 + z2) = (e5, e6).
This implies that u+v1 +v2 = (o5, o6)+ (e5, e6)= (o7, o8) ∉ Z(Zn ×Zm). Therefore, v1 and v2 are
not adjacent.

Now, let w = (z1,u1) ∈ S and v = (u2, z2) ∈ T . Then w+ v = (z1 +u2,u1 + z2)= (o11, o12). This
implies that u+w+v = (o11, o12)+ (o13, o14)= (e7, e8) ∈ Z(Zn ×Zm). Therefore, w is adjacent to
v. Hence, the claim. Now, if u ∈U(Zn ×Zm) then u is adjacent to |Z(Zn ×Zm)| = nm−φ(n)φ(m)
number of vertices. If z ∈ Nil(Zn ×Zm) then z is adjacent to any w ∈ W(Zn ×Zm) since
z+w = (z1, z2)+ (w1,w2)= (e9, o15) or (o16, e10). So z is adjacent to |U(Zn×Zm)|+|W(Zn×Zm)| =
φ(n)φ(m)+ (nm−φ(n)φ(m))−2i−12 j−1 = nm−φ(n)φ(m) number of vertices. If w ∈W(Zn ×Zm)
then w ∈ S or T , say w is in S. Now w is adjacent to |U(Zn ×Zm)| + |Nil(Zn ×Zm)| + |T| =
φ(n)φ(m)+2i−12 j−1+ ((nm−φ(n)φ(m))−2i−12 j−1)/2= nm/2+φ(n)φ(m)= 3

42i2 j = nm−φ(n)φ(m)
number of vertices. Similarly, if w is in T , deg(w)= nm−φ(n)φ(m). Hence the result follows.

We find the clique number ω(Tu(Γ(Zn×Zm))) for any two prime numbers n and m as follows.

Proposition 3.3. Let p and q be any two prime numbers. If q 6= 2, then w(Tu(Γ(Z2×Zq)))= q+1.
If q = 2, then w(Tu(Γ(Z2 ×Z2)))= 4.
And, w(Tu(Γ(Zp ×Zq)))= (pq+1)/2 for p 6= 2, q 6= 2.

Proof. Here, Nil(Z2×Zq)= {(0,0)} and |U(Z2×Zq)| = q−1 and (0,0) is the only element having
self additive inverse. Let U(Z2 ×Zq)= A∪B where B contains all the additive inverses of the
elements of A. Here Z2×Zq is unit fusible. Therefore, A and B form two complete subgraphs of
order (q−1)/2 each. Also, |Z(Z2 ×Zq)| = 2q− (q−1)= q+1. Let W(Z2 ×Zq)= Z(Z2 ×Zq)\{(0,0)}.
Let {C,D} be a partition of W(Z2 ×Zq) such that D contains all the additive inverses of the
elements of C. So C and D form two complete subgraphs of order (q+1)/2 each as Z2 × Zq

is unit fusible. And (0,0) is adjacent to all other elements of Z2 ×Zq. Let (0,0) ∈ D. Then
w(Tu(Γ(Z2 ×Zq)))= |A|+ |C|+1= (q−1)/2+ (2q− (q−1))/2+1= q+1.
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If q = 2, then Tu(Γ(Z2 ×Z2))∼= K4, and therefore w(Tu(Γ(Z2 ×Z2)))= 4.
Let p 6= 2, q 6= 2. Then W(Zp ×Zq) forms two complete subgraphs of order
(pq − (p − 1)(q − 1) − 1)/2 each. Since (0,0) is adjacent to all other elements of Zp × Zq,
w(Tu(Γ(Zp ×Zq)))= (p−1)(q−1)/2+ (pq− (p−1)(q−1)−1)/2+1= (pq+1)/2.

Now we compute the minimum degree δ(Tu(Γ(Zn × Zm))) and the maximum degree
4(Tu(Γ(Zn ×Zm))) in the following two propositions.

Proposition 3.4. Let G = Tu(Γ(Zn ×Zm)), then

δ(G)=
{

nm−|Nil(Zn ×Zm)|, n = 2i and m = 2 j, i ≥ 2, j ≥ 2,
nm− (|Nil(Zn ×Zm)|+1), n 6= 2i, m 6= 2 j, i ≥ 2, j ≥ 2 .

Proof. If n = 2i , m = 2 j , i ≥ 2 and j ≥ 2, then Tu(Γ(Zn ×Zm)) is nm−φ(n)φ(m) regular graph.
When n 6= 2m, |U(Zn×Zm)| > |Nil(Zn×Zm)|. Then by Proposition 2.2 there exist x ∈Zn×Zm such
that x ∈U(Zn ×Zm) and x is not any one of −ui . Therefore, deg(x)= n−|Nil(Zn ×Zm)|−1.
Hence the proposition.

Proposition 3.5. Let G = Tu(Γ(Zn ×Zm)). Then 4(G)= nm−|Nil(Zn ×Zm)|.

Proof. Let x be a vertex in G. If n = 2i , m = 2 j for i ≥ 2 and j ≥ 2 then G is nm−φ(n)φ(m) regular
graph. Otherwise, x ∈ Nil(Zn ×Zm) has degree nm−φ(n)φ(m) by Proposition 2.2. Therefore,
4(G)= nm−|Nil(Zn ×Zm)|.

In the succeeding four propositions, we find when is Tu(Γ(Zn ×Zm)) Eulerian, Hamiltonian,
planar or split for any two positive integers n,m ≥ 2.

Proposition 3.6. Tu(Γ(Zn ×Zm)) is Eulerian if and only if n = 2i , m = 2 j , for i, j ∈N and one of
i or j is greater than 1.

Proof. If i = 1= j, then Tu(Γ(Zn ×Zm)) contains K4 as its subgraph and therefore the graph is
not Eulerian. If one of i or j is greater than 1 then the degree of each vertex of the graph is
even since the graph is nm−φ(n)φ(m) regular.

If one of n or m is not equal to 2i , then the graph is not regular. We have 4(G)= δ(G)+1.
So either 4(G) or δ(G) is odd. Then there exists at least one vertex having an odd degree.
Therefore, the graph is not Eulerian.

Proposition 3.7. Tu(Γ(Zn ×Zm)) is Hamiltonian.

Proof. Zn ×Zm is weakly unit fusible. Let n = p1
α1 × . . . × pk

αk , m = q1
β1 × . . . × ql

βl and
r = p1× p2× . . .× pk , s = q1× q2× . . .× ql where p′

is and q′
js are distinct primes for 1≤ i ≤ k and

1≤ j ≤ k. Suppose n = 2i and m = 2 j for some i, j ∈N. Then δ(Tu(Γ(Zn×Zm)))= nm/2. Otherwise,
δ(Tu(Γ(Zn×Zm)))= nm−Nil(Zn×Zm)−1. Now nm−Nil(Zn×Zm)−1−nm/2= nm((rs−2)/rs)−1> 0.
Therefore, δ(Tu(Γ(Zn ×Zm)))> nm/2. Hence, Tu(Γ(Zn ×Zm)) is Hamiltonian.

Proposition 3.8. Tu(Γ(Zn ×Zm)) is planar if and only if n = 2 and m = 2.
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Proof. It is easy to see Tu(Γ(Zn ×Zm)) is planar for n = 2 and m = 2. We consider the following
cases:

Case 1: If n ≥ 3 and m ≥ 3 then |U(Zn ×Zm)| ≥ 4 and so |Z(Zn ×Zm)| ≥ 3. Therefore, K3,3 is a
subgraph of Tu(Γ(Zn ×Zm)).

Case 2: If n = 2 and m ≥ 7 then |U(Zn×Zm)| ≥ 3 and |Z(Zn×Zm)| ≥ 3. Therefore, Tu(Γ(Zn×Zm))
contains K3,3 as a subgraph.

Case 3: If n = 2 and m = 3 then U(Zn ×Zm)= {(1,1), (1,2)} but (0,0) is adjacent to every element
of Zn ×Zm. Therefore K3,3 is a subgraph of Tu(Γ(Zn ×Zm)).

Case 4: If n = 2 and m = 4 then U(Zn ×Zm) = {(1,1), (1,3)} and Nil(Zn ×Zm) = {(0,0), (0,2)}.
Therefore, Tu(Γ(Zn ×Zm)) contains K4,4 as its subgraph.

Case 5: If n = 2 and m = 5, then |U(Zn×Zm)| = 3. Therefore, K3,3 is a subgraph of Tu(Γ(Zn×Zm)).

Case 6: If n = 2 and m = 6 then U(Zn×Zm)= {(1,1), (1,5)} but (0,0) is adjacent to all the vertices
of Tu(Γ(Zn ×Zm)). Therefore, we see that K3,3 is a subgraph of Tu(Γ(Zn ×Zm)).

Thus, Tu(Γ(Zn ×Zm)) is non planar if n 6= 2 or m 6= 2.
Hence the proposition.

Proposition 3.9. Tu(Γ(Zn ×Zm)) is split if and only if n = 2 and m = 2.

Proof. If n = 2 and m = 2, then Tu(Γ(Zn ×Zm))∼= K4 and hence Tu(Γ(Zn ×Zm)) is split.
Conversely, suppose one of n or m is not equal to 2.

Case 1: Let m = 2, n 6= 2. Then, the zero divisor (1,0) has additive inverse (−1,0) with
(1,0) 6= (−1,0). Also, the unit (1,1) has additive inverse (−1,−1) and (1,1) 6= (−1,−1). Hence, we
get an induced subgraph C4 in Tu(Γ(Zn ×Zm)). Therefore, the graph Tu(Γ(Zn ×Zm)) is not split.

Case 2: Let m ≥ 3 and n ≥ 3. We know that (1,1) and (0,0) are adjacent. Since |U(Zn ×Zm)| ≥ 2,
and |Z(Zn ×Zm)| ≥ 2, the vertex set {(1,1), (−1,−1), (1,0), (−1,0)} induces a C4 in Tu(Γ(Zn ×Zm)).

Hence, the graph Tu(Γ(Zn ×Zm)) is not split.

4. Toroidal Tu(Γ(R))
In this section we find the non-isomorphic rings R for which Tu(Γ(R)) is toroidal.

Proposition 4.1. Tu(Γ(R)) is toroidal if and only if R is isomorphic to one of the following rings:

Z7, Z8, Z2 ×Z3, Z2 ×Z4, Z2 ×Z2[x]/(x2), Z2[x]/(x3), Z4[x]/(2x, x2), Z4[x]/(2x, x2 −2),
Z2[x, y]
(x, y)2 .

Proof. Let R be a finite commutative ring with unity. By [7, Theorem 2.11(2)], [2, Theorem
5.14] and [6, Proposition 4.1], it is enough to consider the following rings as G(R) is a spanning
subgraph of Tu(Γ(R)).

Z3×Z3, Z2×Z2×Z2, Z2×Z3, Z2 ×·· ·×Z2︸ ︷︷ ︸
l

×Z3 where l ≥ 2, Z2×Z4, Z2 ×·· ·×Z2︸ ︷︷ ︸
l

×Z4, where l ≥ 2,

Z2 ×F4, Z2 ×Z2[x]/(x2), Z7, Z8, Z2[x]/(x3), Z4[x]/(2x− x2), Z2[x, y]/(x, y)2, Z2 ×Z5, Z2 ×Z3 ×Z3,
Z3 ×Z4, Z3 ×Z2[x]/(x2).
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Case 1: R =Z3 ×Z3. Here, U(Z3 ×Z3) = {(1,1), (1,2), (2,1), (2,2)}, therefore |U(Z3 ×Z3)| = 4 and
|Z(Z3 ×Z3)| = 5. This shows that, Tu(Γ(R)) contains a K4,5 and hence g(Tu(Γ(R)))≥ 2.

Case 2: R = Z2 × Z2 × Z2. As Tu(Γ(Z2 × . . . × Z2)) is complete graph for all l so
g(Tu(Γ(Z2 ×·· ·×Z2︸ ︷︷ ︸

l

)))≥ 2 if l ≥ 3.

Case 3(i): R =Z2 ×Z3. Then g(Tu(Γ(R)))= 1 since it is a subgraph of K6.

Case 3(ii): R = Z2 ×·· ·×Z2︸ ︷︷ ︸
l

×Z3, where l ≥ 2. Then, Tu(Γ(R)) contains a K|S|,|T| where S =

{(1, . . . ,1,1), (1, . . . ,1,2), (0, . . . ,0,0)} and T = Z(R) \ {(0, . . . ,0,0)} so there exist at least one K3,9

therefore g(Tu(Γ(Z2 ×·· ·×Z2︸ ︷︷ ︸
l

×Z3)))≥ 2, for l ≥ 2.

Case 4(i): R =Z2 ×Z4. Then g(Tu(Γ(R)))= 1 as shown in the Figure 1.

Figure 1

Case 4(ii): R = Z2 ×·· ·×Z2︸ ︷︷ ︸
l

×Z4, where l ≥ 2. Then |U(R)| = 2 and |Nil(R)| = 2. Let r =

|U(R)|+ |Nil(R)| and s = |Z(R)|− |Nil(R)|. So Tu(Γ(R)) contains Kr,s, as r ≥ 4, s ≥ 12 so K4,12 is
a subgraph of Tu(Γ(R)), therefore g(Tu(Γ(R)))≥ 5.

Case 5(i): R =Z2 ×F4. Then Tu(Γ(R))∼= K8 and hence g(Tu(Γ(R)))= 2.

Case 5(ii): R =Z2 ×·· ·×Z2︸ ︷︷ ︸
l

×F4, where l ≥ 2. Then |U(R)| = 3 and |Z(R)| ≥ 13, hence K3,13 is a

subgraph of Tu(Γ(R)). Therefore, g(Tu(Γ(R)))≥ 3.

Case 6(i): R =Z2 ×Z2[x]/(x2). As Tu(Γ(R))∼= Tu(Γ(Z2 ×Z4)), g(Tu(Γ(R)))= 1.
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Case 6(ii): R = Z2 ×·· ·×Z2︸ ︷︷ ︸
l

×Z2[x]
(x2) , where l ≥ 2. Then, U(R) = {(1, . . . ,1,1), (1, . . . ,1,1 + x)}

and Nil(R) = {(0, . . . ,0,0), (0, . . . ,0, x)} and therefore, K4,|Z(R)| is a subgraph of Tu(Γ(R)). So,
g(Tu(Γ(R)))≥ 5.

Case 7: R =Z7. Then g(Tu(Γ(R)))= 1 since g(K7)= 1.

Case 8: R =Z8. Then Tu(Γ(R))∼= K4,4 and g(Tu(Γ(R)))= 1.

Case 9: R =Z2[x]/(x3) or R =Z4[x]/(2x− x2) or R =Z2[x, y]/(x, y)2. Then Z(R) and U(R) are two
independent sets having four elements each. Therefore, Tu(Γ(R))∼= K4,4 and so g(Tu(Γ(R)))= 1.

Case 10: R =Z2×Z5. Then U(R)= {(1,1), (1,2), (1,3), (1,4)} and so k4,6 is a subgraph of Tu(Γ(R)).
Therefore, g(Tu(Γ(R)))≥ 2.

Case 11: R = Z2 ×Z3 ×Z3. Then U(R) = {(1,1,1), (1,1,2), (1,2,1), (1,2,2)}. Therefore, K4,14 is a
subgraph of Tu(Γ(R)). So, g(Tu(Γ(R)))≥ 6.

Case 12: R = Z3 ×Z4. Then U(R) = {(1,1), (1,3), (2,1), (2,3)}. Therefore, K4,8 is a subgraph of
Tu(Γ(R)). So, g(Tu(Γ(R)))≥ 3.

Case 13: R = Z3 ×Z2[x]/(x2). Then U(R) = {(1,1), (1,1+ x), (2,1), (2,1+ x)}. Therefore, Tu(Γ(R))
contains K4,8 as its subgraph. So, g(Tu(Γ(R)))≥ 3.

Hence the proposition.

5. Conclusion
By considering the double total graph, the associated ring can be characterized upto fusible ring,
unit fusible ring, etc. The characterization of the various types of generalized unit fusible rings
are possible by associating the double total graph. The computation of the graph parameters
such as split, Eulerian, Hamiltonian, matching, etc. for the double total graph of any ring may
further be considered, which will lead to the characterization of rings.
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