Four New Sums of Second Hyper Zagreb Index Based on Cartesian Product

M. Aruvi ${ }^{* 10}$, J. Maria Joseph ${ }^{2}$ and E. Ramganesh ${ }^{3}$
${ }^{1}$ Department of Mathematics, University College of Engineering - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
${ }^{2}$ Department of Mathematics, St. Jpseph's College (Affliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu, India
${ }^{3}$ Chair School of Education, Department of Educational Technology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India

Received: September 15, 2020
Accepted: February 8, 2021

Abstract

In this work, we study the second hyper Zagreb index of new operations of different subdivisions graphs related to Cartesian product of graphs.

Keywords. Topological indices; Graph operations
Mathematics Subject Classification (2020). 05C07; 05C12
Copyright © 2021 M. Aruvi, J. Maria Joseph and E. Ramganesh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

All graphs observed here are simple, connected and finite. Let $V(G), E(G)$ and $d_{G}(w)$ indicate the vertex set, the edge set and the degree of a vertex of a graph G, respectively. A graph with p vertices and q edges is known as a (p, q) graph.

A topological index of a graph G is a real number which is invariant under automorphism of G and does not depend on the labeling or pictorial representation of a graph.

Gutman et al. [6] introduced the first and second Zagreb indices of a graph G as follows:

$$
M_{1}(G)=\sum_{w z \in E(G)}\left(d_{G}(w)+d_{G}(z)\right)=\sum_{w \in V(G)} d_{G}^{2}(w)
$$

[^0]and
$$
M_{2}(G)=\sum_{w z \in E(G)} d_{G}(w) d_{G}(z) .
$$

Shirdel et al. in [9] found Hyper-Zagreb index $\operatorname{HM}(G)$ which is established as

$$
H M(G)=\sum_{w z \in E(G)}\left[d_{G}(w)+d_{G}(z)\right]^{2} .
$$

Also, they have computed the hyper-Zagreb index of the Cartesian product, composition, join and disjunction of graphs.

A forgotten topological index F-index [4] is defined for a graph G as

$$
F(G)=\sum_{w \in V(G)} d_{G}^{3}(w)=\sum_{w z \in E(G)}\left[d_{G}^{2}(w)+d_{G}^{2}(z)\right]
$$

Farahani et al. [3] defined the second hyper Zagerb as

$$
H M(G)=\sum_{w z \in E(G)}\left[d_{G}(w) d_{G}(z)\right]^{2}
$$

Here we introduce a second forgotten topological index F_{2} which is defined for a graph G as

$$
F_{2}(G)=\sum_{w \in V(G)} d_{G}^{4}(w)
$$

Kulli [6] introduced the first and second Gourava indices and defined as

$$
G O_{1}(G)=\sum_{w z \in E(G)}\left(d_{G}(w)+d_{G}(z)\right)+\left(d_{G}(w) d_{G}(z)\right)
$$

and

$$
G O_{2}(G)=\sum_{w z \in E(G)} d_{G}(w) d_{G}(z)\left(d_{G}(w)+d_{G}(z)\right) .
$$

The line graph $L(G)$ is the graph whose vertices correspond to the edges of G with two vertices being adjacent if and only if the corresponding edges in G have a vertex in common.

The following are the four related graphs for a connected graph G.
$S(G)$ is the graph which is obtained from G by adding an extra vertex into each edge of G. In other words replaced each edge of G by a path of length 2 .

The graph $R(G)$ is obtained from G by inserting an additional vertex into each edge of G and joining each additional vertex to the end vertices of the corresponding edge of G.
$Q(G)$ is a graph derived from G by adding a new vertex to each edge of G, then joining with edges those pairs of new vertices on adjacent edges of G.

The total graph $T(G)$ is derived from G by inserting an new vertex to each edge of G, then joining each new vertex to the end vertices of the corresponding edge and joining with edges those pairs of new vertices on adjacent edges of G.

The Cartesian product of the graphs G_{1} and G_{2} is the graph $G_{1} \square G_{2}$ with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and for which $\left(w_{1}, w_{2}\right)\left(z_{1}, z_{2}\right) \in G_{1} \square G_{2}$ iff $w_{1}=z_{1}$ and $w_{2} z_{2} \in E\left(G_{2}\right)$ or (ii) $w_{2}=z_{2}$ and $w_{1} z_{1} \in E\left(G_{1}\right)$. It is easy to see that

$$
d_{G_{1} \square G_{2}}\left(w_{i}, z_{j}\right)=d_{G_{1}}\left(w_{i}\right)+d_{G_{2}}\left(z_{j}\right),
$$

where $\left(w_{i}, z_{j}\right) \in V\left(G_{1} \square G_{2}\right)$.
Eliasi and Taeri [2] introduced the four operations of the graphs G_{1} and G_{2} based on the Cartesian product of these graphs. The Zagreb indices of the our new sums of graphs are
obtained by Deng et al. [1]. The F-index of four operations on some special graphs are computed by Ghobadi and Ghorbaninejad [5]. Eliasi and Taeri [2] have obtained the Wiener index of four new sums of graphs.

Sarala et al. [7] introduced the four operations of the graphs G_{1} and G_{2} based on the composition of these graphs.

In this sequence, we calculate the four new sums of second hyper Zagreb index based on cartesian product of graphs.

2. Main Results

In this section, we find the exact value of the second hyper Zagreb index of Cartesian product of graphs.

Theorem 2.1. Let $G_{i}, i=1,2$ be a $\left(p_{i}, q_{i}\right)$ graph. Then

$$
\begin{aligned}
H M_{2}\left(G_{1} \square_{S} G_{2}\right)= & M_{1}\left(G_{1}\right)\left[16 q_{2}+2 M_{2}\left(G_{2}\right)+H M\left(G_{2}\right)\right]+8 q_{1} M_{1}\left(G_{2}\right) \\
& +F\left(G_{1}\right)\left[4 p_{2}+2 M_{1}\left(G_{2}\right)\right]+q_{2} F_{2}\left(G_{1}\right)+p_{1} H M_{2}\left(G_{2}\right)+4 q_{1} G O_{2}\left(G_{2}\right) .
\end{aligned}
$$

Proof.

$$
\begin{aligned}
H M_{2}\left(G_{1} \square_{S} G_{2}\right)= & \sum_{(w, k)(z, l) \in E\left(G_{1} \square_{S} G_{2}\right)}\left[d_{G_{1} \square_{S} G_{2}}(w, k) d_{G_{1} \square_{S} G_{2}}(z, l)\right]^{2} \\
= & \sum_{w \in V\left(G_{1}\right)} \sum_{k l \in E\left(G_{2}\right)}\left[d_{G_{1} \square_{S} G_{2}}(w, k) d_{G_{1} \square_{S} G_{2}}(w, l)\right]^{2} \\
& +\sum_{k \in V\left(G_{2}\right)} \sum_{w z \in E\left(S\left(G_{1}\right)\right)}\left[d_{G_{1} \square_{S} G_{2}}(w, k) d_{G_{1} \square_{S} G_{2}}(z, k)\right]^{2} \\
= & A_{1}+A_{2},
\end{aligned}
$$

where A_{1} and A_{2} are the terms of the above sums taken in order which are calculated as follows.

$$
\begin{aligned}
& A_{1}= \sum_{w \in V\left(G_{1}\right)} \sum_{k l \in E\left(G_{2}\right)}\left[d_{G_{1} \square S G_{2}}(w, k) d_{G_{1} \square S} G_{2}(w, l)\right]^{2} \\
&= \sum_{w \in V\left(G_{1}\right)} \sum_{k l \in E\left(G_{2}\right)}\left[\left[d_{G_{1}}(w)+d_{G_{2}}(k)\right]\left[d_{G_{1}}(w)+d_{G_{2}}(l)\right]\right]^{2} \\
&=\sum_{w \in V\left(G_{1}\right)} \sum_{k l \in E\left(G_{2}\right)}\left[d_{G_{1}}^{2}(w)+d_{G_{1}}(w)\left[d_{G_{2}}(k)+d_{G_{2}}(l)\right]+d_{G_{2}}(k) d_{G_{2}}(l)\right]^{2} \\
&=\sum_{w \in V\left(G_{1}\right)} \sum_{k l \in E\left(G_{2}\right)}\left[d_{G_{1}}^{4}(w)+d_{G_{1}}^{2}(w)\left[d_{G_{2}}(w)+d_{G_{2}}(l)\right]^{2}+d_{G_{2}}^{2}(k) d_{G_{2}}^{2}(l)\right. \\
&+2 d_{G_{1}}^{3}(w)\left[d_{G_{2}}(k)+d_{G_{2}}(l)\right]+2 d_{G_{1}}^{2}(w) d_{G_{2}}(k) d_{G_{2}}(l) \\
&\left.+2 d_{G_{1}}(w)\left[d_{G_{2}}^{2}(k) d_{G_{2}}(l)+d_{G_{2}}(k) d_{G_{2}}^{2}(l)\right]\right] \\
&= q_{2} F_{2}\left(G_{1}\right)+M_{1}\left(G_{1}\right) H M\left(G_{2}\right)+p_{1} H M_{2}\left(G_{2}\right)+2 F\left(G_{1}\right) M_{1}\left(G_{2}\right) \\
&+2 M_{1}\left(G_{1}\right) M_{2}\left(G_{2}\right)+4 q_{1} G O_{2}\left(G_{2}\right), \\
& A_{2}= \sum_{k \in V\left(G_{2}\right) w z \in E\left(S\left(G_{1}\right)\right)}\left[d_{G_{1} \square_{S} G_{2}}(w, k) d_{G_{1} \square_{S} G_{2}}(z, k)\right]^{2} \\
&= \sum_{k \in V\left(G_{2}\right) w z \in E\left(S\left(G_{1}\right)\right) w \in V\left(G_{1}\right), z \in V\left(S\left(G_{1}\right)\right) \backslash V\left(G_{1}\right)}\left[\left(d_{G_{1}}(w)+d_{G_{2}}(k)\right) 2\right]^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =4 \sum_{k \in V\left(G_{2}\right)} \sum_{w \in V\left(G_{1}\right)} d_{G_{1}}(w)\left[d_{G_{1}}(w)+d_{G_{2}}(k)\right]^{2} \\
& =4 \sum_{k \in V\left(G_{2}\right)} \sum_{w \in V\left(G_{1}\right)}\left[d_{G_{1}}^{3}(w)+d_{G_{1}}(w) d_{G_{2}}^{2}(k)+2 d_{G_{1}}^{2}(w) d_{G_{1}}(k)\right] \\
& =4 p_{2} F\left(G_{1}\right)+8 q_{1} M_{1}\left(G_{2}\right)+16 q_{2} M_{1}\left(G_{1}\right)
\end{aligned}
$$

Adding A_{1} and A_{2} we get

$$
\begin{aligned}
H M_{2}\left(G_{1} \square_{S} G_{2}\right)= & M_{1}\left(G_{1}\right)\left[16 q_{2}+2 M_{2}\left(G_{2}\right)+H M\left(G_{2}\right)\right]+8 q_{1} M_{1}\left(G_{2}\right) \\
& +F\left(G_{1}\right)\left[4 p_{2}+2 M_{1}\left(G_{2}\right)\right]+q_{2} F_{2}\left(G_{1}\right)+p_{1} H M_{2}\left(G_{2}\right) \\
& +4 q_{1} G O_{2}\left(G_{2}\right) .
\end{aligned}
$$

Theorem 2.2. Let $G_{i}, i=1,2$ be a $\left(p_{i}, q_{i}\right)$ graph. Then

$$
\begin{aligned}
H M_{2}\left(G_{1} \square_{R} G_{2}\right)= & 8 q_{1} G O_{2}\left(G_{2}\right)+32 q_{2} G O_{2}\left(G_{1}\right)+p_{1} H M_{2}\left(G_{2}\right)+16 p_{2} H M_{2}\left(G_{1}\right) \\
& +q_{1} F_{2}\left(G_{2}\right)+16 q_{2} F_{2}\left(G_{1}\right)+16 p_{2} F\left(G_{1}\right) \\
& +\left(4 H M\left(G_{1}\right)+16 F\left(G_{1}\right)+8 M_{2}\left(G_{1}\right)+8 q_{1}\right) M_{1}\left(G_{2}\right) \\
& +\left(4 H M\left(G_{2}\right)+4 F\left(G_{2}\right)+8 M_{2}\left(G_{2}\right)+32 q_{2}\right) M_{1}\left(G_{1}\right)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
H M_{2}\left(G_{1} \square_{R} G_{2}\right)= & \sum_{(w, k)(z, l) \in E\left(G_{1} \square_{R} G_{2}\right)}\left[d_{G_{1} \square_{R} G_{2}}(w, k) d_{G_{1} \square_{R} G_{2}}(z, l)\right]^{2} \\
= & \sum_{w \in V\left(G_{1}\right) k l \in E\left(G_{2}\right)}\left[d_{G_{1} \square_{R} G_{2}}(w, k) d_{G_{1} \square_{R} G_{2}}(w, l)\right]^{2} \\
& +\sum_{k \in V\left(G_{2}\right)} \sum_{w z \in E\left(R\left(G_{1}\right)\right), w, z \in V\left(G_{1}\right)}\left[d_{G_{1} \square_{R} G_{2}}(w, k) d_{G_{1} \square_{R} G_{2}}(z, k)\right]^{2} \\
& +\sum_{k \in V\left(G_{2}\right) w z \in E\left(R\left(G_{1}\right)\right), w \in V\left(G_{1}\right), z \in V\left(R\left(G_{1}\right)\right) \backslash V\left(G_{1}\right)}\left[d_{G_{1} \square_{R} G_{2}}(w, k) d_{G_{1} \square_{R} G_{2}}(z, k)\right]^{2} \\
= & B_{1}+B_{2}+B_{3},
\end{aligned}
$$

where B_{1}, B_{2} and B_{3} are the terms of the above sums taken in order which are calculated as follows.

$$
\begin{aligned}
& B_{1}= \sum_{w \in V\left(G_{1}\right)} \sum_{k l \in E\left(G_{2}\right)}\left[d_{G_{1} \square_{R} G_{2}}(w, k) d_{G_{1} \square_{R} G_{2}}(w, l)\right]^{2} \\
&= \sum_{w \in V\left(G_{1}\right)} \sum_{k l \in E\left(G_{2}\right)}\left[\left[d_{R\left(G_{1}\right)}(w)+d_{G_{2}}(k)\right]\left[d_{R\left(G_{1}\right)}(w)+d_{G_{2}}(l)\right]\right]^{2} \\
&=\sum_{w \in V\left(G_{1}\right)} \sum_{k l \in E\left(G_{2}\right)}\left[\left[2 d_{G_{1}}(w)+d_{G_{2}}(k)\right]\left[2 d_{G_{1}}(w)+d_{G_{2}}(l)\right]\right]^{2} \\
&= \sum_{w \in V\left(G_{1}\right)} \sum_{k l \in E\left(G_{2}\right)}\left[4 d_{G_{1}}^{2}(w)+2 d_{G_{1}}(w)\left[d_{G_{2}}(k)+d_{G_{2}}(l)\right]+d_{G_{2}}(k) d_{G_{2}}(l)\right]^{2} \\
&=\sum_{w \in V\left(G_{1}\right) k l \in E\left(G_{2}\right)}\left[16 d_{G_{1}}^{4}(w)+4 d_{G_{1}}^{2}(w)\left[d_{G_{2}}(w)+d_{G_{2}}(l)\right]^{2}+d_{G_{2}}^{2}(k) d_{G_{2}}^{2}(l)\right. \\
&+16 d_{G_{1}}^{3}(w)\left[d_{G_{2}}(k)+d_{G_{2}}(l)\right]+8 d_{G_{1}}^{2}(w) d_{G_{2}}(k) d_{G_{2}}(l) \\
&\left.+4 d_{G_{1}}(w)\left[d_{G_{2}}^{2}(k) d_{G_{2}}(l)+d_{G_{2}}(k) d_{G_{2}}^{2}(l)\right]\right] \\
&= 16 q_{2} F_{2}\left(G_{1}\right)+p_{1} H M_{2}\left(G_{2}\right)+4 M_{1}\left(G_{1}\right) H M\left(G_{2}\right)+8 M_{1}\left(G_{1}\right) M_{2}\left(G_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +16 F\left(G_{1}\right) M_{1}\left(G_{2}\right)+8 q_{1} G O_{2}\left(G_{2}\right), \\
B_{2}= & \sum_{k \in V\left(G_{2}\right) w z \in E\left(R\left(G_{1}\right)\right) w, z \in V\left(G_{1}\right)}\left[d_{G_{1} \square_{R} G_{2}}(w, k) d_{G_{1} \square_{R} G_{2}}(z, k)\right]^{2} \\
= & \sum_{k \in V\left(G_{2}\right)} \sum_{w z \in E\left(G_{1}\right)}\left[\left[2 d_{G_{1}}(w)+d_{G_{2}}(k)\right]\left[2 d_{G_{1}}(z)+d_{G_{2}}(k)\right]\right]^{2} \\
= & \sum_{k \in V\left(G_{2}\right)} \sum_{w z \in E\left(G_{1}\right)}\left[4 d_{G_{1}}(w) d_{G_{1}}(z)+2 d_{G_{2}}(k)\left(2 d_{G_{1}}(w)+d_{G_{2}}(k)\right)+d_{G_{2}}^{2}(k)\right]^{2} \\
= & \sum_{k \in V\left(G_{2}\right)} \sum_{w \in V\left(G_{1}\right)}\left[16 d_{G_{1}}^{2}(w) d_{G_{1}}^{2}(z)+4 d_{G_{2}}^{2}(k)\left(d_{G_{1}}(w)+d_{G_{1}}(z)\right)^{2}+d_{G_{2}}^{4}(k)\right. \\
& +8 d_{G_{1}}(w) d_{G_{1}}(z) d_{G_{2}}^{2}(k)+16 d_{G_{2}}(k) d_{G_{1}}(w) d_{G_{1}}(z)\left(d_{G_{1}}(w)+d_{G_{1}}(z)\right) \\
& +4 d_{G_{1}}^{3}(k)\left(d_{G_{1}}(w)+d_{G_{1}}(z)\right) \\
= & 16 p_{2} H M_{2}\left(G_{1}\right)+4 M_{1}\left(G_{2}\right) H M\left(G_{1}\right)+q_{1} F_{2}\left(G_{2}\right)+8 M_{1}\left(G_{2}\right) M_{2}\left(G_{1}\right) \\
& +32 q_{2} G O_{2}\left(G_{1}\right)+4 F\left(G_{2}\right) M_{1}\left(G_{1}\right), \\
B_{3}= & \sum_{k \in V\left(G_{2}\right) w z \in E\left(R\left(G_{1}\right)\right), w \in V\left(G_{1}\right), z \in V\left(R\left(G_{1}\right)\right) \backslash V\left(G_{1}\right)}\left[d_{G_{1} \square_{R} G_{2}}(w, k) d_{G_{1} \square_{R} G_{2}}(z, k)\right]^{2} \\
= & \sum_{k \in V\left(G_{2}\right) w z \in E\left(R\left(G_{1}\right)\right), w \in V\left(G_{1}\right), z \in V\left(R\left(G_{1}\right)\right) \backslash V\left(G_{1}\right.}\left[\left[d_{R\left(G_{1}\right)}(w)+d_{G_{2}}(k)\right]\left[d_{R\left(G_{1}\right)}(z)\right]\right]^{2} \\
= & 4 \sum_{k \in V\left(G_{2}\right) w z \in E\left(R\left(G_{1}\right)\right), w \in V\left(G_{1}\right), z \in V\left(R\left(G_{1}\right)\right) \backslash V\left(G_{1}\right.}\left[\left[2 d_{G_{1}}(w)+d_{G_{2}}(k)\right] 2\right]^{2} \\
= & \sum_{k \in V\left(G_{2}\right) w \in V\left(G_{1}\right)} d_{G_{1}}(w)\left[2 d_{G_{1}}(w)+d_{G_{2}}(k)\right]^{2} \\
= & 4\left[4 p_{2} F\left(G_{1}\right)+2 q_{1} M_{1}\left(G_{2}\right)+8 q_{2} M_{1}\left(G_{1}\right)\right] .
\end{aligned}
$$

Adding B_{1}, B_{2} and B_{3} we get

$$
\begin{aligned}
H M_{2}\left(G_{1} \square_{R} G_{2}\right)= & 8 q_{1} G O_{2}\left(G_{2}\right)+32 q_{2} G O_{2}\left(G_{1}\right)+p_{1} H M_{2}\left(G_{2}\right)+16 p_{2} H M_{2}\left(G_{1}\right) \\
& +q_{1} F_{2}\left(G_{2}\right)+16 q_{2} F_{2}\left(G_{1}\right)+16 p_{2} F\left(G_{1}\right) \\
& +\left(4 H M\left(G_{1}\right)+16 F\left(G_{1}\right)+8 M_{2}\left(G_{1}\right)+8 q_{1}\right) M_{1}\left(G_{2}\right) \\
& +\left(4 H M\left(G_{2}\right)+4 F\left(G_{2}\right)+8 M_{2}\left(G_{2}\right)+32 q_{2}\right) M_{1}\left(G_{1}\right)
\end{aligned}
$$

Theorem 2.3. Let $G_{i}, i=1,2$ be a $\left(p_{i}, q_{i}\right)$ graph. Then

$$
\begin{aligned}
H M_{2}\left(G_{1} \square_{Q} G_{2}\right)= & q_{2} F_{2}\left(G_{1}\right)+M_{1}\left(G_{1}\right) H M\left(G_{2}\right)+p_{1} H M_{2}\left(G_{2}\right)+2 F\left(G_{1}\right) M_{1}\left(G_{2}\right) \\
& +2 M_{1}\left(G_{1}\right) M_{2}\left(G_{2}\right)+4 q_{1} G O_{2}\left(G_{2}\right) \\
& +p_{2} \sum_{w \in V\left(G_{1}\right)} \sum_{z \in N_{G_{1}}(w)} d_{G_{1}}^{2}(w) d_{Q\left(G_{1}\right)}^{2}(z)+2 H M\left(G_{1}\right) M_{1}\left(G_{2}\right) \\
& +4 q_{2} \sum_{w \in V\left(G_{1}\right)} \sum_{z \in N_{G_{1}}(w)} d_{G_{1}}(w) d_{Q\left(G_{1}\right)}^{2}(z) \\
& p_{2}\left[H M_{2}\left(L\left(G_{1}\right)\right)+4 H M\left(L\left(G_{1}\right)\right)+16\left(\frac{M_{I}\left(G_{1}\right)}{2}-q_{1}\right)+4 G O_{2}\left(L\left(G_{1}\right)\right)\right. \\
& \left.+8 M_{2}\left(L\left(G_{1}\right)\right)+16 M_{1}\left(L\left(G_{1}\right)\right)\right] .
\end{aligned}
$$

Proof.

$$
\begin{aligned}
H M_{2}\left(G_{1} \square_{Q} G_{2}\right)= & \sum_{(w, k)(z, l) \in E\left(G_{1} \square_{Q} G_{2}\right)}\left[d_{G_{1} \square_{Q} G_{2}}(w, k) d_{G_{1} \square_{Q} G_{2}}(z, l)\right]^{2} \\
= & \sum_{w \in V\left(G_{1}\right)} \sum_{k l \in E\left(G_{2}\right)}\left[d_{G_{1} \square_{Q} G_{2}}(w, k) d_{G_{1} \square_{Q} G_{2}}(w, l)\right]^{2} \\
& +\sum_{k \in V\left(G_{2}\right) w z \in E\left(Q\left(G_{1}\right)\right), w \in V\left(G_{1}\right), z \in V\left(Q\left(G_{1}\right)\right) \backslash V\left(G_{1}\right)}\left[d_{G_{1} \square_{Q} G_{2}}(w, k) d_{G_{1} \square_{Q} G_{2}}(z, k)\right]^{2} \\
& +\sum_{k \in V\left(G_{2}\right) w z \in E\left(Q\left(G_{1}\right)\right), w, z \in V\left(Q\left(G_{1}\right)\right) \backslash V\left(G_{1}\right)}\left[d_{G_{1} \square_{Q} G_{2}}(w, k) d_{G_{1} \square_{Q} G_{2}}(z, k)\right]^{2} \\
= & C_{1}+C_{2}+C_{3},
\end{aligned}
$$

where C_{1}, C_{2} and C_{3} are the terms of the above sums taken in order which are calculated as follows.

$$
\begin{aligned}
& C_{1}=\sum_{w \in V\left(G_{1}\right)} \sum_{k l \in E\left(G_{2}\right)}\left[d_{G_{1} \square_{Q} G_{2}}(w, k) d_{G_{1} \square_{Q} G_{2}}(w, l)\right]^{2} \\
& =\sum_{w \in V\left(G_{1}\right)} \sum_{k l \in E\left(G_{2}\right)}\left[\left[d_{G_{1}}(w)+d_{G_{2}}(k)\right]\left[d_{G_{1}}(w)+d_{G_{2}}(l)\right]\right]^{2} \\
& =\sum_{w \in V\left(G_{1}\right) k l \in E\left(G_{2}\right)}\left[d_{G_{1}}^{2}(w)+d_{G_{1}}(w)\left[d_{G_{2}}(k)+d_{G_{2}}(l)\right]+d_{G_{2}}(k) d_{G_{2}}(l)\right]^{2} \\
& =\sum_{w \in V\left(G_{1}\right)} \sum_{k l \in E\left(G_{2}\right)}\left[d_{G_{1}}^{4}(w)+d_{G_{1}}^{2}(w)\left[d_{G_{2}}(w)+d_{G_{2}}(l)\right]^{2}+d_{G_{2}}^{2}(k) d_{G_{2}}^{2}(l)\right. \\
& +2 d_{G_{1}}^{3}(w)\left[d_{G_{2}}(k)+d_{G_{2}}(l)\right]+2 d_{G_{1}}^{2}(w) d_{G_{2}}(k) d_{G_{2}}(l) \\
& \left.+2 d_{G_{1}}(w)\left[d_{G_{2}}^{2}(k) d_{G_{2}}(l)+d_{G_{2}}(k) d_{G_{2}}^{2}(l)\right]\right] \\
& =q_{2} F_{2}\left(G_{1}\right)+M_{1}\left(G_{1}\right) H M\left(G_{2}\right)+p_{1} H M_{2}\left(G_{2}\right)+2 F\left(G_{1}\right) M_{1}\left(G_{2}\right) \\
& +2 M_{1}\left(G_{1}\right) M_{2}\left(G_{2}\right)+4 q_{1} G O_{2}\left(G_{2}\right), \\
& C_{2}=\sum_{k \in V\left(G_{2}\right) w z \in E\left(Q\left(G_{1}\right)\right), w \in V\left(G_{1}\right), z \in V\left(Q\left(G_{1}\right)\right) \backslash V\left(G_{1}\right)}\left[d_{G_{1} \square_{Q} G_{2}}(w, k) d_{G_{1} \square_{Q} G_{2}}(z, k)\right]^{2} \\
& =\sum_{k \in V\left(G_{2}\right) w z \in E\left(Q\left(G_{1}\right)\right), w \in V\left(G_{1}\right), z \in V\left(Q\left(G_{1}\right)\right) \backslash V\left(G_{1}\right)}\left[\left[d_{G_{1}}(w)+d_{G_{2}}(k)\right] d_{Q\left(G_{1}\right)}(z)\right]^{2} \\
& =\sum_{k \in V\left(G_{2}\right) w z \in E\left(Q\left(G_{1}\right)\right), w \in V\left(G_{1}\right), z \in V\left(Q\left(G_{1}\right)\right) \backslash V\left(G_{1}\right)}\left[d_{G_{1}}^{2}(w) d_{Q\left(G_{1}\right)}^{2}(z)+d_{Q\left(G_{1}\right)}^{2}(z) d_{G_{2}}^{2}(k)\right. \\
& \left.+2 d_{G_{1}}(w) d_{Q\left(G_{1}\right)}^{2}(z) d_{(}\left(G_{2}\right)(k)\right] \\
& =p_{2} \sum_{w \in V\left(G_{1}\right) z \in N_{G_{1}}(w)} d_{G_{1}}^{2}(w) d_{Q\left(G_{1}\right)}^{2}(z)+2 H M\left(G_{1}\right) M_{1}\left(G_{2}\right) \\
& +4 q_{2} \sum_{w \in V\left(G_{1}\right)} \sum_{z \in N_{G_{1}}(w)} d_{G_{1}}(w) d_{Q\left(G_{1}\right)}^{2}(z), \\
& C_{3}=\sum_{k \in V\left(G_{2}\right) w z \in E\left(Q\left(G_{1}\right)\right), w, z \in V\left(Q\left(G_{1}\right)\right) \backslash V\left(G_{1}\right)}\left[d_{G_{1} \square_{Q} G_{2}}(w, k) d_{G_{1} \square_{Q} G_{2}}(z, k)\right]^{2} \\
& =\sum_{k \in V\left(G_{2}\right)} \sum_{w z \in E\left(Q\left(G_{1}\right)\right), w, z \in V\left(Q\left(G_{1}\right)\right) \backslash V\left(G_{1}\right)}\left[d_{Q\left(G_{1}\right)}(w) d_{Q\left(G_{1}\right)}(z)\right]^{2} \\
& =p_{2} \sum_{w z \in E\left(Q\left(G_{1}\right)\right), w, z \in V\left(Q\left(G_{1}\right)\right) \backslash V\left(G_{1}\right)}\left[d_{Q\left(G_{1}\right)}(w) d_{Q\left(G_{1}\right)}(z)\right]^{2}
\end{aligned}
$$

$$
\begin{aligned}
= & p_{2} \sum_{t_{i} t_{j} \in E\left(G_{1}\right), t_{j} t_{k} \in E\left(G_{1}\right)}\left[\left[d_{G_{1}}\left(t_{i}\right)+d_{G_{1}}\left(t_{j}\right)\right]\left[d_{G_{1}}\left(t_{j}\right)+d_{G_{1}}\left(t_{k}\right)\right]\right]^{2} \\
= & \left.\left.p_{2} \sum_{Y_{i} Y_{j} \in E\left(L\left(G_{1}\right)\right)}\left[\left[d_{L\left(G_{1}\right)}\right)\left(Y_{i}\right)+2\right]\left[d_{L\left(G_{1}\right)}\left(Y_{j}\right)+2\right)\right]\right]^{2} \\
= & \left.\left.p_{2} \sum_{Y_{i} Y_{j} \in E\left(L\left(G_{1}\right)\right)}\left[d_{L\left(G_{1}\right)}\left(Y_{i}\right) d_{L\left(G_{1}\right)}\right)\left(Y_{j}\right)+2\left(d_{L\left(G_{1}\right)}\left(Y_{i}\right)+d_{L\left(G_{1}\right)}\left(Y_{j}\right)\right)+4\right)\right]^{2} \\
= & p_{2} \sum_{Y_{i} Y_{j} \in E\left(L\left(G_{1}\right)\right)}\left[d_{L\left(G_{1}\right)}^{2}\left(Y_{i}\right) d_{L\left(G_{1}\right)}^{2}\left(Y_{j}\right)+4\left(d_{L\left(G_{1}\right)}\left(Y_{i}\right)+d_{L\left(G_{1}\right)}\left(Y_{j}\right)\right)^{2}+16\right. \\
& +4 d_{L\left(G_{1}\right)}\left(Y_{i}\right) d_{L\left(G_{1}\right)}\left(Y_{j}\right)\left(d_{L\left(G_{1}\right)}\left(Y_{i}\right)+d_{L\left(G_{1}\right)}\left(Y_{j}\right)\right)+8 d_{L\left(G_{1}\right)}\left(Y_{i}\right) d_{L\left(G_{1}\right)}\left(Y_{j}\right) \\
& \left.\left.+16\left(d_{L\left(G_{1}\right)}\left(Y_{i}\right)+d_{L\left(G_{1}\right)}\right)\left(Y_{j}\right)\right)\right] \\
= & p_{2}\left[H M_{2}\left(L\left(G_{1}\right)\right)+4 H M\left(L\left(G_{1}\right)\right)+16\left(\frac{M_{I}\left(G_{1}\right)}{2}-q_{1}\right)+4 G O_{2}\left(L\left(G_{1}\right)\right)\right. \\
& \left.+8 M_{2}\left(L\left(G_{1}\right)\right)+16 M_{1}\left(L\left(G_{1}\right)\right)\right] .
\end{aligned}
$$

Adding C_{1}, C_{2} and C_{3} we get

$$
\begin{aligned}
H M_{2}\left(G_{1} \square_{Q} G_{2}\right)= & q_{2} F_{2}\left(G_{1}\right)+M_{1}\left(G_{1}\right) H M\left(G_{2}\right)+p_{1} H M_{2}\left(G_{2}\right)+2 F\left(G_{1}\right) M_{1}\left(G_{2}\right) \\
& +2 M_{1}\left(G_{1}\right) M_{2}\left(G_{2}\right)+4 q_{1} G O_{2}\left(G_{2}\right) \\
& +p_{2} \sum_{w \in V\left(G_{1}\right)} \sum_{z \in N_{G_{1}}(w)} d_{G_{1}}^{2}(w) d_{Q\left(G_{1}\right)}^{2}(z)+2 H M\left(G_{1}\right) M_{1}\left(G_{2}\right) \\
& +4 q_{2} \sum_{w \in V\left(G_{1}\right)} \sum_{z \in N_{G_{1}}(w)} d_{G_{1}}(w) d_{Q\left(G_{1}\right)}^{2}(z) \\
= & p_{2}\left[H M_{2}\left(L\left(G_{1}\right)\right)+4 H M\left(L\left(G_{1}\right)\right)+16\left(\frac{M_{I}\left(G_{1}\right)}{2}-q_{1}\right)+4 G O_{2}\left(L\left(G_{1}\right)\right)\right. \\
& \left.+8 M_{2}\left(L\left(G_{1}\right)\right)+16 M_{1}\left(L\left(G_{1}\right)\right)\right] .
\end{aligned}
$$

Theorem 2.4. Let $G_{i}, i=1,2$ be a $\left(p_{i}, q_{i}\right)$ graph. Then

$$
\begin{aligned}
H M_{2}\left(G_{1} \square_{T} G_{2}\right)= & 8 q_{1} G O_{2}\left(G_{2}\right)+32 q_{2} G O_{2}\left(G_{1}\right)+p_{1} H M_{2}\left(G_{2}\right)+16 p_{2} H M_{2}\left(G_{1}\right) \\
& +q_{1} F_{2}\left(G_{2}\right)+16 q_{2} F_{2}\left(G_{1}\right)+16 p_{2} F\left(G_{1}\right) \\
& +\left(4 H M\left(G_{1}\right)+16 F\left(G_{1}\right)+8 M_{2}\left(G_{1}\right)\right) M_{1}\left(G_{2}\right) \\
& +\left(4 H M\left(G_{2}\right)+4 F\left(G_{2}\right)+8 M_{2}\left(G_{2}\right)\right) M_{1}\left(G_{1}\right) \\
= & \left.p_{2} \sum_{w \in V\left(G_{1}\right) z \in N_{G_{1}}(w)} d_{G_{1}}^{2}(w) d_{T\left(G_{1}\right)}^{2}(z)+2 H M_{(} G_{1}\right) M_{1}\left(G_{2}\right) \\
& +4 q_{2} \sum_{w \in V\left(G_{1}\right) z \in N_{G_{1}}(w)} d_{G_{1}}(w) d_{T\left(G_{1}\right)}^{2}(z) \\
= & p_{2}\left[H M_{2}\left(L\left(G_{1}\right)\right)+4 H M\left(L\left(G_{1}\right)\right)+16\left(\frac{M_{I}\left(G_{1}\right)}{2}-q_{1}\right)+4 G O_{2}\left(L\left(G_{1}\right)\right)\right. \\
& \left.+8 M_{2}\left(L\left(G_{1}\right)\right)+16 M_{1}\left(L\left(G_{1}\right)\right)\right] .
\end{aligned}
$$

Proof.

$$
H M_{2}\left(G_{1} \square_{T} G_{2}\right)=\sum_{(w, k)(z, l) \in E\left(G_{1} \square_{T} G_{2}\right)}\left[d_{G_{1} \square_{T} G_{2}}(w, k) d_{G_{1} \square_{T} G_{2}}(z, l)\right]^{2}
$$

$$
\begin{aligned}
= & \sum_{w \in V\left(G_{1}\right)} \sum_{k l \in E\left(G_{2}\right)}\left[d_{G_{1} \square_{T} G_{2}}(w, k) d_{G_{1} \square_{T} G_{2}}(w, l)\right]^{2} \\
& +\sum_{k \in V\left(G_{2}\right) w z \in E\left(T\left(G_{1}\right)\right), w, z \in V\left(G_{1}\right)}\left[d_{G_{1} \square_{T} G_{2}}(w, k) d_{G_{1} \square_{T} G_{2}}(z, k)\right]^{2} \\
& +\sum_{k \in V\left(G_{2}\right) w z \in E\left(T\left(G_{1}\right)\right), w \in V\left(G_{1}\right), z \in V\left(T\left(G_{1}\right)\right) \backslash V\left(G_{1}\right)}\left[d_{G_{1} \square_{T} G_{2}}(w, k) d_{G_{1} \square_{T} G_{2}}(z, k)\right]^{2} \\
& +\sum_{k \in V\left(G_{2}\right) w z \in E\left(Q\left(G_{1}\right)\right), w, z \in V\left(T\left(G_{1}\right)\right) \backslash V\left(G_{1}\right)}\left[d_{G_{1} \square_{T} G_{2}}(w, k) d_{G_{1} \square_{T} G_{2}}(z, k)\right]^{2} \\
= & D_{1}+D_{2}+D_{3}+D_{4},
\end{aligned}
$$

where D_{1}, D_{2}, D_{3} and D_{4} are the terms of the above sums taken in order which are calculated as follows.

$$
\begin{aligned}
& D_{1}=\sum_{w \in V\left(G_{1}\right)} \sum_{k l \in E\left(G_{2}\right)}\left[d_{G_{1} \square_{T} G_{2}}(w, k) d_{G_{1} \square_{T} G_{2}}(w, l)\right]^{2} \\
& =\sum_{w \in V\left(G_{1}\right) k l \in E\left(G_{2}\right)}\left[\left[d_{T\left(G_{1}\right)}(w)+d_{G_{2}}(k)\right]\left[d_{T\left(G_{1}\right)}(w)+d_{G_{2}}(l)\right]\right]^{2} \\
& =\sum_{w \in V\left(G_{1}\right)} \sum_{k l \in E\left(G_{2}\right)}\left[\left[2 d_{G_{1}}(w)+d_{G_{2}}(k)\right]\left[2 d_{G_{1}}(w)+d_{G_{2}}(l)\right]\right]^{2} \\
& =\sum_{w \in V\left(G_{1}\right)} \sum_{k l \in E\left(G_{2}\right)}\left[4 d_{G_{1}}^{2}(w)+2 d_{G_{1}}(w)\left[d_{G_{2}}(k)+d_{G_{2}}(l)\right]+d_{G_{2}}(k) d_{G_{2}}(l)\right]^{2} \\
& =\sum_{w \in V\left(G_{1}\right)} \sum_{k l \in E\left(G_{2}\right)}\left[16 d_{G_{1}}^{4}(w)+4 d_{G_{1}}^{2}(w)\left[d_{G_{2}}(w)+d_{G_{2}}(l)\right]^{2}+d_{G_{2}}^{2}(k) d_{G_{2}}^{2}(l)\right. \\
& +16 d_{G_{1}}^{3}(w)\left[d_{G_{2}}(k)+d_{G_{2}}(l)\right]+8 d_{G_{1}}^{2}(w) d_{G_{2}}(k) d_{G_{2}}(l) \\
& \left.+4 d_{G_{1}}(w)\left[d_{G_{2}}^{2}(k) d_{G_{2}}(l)+d_{G_{2}}(k) d_{G_{2}}^{2}(l)\right]\right] \\
& =16 q_{2} F_{2}\left(G_{1}\right)+p_{1} H M_{2}\left(G_{2}\right)+4 M_{1}\left(G_{1}\right) H M\left(G_{2}\right)+8 M_{1}\left(G_{1}\right) M_{2}\left(G_{2}\right) \\
& +16 F\left(G_{1}\right) M_{1}\left(G_{2}\right)+8 q_{1} G O_{2}\left(G_{2}\right), \\
& D_{2}=\sum_{k \in V\left(G_{2}\right) w z \in E\left(T\left(G_{1}\right)\right) w, z \in V\left(G_{1}\right)}\left[d_{G_{1} \square_{T} G_{2}}(w, k) d_{G_{1} \square_{T} G_{2}}(z, k)\right]^{2} \\
& =\sum_{k \in V\left(G_{2}\right)} \sum_{w z \in E\left(G_{1}\right)}\left[\left[2 d_{G_{1}}(w)+d_{G_{2}}(k)\right]\left[2 d_{G_{1}}(z)+d_{G_{2}}(k)\right]\right]^{2} \\
& =\sum_{k \in V\left(G_{2}\right) w z \in E\left(G_{1}\right)} \sum\left[4 d_{G_{1}}(w) d_{G_{1}}(z)+2 d_{G_{2}}(k)\left(2 d_{G_{1}}(w)+d_{G_{2}}(k)\right)+d_{G_{2}}^{2}(k)\right]^{2} \\
& =\sum_{k \in V\left(G_{2}\right)} \sum_{w \in V\left(G_{1}\right)}\left[16 d_{G_{1}}^{2}(w) d_{G_{1}}^{2}(z)+4 d_{G_{2}}^{2}(k)\left(d_{G_{1}}(w)+d_{G_{1}}(z)\right)^{2}+d_{G_{2}}^{4}(k)\right. \\
& +8 d_{G_{1}}(w) d_{G_{1}}(z) d_{G_{2}}^{2}(k)+16 d_{G_{2}}(k) d_{G_{1}}(w) d_{G_{1}}(z)\left(d_{G_{1}}(w)+d_{G_{1}}(z)\right) \\
& +4 d_{G_{1}}^{3}(k)\left(d_{G_{1}}(w)+d_{G_{1}}(z)\right) \\
& =16 p_{2} H M_{2}\left(G_{1}\right)+4 M_{1}\left(G_{2}\right) H M\left(G_{1}\right)+q_{1} F_{2}\left(G_{2}\right)+8 M_{1}\left(G_{2}\right) M_{2}\left(G_{1}\right) \\
& +32 q_{2} G O_{2}\left(G_{1}\right)+4 F\left(G_{2}\right) M_{1}\left(G_{1}\right), \\
& D_{3}=\sum_{k \in V\left(G_{2}\right) w z \in E\left(T\left(G_{1}\right)\right), w \in V\left(G_{1}\right), z \in V\left(T\left(G_{1}\right)\right) \backslash V\left(G_{1}\right)}\left[d_{G_{1} \square_{T} G_{2}}(w, k) d_{G_{1} \square_{T} G_{2}}(z, k)\right]^{2} \\
& =\sum_{k \in V\left(G_{2}\right) w z \in E\left(T\left(G_{1}\right)\right), w \in V\left(G_{1}\right), z \in V\left(T\left(G_{1}\right)\right) \backslash V\left(G_{1}\right)}\left[\left[d_{G_{1}}(w)+d_{G_{2}}(k)\right] d_{Q\left(G_{1}\right)}(z)\right]^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k \in V\left(G_{2}\right) w z \in E\left(T\left(G_{1}\right)\right), w \in V\left(G_{1}\right), z \in V\left(T\left(G_{1}\right)\right) \backslash V\left(G_{1}\right)}\left[d_{G_{1}}^{2}(w) d_{T\left(G_{1}\right)}^{2}(z)+d_{T\left(G_{1}\right)}^{2}(z) d_{G_{2}}^{2}(k)\right. \\
& +2 d_{G_{1}}(w) d_{T\left(G_{1}\right)}^{2}(z) d_{\left.\left(G_{2}\right)(k)\right]} \\
& =p_{2} \sum_{w \in V\left(G_{1}\right)} \sum_{z \in N_{G_{1}}(w)} d_{G_{1}}^{2}(w) d_{T\left(G_{1}\right)}^{2}(z)+2 H M_{(}\left(G_{1}\right) M_{1}\left(G_{2}\right) \\
& +4 q_{2} \sum_{w \in V\left(G_{1}\right)} \sum_{z \in N_{G_{1}}(w)} d_{G_{1}}(w) d_{T\left(G_{1}\right)}^{2}(z), \\
& D_{4}=\sum_{k \in V\left(G_{2}\right) w z \in E\left(T\left(G_{1}\right)\right), w, z \in V\left(T\left(G_{1}\right)\right) \backslash V\left(G_{1}\right)}\left[d_{G_{1} \square_{T} G_{2}}(w, k) d_{G_{1} \square_{T} G_{2}}(z, k)\right]^{2} \\
& =\sum_{k \in V\left(G_{2}\right) w z \in E\left(T\left(G_{1}\right)\right), w, z \in V\left(T\left(G_{1}\right)\right) \backslash V\left(G_{1}\right)}\left[d_{T\left(G_{1}\right)}(w) d_{T\left(G_{1}\right)}(z)\right]^{2} \\
& =p_{2} \sum_{w z \in E\left(T\left(G_{1}\right)\right), w, z \in V\left(T\left(G_{1}\right)\right) \backslash V\left(G_{1}\right)}\left[d_{T\left(G_{1}\right)}(w) d_{T\left(G_{1}\right)}(z)\right]^{2} \\
& =p_{2} \sum_{t_{i} t_{j} \in E\left(G_{1}\right), t_{j} t_{k} \in E\left(G_{1}\right)}\left[\left[d_{G_{1}}\left(t_{i}\right)+d_{G_{1}}\left(t_{j}\right)\right]\left[d_{G_{1}}\left(t_{j}\right)+d_{G_{1}}\left(t_{k}\right)\right]\right]^{2} \\
& \left.=p_{2} \sum_{Y_{i} Y_{j} \in E\left(L\left(G_{1}\right)\right)}\left[\left[d_{L\left(G_{1}\right)}\left(Y_{i}\right)+2\right]\left[d_{L\left(G_{1}\right)}\left(Y_{j}\right)+2\right)\right]\right]^{2} \\
& \left.\left.=p_{2} \sum_{Y_{i} Y_{j} \in E\left(L\left(G_{1}\right)\right)}\left[d_{L\left(G_{1}\right)}\left(Y_{i}\right) d_{L\left(G_{1}\right)}\left(Y_{j}\right)+2\left(d_{L\left(G_{1}\right)}\right)\left(Y_{i}\right)+d_{L\left(G_{1}\right)}\left(Y_{j}\right)\right)+4\right)\right]^{2} \\
& \left.=p_{2} \sum_{Y_{i} Y_{j} \in E\left(L\left(G_{1}\right)\right)}\left[d_{L\left(G_{1}\right)}^{2}\left(Y_{i}\right) d_{L\left(G_{1}\right)}^{2}\left(Y_{j}\right)+4\left(d_{L\left(G_{1}\right)}\right)\left(Y_{i}\right)+d_{L\left(G_{1}\right)}\right)\left(Y_{j}\right)\right)^{2}+16 \\
& +4 d_{L\left(G_{1}\right)}\left(Y_{i}\right) d_{L\left(G_{1}\right)}\left(Y_{j}\right)\left(d_{L\left(G_{1}\right)}\left(Y_{i}\right)+d_{L\left(G_{1}\right)}\left(Y_{j}\right)\right)+8 d_{L\left(G_{1}\right)}\left(Y_{i}\right) d_{L\left(G_{1}\right)}\left(Y_{j}\right) \\
& \left.+16\left(d_{L\left(G_{1}\right)}\left(Y_{i}\right)+d_{L\left(G_{1}\right)}\left(Y_{j}\right)\right)\right] \\
& =p_{2}\left[H M_{2}\left(L\left(G_{1}\right)\right)+4 H M\left(L\left(G_{1}\right)\right)+16\left(\frac{M_{I}\left(G_{1}\right)}{2}-q_{1}\right)+4 G O_{2}\left(L\left(G_{1}\right)\right)\right. \\
& \left.+8 M_{2}\left(L\left(G_{1}\right)\right)+16 M_{1}\left(L\left(G_{1}\right)\right)\right] .
\end{aligned}
$$

Adding D_{1}, D_{2}, D_{3} and D_{4} we get

$$
\begin{aligned}
H M_{2}\left(G_{1} \square_{T} G_{2}\right)= & 8 q_{1} G O_{2}\left(G_{2}\right)+32 q_{2} G O_{2}\left(G_{1}\right)+p_{1} H M_{2}\left(G_{2}\right)+16 p_{2} H M_{2}\left(G_{1}\right) \\
& +q_{1} F_{2}\left(G_{2}\right)+16 q_{2} F_{2}\left(G_{1}\right)+16 p_{2} F\left(G_{1}\right) \\
& +\left(4 H M\left(G_{1}\right)+16 F\left(G_{1}\right)+8 M_{2}\left(G_{1}\right)\right) M_{1}\left(G_{2}\right) \\
& +\left(4 H M\left(G_{2}\right)+4 F\left(G_{2}\right)+8 M_{2}\left(G_{2}\right)\right) M_{1}\left(G_{1}\right) \\
= & \left.p_{2} \sum_{w \in V\left(G_{1}\right) z \in N_{G_{1}}(w)} d_{G_{1}}^{2}(w) d_{T\left(G_{1}\right)}^{2}(z)+2 H M_{(} G_{1}\right) M_{1}\left(G_{2}\right) \\
& +4 q_{2} \sum_{w \in V\left(G_{1}\right) z \in N_{G_{1}}(w)} d_{G_{1}}(w) d_{T\left(G_{1}\right)}^{2}(z) \\
= & p_{2}\left[H M_{2}\left(L\left(G_{1}\right)\right)+4 H M\left(L\left(G_{1}\right)\right)+16\left(\frac{M_{I}\left(G_{1}\right)}{2}-q_{1}\right)+4 G O_{2}\left(L\left(G_{1}\right)\right)\right. \\
& \left.+8 M_{2}\left(L\left(G_{1}\right)\right)+16 M_{1}\left(L\left(G_{1}\right)\right)\right] .
\end{aligned}
$$

3. Conclusion

In this paper, we have studied the second hyper Zagreb index of new four sums of Cartesian product of graphs. For further research, one can study the other topological indices of these new operations.

Competing Interests

The authors declare that they have no competing interests.

Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

[1] H. Deng, D. Sarala, S.K. Ayyaswamy and S. Balachandran, The Zagreb indices of four operations on graphs, Applied Mathematics and Computation 275 (2016), 422 - 431, DOI: 10.1016/j.amc.2015.11.058.
[2] M. Eliasi and B. Taeri, Four new sums of graphs and their Wiener indices, Discrete Applied Mathematics 157 (2009), 794 - 803, DOI: 10.1016/j.dam.2008.07.001.
[3] M.R. Farahani, M.R. Rajesh Kanna and R.P. Kumar, On the hyper-Zagreb indices of some nanostructures, Asian Academic Research Journal of Multidisciplinary 3(1) (2016), 115 - 123.
[4] B. Furtula and I. Gutman, A forgotten topological index, Journal of Mathematical Chemistry 53(4) (2015), 1184 - 1190, DOI: 10.1007/s10910-015-0480-z
[5] S. Ghobadi and M. Ghorbaninejad, The forgotten topological index of four operations on some special graphs, Bulletin of Mathematical Sciences and Applications 16 (2016), 89 - 95, DOI: 10.18052/www.scipress.com/BMSA.16.89.
[6] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total ω-electron energy of alternant hydrocarbons, Chemical Physics Letters 17(4) (1972), 535 - 538. DOI: 10.1016/0009-2614(72)85099-1.
[7] V.R. Kulli, The Gourava indices and coindices of graphs, Annals of Pure and Applied Mathematics 14(1) (2017), $33-38$, DOI: 10.22457/apam.v14n1a4.
[8] D. Sarala, H. Deng, S.K. Ayyaswamy and S. Balachandran, The Zagreb indices of graphs based on four new operations related to the lexicographic product, Applied Mathematics and Computation 309 (2017), 156 - 169, DOI: 10.1016/j.amc.2017.04.002.
[9] G.H. Shirdel, H. Rezapour and A.M. Sayadi, The hyper-Zagreb index of graph operations, Iranian Journal of Mathematical Chemistry 4(2) (2013), 213 - 220, DOI: $10.22052 / \mathrm{ijmc} .2013 .5294$.

[^0]: *Corresponding author: aruvim.aut@gmail.com

