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1. Introduction
All graphs observed here are simple, connected and finite. Let V (G), E(G) and dG(w) indicate
the vertex set, the edge set and the degree of a vertex of a graph G, respectively. A graph with
p vertices and q edges is known as a (p, q) graph.

A topological index of a graph G is a real number which is invariant under automorphism of
G and does not depend on the labeling or pictorial representation of a graph.

Gutman et al. [6] introduced the first and second Zagreb indices of a graph G as follows:

M1(G)= ∑
wz∈E(G)

(dG(w)+dG(z))= ∑
w∈V (G)

d2
G(w)
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and

M2(G)= ∑
wz∈E(G)

dG(w)dG(z) .

Shirdel et al. in [9] found Hyper-Zagreb index HM(G) which is established as

HM(G)= ∑
wz∈E(G)

[dG(w)+dG(z)]2.

Also, they have computed the hyper-Zagreb index of the Cartesian product, composition, join
and disjunction of graphs.

A forgotten topological index F-index [4] is defined for a graph G as

F(G)= ∑
w∈V (G)

d3
G(w)= ∑

wz∈E(G)
[d2

G(w)+d2
G(z)] .

Farahani et al. [3] defined the second hyper Zagerb as

HM(G)= ∑
wz∈E(G)

[dG(w)dG(z)]2.

Here we introduce a second forgotten topological index F2 which is defined for a graph G as

F2(G)= ∑
w∈V (G)

d4
G(w) .

Kulli [6] introduced the first and second Gourava indices and defined as

GO1(G)= ∑
wz∈E(G)

(dG(w)+dG(z))+ (dG(w)dG(z))

and

GO2(G)= ∑
wz∈E(G)

dG(w)dG(z)(dG(w)+dG(z)) .

The line graph L(G) is the graph whose vertices correspond to the edges of G with two
vertices being adjacent if and only if the corresponding edges in G have a vertex in common.

The following are the four related graphs for a connected graph G.
S(G) is the graph which is obtained from G by adding an extra vertex into each edge of G.

In other words replaced each edge of G by a path of length 2.
The graph R(G) is obtained from G by inserting an additional vertex into each edge of G

and joining each additional vertex to the end vertices of the corresponding edge of G.
Q(G) is a graph derived from G by adding a new vertex to each edge of G, then joining with

edges those pairs of new vertices on adjacent edges of G.
The total graph T(G) is derived from G by inserting an new vertex to each edge of G, then

joining each new vertex to the end vertices of the corresponding edge and joining with edges
those pairs of new vertices on adjacent edges of G.

The Cartesian product of the graphs G1 and G2 is the graph G1�G2 with vertex set
V (G1)×V (G2) and for which (w1,w2)(z1, z2) ∈ G1�G2 iff w1 = z1 and w2z2 ∈ E(G2) or (ii)
w2 = z2 and w1z1 ∈ E(G1). It is easy to see that

dG1�G2(wi, z j)= dG1(wi)+dG2(z j),

where (wi, z j) ∈V (G1�G2).
Eliasi and Taeri [2] introduced the four operations of the graphs G1 and G2 based on the

Cartesian product of these graphs. The Zagreb indices of the our new sums of graphs are
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obtained by Deng et al. [1]. The F -index of four operations on some special graphs are computed
by Ghobadi and Ghorbaninejad [5]. Eliasi and Taeri [2] have obtained the Wiener index of four
new sums of graphs.

Sarala et al. [7] introduced the four operations of the graphs G1 and G2 based on the
composition of these graphs.

In this sequence, we calculate the four new sums of second hyper Zagreb index based on
cartesian product of graphs.

2. Main Results
In this section, we find the exact value of the second hyper Zagreb index of Cartesian product of
graphs.

Theorem 2.1. Let G i , i = 1,2 be a (pi, qi) graph. Then

HM2(G1�SG2)= M1(G1)[16q2 +2M2(G2)+HM(G2)]+8q1M1(G2)

+F(G1)[4p2 +2M1(G2)]+ q2F2(G1)+ p1HM2(G2)+4q1GO2(G2) .

Proof.

HM2(G1�SG2)= ∑
(w,k)(z,l)∈E(G1�SG2)

[dG1�SG2(w,k)dG1�SG2(z, l)]2

= ∑
w∈V (G1)

∑
kl∈E(G2)

[dG1�SG2(w,k)dG1�SG2(w, l)]2

+ ∑
k∈V (G2)

∑
wz∈E(S(G1))

[dG1�SG2(w,k)dG1�SG2(z,k)]2

= A1 + A2,

where A1 and A2 are the terms of the above sums taken in order which are calculated as follows.

A1 =
∑

w∈V (G1)

∑
kl∈E(G2)

[dG1�SG2(w,k)dG1�SG2(w, l)]2

= ∑
w∈V (G1)

∑
kl∈E(G2)

[
[dG1(w)+dG2(k)][dG1(w)+dG2(l)]

]2

= ∑
w∈V (G1)

∑
kl∈E(G2)

[d2
G1

(w)+dG1(w)[dG2(k)+dG2(l)]+dG2(k)dG2(l)]2

= ∑
w∈V (G1)

∑
kl∈E(G2)

[d4
G1

(w)+d2
G1

(w)[dG2(w)+dG2(l)]2 +d2
G2

(k)d2
G2

(l)

+2d3
G1

(w)[dG2(k)+dG2(l)]+2d2
G1

(w)dG2(k)dG2(l)

+2dG1(w)[d2
G2

(k)dG2(l)+dG2(k)d2
G2

(l)]]

= q2F2(G1)+M1(G1)HM(G2)+ p1HM2(G2)+2F(G1)M1(G2)

+2M1(G1)M2(G2)+4q1GO2(G2),

A2 =
∑

k∈V (G2)

∑
wz∈E(S(G1))

[dG1�SG2(w,k)dG1�SG2(z,k)]2

= ∑
k∈V (G2)

∑
wz∈E(S(G1))w∈V (G1),z∈V (S(G1))\V (G1)

[(dG1(w)+dG2(k))2]2
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= 4
∑

k∈V (G2)

∑
w∈V (G1)

dG1(w)[dG1(w)+dG2(k)]2

= 4
∑

k∈V (G2)

∑
w∈V (G1)

[d3
G1

(w)+dG1(w)d2
G2

(k)+2d2
G1

(w)dG1(k)]

= 4p2F(G1)+8q1M1(G2)+16q2M1(G1)

Adding A1 and A2 we get

HM2(G1�SG2)= M1(G1)[16q2 +2M2(G2)+HM(G2)]+8q1M1(G2)

+F(G1)[4p2 +2M1(G2)]+ q2F2(G1)+ p1HM2(G2)

+4q1GO2(G2) .

Theorem 2.2. Let G i , i = 1,2 be a (pi, qi) graph. Then

HM2(G1�RG2)= 8q1GO2(G2)+32q2GO2(G1)+ p1HM2(G2)+16p2HM2(G1)

+ q1F2(G2)+16q2F2(G1)+16p2F(G1)

+ (4HM(G1)+16F(G1)+8M2(G1)+8q1)M1(G2)

+ (4HM(G2)+4F(G2)+8M2(G2)+32q2)M1(G1) .

Proof.

HM2(G1�RG2)= ∑
(w,k)(z,l)∈E(G1�RG2)

[dG1�RG2(w,k)dG1�RG2(z, l)]2

= ∑
w∈V (G1)

∑
kl∈E(G2)

[dG1�RG2(w,k)dG1�RG2(w, l)]2

+ ∑
k∈V (G2)

∑
wz∈E(R(G1)),w,z∈V (G1)

[dG1�RG2(w,k)dG1�RG2(z,k)]2

+ ∑
k∈V (G2)

∑
wz∈E(R(G1)),w∈V (G1),z∈V (R(G1))\V (G1)

[dG1�RG2(w,k)dG1�RG2(z,k)]2

= B1 +B2 +B3,

where B1, B2 and B3 are the terms of the above sums taken in order which are calculated as
follows.

B1 =
∑

w∈V (G1)

∑
kl∈E(G2)

[dG1�RG2(w,k)dG1�RG2(w, l)]2

= ∑
w∈V (G1)

∑
kl∈E(G2)

[
[dR(G1)(w)+dG2(k)][dR(G1)(w)+dG2(l)]

]2

= ∑
w∈V (G1)

∑
kl∈E(G2)

[
[2dG1(w)+dG2(k)][2dG1(w)+dG2(l)]

]2

= ∑
w∈V (G1)

∑
kl∈E(G2)

[4d2
G1

(w)+2dG1(w)[dG2(k)+dG2(l)]+dG2(k)dG2(l)]2

= ∑
w∈V (G1)

∑
kl∈E(G2)

[
16d4

G1
(w)+4d2

G1
(w)[dG2(w)+dG2(l)]2 +d2

G2
(k)d2

G2
(l)

+16d3
G1

(w)[dG2(k)+dG2(l)]+8d2
G1

(w)dG2(k)dG2(l)

+4dG1(w)[d2
G2

(k)dG2(l)+dG2(k)d2
G2

(l)]
]

= 16q2F2(G1)+ p1HM2(G2)+4M1(G1)HM(G2)+8M1(G1)M2(G2)
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+16F(G1)M1(G2)+8q1GO2(G2) ,

B2 =
∑

k∈V (G2)

∑
wz∈E(R(G1))w,z∈V (G1)

[dG1�RG2(w,k)dG1�RG2(z,k)]2

= ∑
k∈V (G2)

∑
wz∈E(G1)

[
[2dG1(w)+dG2(k)][2dG1(z)+dG2(k)]

]2

= ∑
k∈V (G2)

∑
wz∈E(G1)

[
4dG1(w)dG1(z)+2dG2(k)(2dG1(w)+dG2(k))+d2

G2
(k)

]2

= ∑
k∈V (G2)

∑
w∈V (G1)

[16d2
G1

(w)d2
G1

(z)+4d2
G2

(k)(dG1(w)+dG1(z))2 +d4
G2

(k)

+8dG1(w)dG1(z)d2
G2

(k)+16dG2(k)dG1(w)dG1(z)(dG1(w)+dG1(z))

+4d3
G1

(k)(dG1(w)+dG1(z))

= 16p2HM2(G1)+4M1(G2)HM(G1)+ q1F2(G2)+8M1(G2)M2(G1)

+32q2GO2(G1)+4F(G2)M1(G1) ,

B3 =
∑

k∈V (G2)

∑
wz∈E(R(G1)),w∈V (G1),z∈V (R(G1))\V (G1)

[dG1�RG2(w,k)dG1�RG2(z,k)]2

= ∑
k∈V (G2)

∑
wz∈E(R(G1)),w∈V (G1),z∈V (R(G1))\V (G1

[
[dR(G1)(w)+dG2(k)][dR(G1)(z)]

]2

= ∑
k∈V (G2)

∑
wz∈E(R(G1)),w∈V (G1),z∈V (R(G1))\V (G1

[
[2dG1(w)+dG2(k)]2

]2

= 4
∑

k∈V (G2)

∑
w∈V (G1)

dG1(w)[2dG1(w)+dG2(k)]2

= 4
∑

k∈V (G2)

∑
w∈V (G1)

[4d3
G1

(w)+dG1(w)d2
G2

(k)+4d2
G1

(w)dG1(k)]

= 4[4p2F(G1)+2q1M1(G2)+8q2M1(G1)] .

Adding B1, B2 and B3 we get

HM2(G1�RG2)= 8q1GO2(G2)+32q2GO2(G1)+ p1HM2(G2)+16p2HM2(G1)

+ q1F2(G2)+16q2F2(G1)+16p2F(G1)

+ (4HM(G1)+16F(G1)+8M2(G1)+8q1)M1(G2)

+ (4HM(G2)+4F(G2)+8M2(G2)+32q2)M1(G1) .

Theorem 2.3. Let G i , i = 1,2 be a (pi, qi) graph. Then

HM2(G1�QG2)= q2F2(G1)+M1(G1)HM(G2)+ p1HM2(G2)+2F(G1)M1(G2)

+2M1(G1)M2(G2)+4q1GO2(G2)

+ p2
∑

w∈V (G1)

∑
z∈NG1 (w)

d2
G1

(w)d2
Q(G1)(z)+2HM(G1)M1(G2)

+4q2
∑

w∈V (G1)

∑
z∈NG1 (w)

dG1(w)d2
Q(G1)(z)

p2[HM2(L(G1))+4HM(L(G1))+16
(MI(G1)

2
− q1

)
+4GO2(L(G1))

+8M2(L(G1))+16M1(L(G1))] .
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Proof.

HM2(G1�QG2)= ∑
(w,k)(z,l)∈E(G1�QG2)

[dG1�QG2(w,k)dG1�QG2(z, l)]2

= ∑
w∈V (G1)

∑
kl∈E(G2)

[dG1�QG2(w,k)dG1�QG2(w, l)]2

+ ∑
k∈V (G2)

∑
wz∈E(Q(G1)),w∈V (G1),z∈V (Q(G1))\V (G1)

[dG1�QG2(w,k)dG1�QG2(z,k)]2

+ ∑
k∈V (G2)

∑
wz∈E(Q(G1)),w,z∈V (Q(G1))\V (G1)

[dG1�QG2(w,k)dG1�QG2(z,k)]2

= C1 +C2 +C3,

where C1, C2 and C3 are the terms of the above sums taken in order which are calculated as
follows.

C1 =
∑

w∈V (G1)

∑
kl∈E(G2)

[dG1�QG2(w,k)dG1�QG2(w, l)]2

= ∑
w∈V (G1)

∑
kl∈E(G2)

[
[dG1(w)+dG2(k)][dG1(w)+dG2(l)]

]2

= ∑
w∈V (G1)

∑
kl∈E(G2)

[d2
G1

(w)+dG1(w)[dG2(k)+dG2(l)]+dG2(k)dG2(l)]2

= ∑
w∈V (G1)

∑
kl∈E(G2)

[d4
G1

(w)+d2
G1

(w)[dG2(w)+dG2(l)]2 +d2
G2

(k)d2
G2

(l)

+2d3
G1

(w)[dG2(k)+dG2(l)]+2d2
G1

(w)dG2(k)dG2(l)

+2dG1(w)[d2
G2

(k)dG2(l)+dG2(k)d2
G2

(l)]]

= q2F2(G1)+M1(G1)HM(G2)+ p1HM2(G2)+2F(G1)M1(G2)

+2M1(G1)M2(G2)+4q1GO2(G2) ,

C2 =
∑

k∈V (G2)

∑
wz∈E(Q(G1)),w∈V (G1),z∈V (Q(G1))\V (G1)

[dG1�QG2(w,k)dG1�QG2(z,k)]2

= ∑
k∈V (G2)

∑
wz∈E(Q(G1)),w∈V (G1),z∈V (Q(G1))\V (G1)

[
[dG1(w)+dG2(k)]dQ(G1)(z)

]2

= ∑
k∈V (G2)

∑
wz∈E(Q(G1)),w∈V (G1),z∈V (Q(G1))\V (G1)

[
d2

G1
(w)d2

Q(G1)(z)+d2
Q(G1)(z)d2

G2
(k)

+2dG1(w)d2
Q(G1)(z)d(G2)(k)

]
= p2

∑
w∈V (G1)

∑
z∈NG1 (w)

d2
G1

(w)d2
Q(G1)(z)+2HM(G1)M1(G2)

+4q2
∑

w∈V (G1)

∑
z∈NG1 (w)

dG1(w)d2
Q(G1)(z) ,

C3 =
∑

k∈V (G2)

∑
wz∈E(Q(G1)),w,z∈V (Q(G1))\V (G1)

[dG1�QG2(w,k)dG1�QG2(z,k)]2

= ∑
k∈V (G2)

∑
wz∈E(Q(G1)),w,z∈V (Q(G1))\V (G1)

[dQ(G1)(w)dQ(G1)(z)]2

= p2
∑

wz∈E(Q(G1)),w,z∈V (Q(G1))\V (G1)
[dQ(G1)(w)dQ(G1)(z)]2
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= p2
∑

ti t j∈E(G1),t j tk∈E(G1)

[
[dG1(ti)+dG1(t j)][dG1(t j)+dG1(tk)]

]2

= p2
∑

YiY j∈E(L(G1))

[
[dL(G1)(Yi)+2][dL(G1)(Y j)+2)]

]2

= p2
∑

YiY j∈E(L(G1))

[
dL(G1)(Yi)dL(G1)(Y j)+2(dL(G1)(Yi)+dL(G1)(Y j))+4)

]2

= p2
∑

YiY j∈E(L(G1))
[d2

L(G1)(Yi)d2
L(G1)(Y j)+4(dL(G1)(Yi)+dL(G1)(Y j))2 +16

+4dL(G1)(Yi)dL(G1)(Y j)(dL(G1)(Yi)+dL(G1)(Y j))+8dL(G1)(Yi)dL(G1)(Y j)

+16(dL(G1)(Yi)+dL(G1)(Y j))]

= p2[HM2(L(G1))+4HM(L(G1))+16
(MI(G1)

2
− q1

)
+4GO2(L(G1))

+8M2(L(G1))+16M1(L(G1))] .

Adding C1, C2 and C3 we get

HM2(G1�QG2)= q2F2(G1)+M1(G1)HM(G2)+ p1HM2(G2)+2F(G1)M1(G2)

+2M1(G1)M2(G2)+4q1GO2(G2)

+ p2
∑

w∈V (G1)

∑
z∈NG1 (w)

d2
G1

(w)d2
Q(G1)(z)+2HM(G1)M1(G2)

+4q2
∑

w∈V (G1)

∑
z∈NG1 (w)

dG1(w)d2
Q(G1)(z)

= p2[HM2(L(G1))+4HM(L(G1))+16
(MI(G1)

2
− q1

)
+4GO2(L(G1))

+8M2(L(G1))+16M1(L(G1))] .

Theorem 2.4. Let G i , i = 1,2 be a (pi, qi) graph. Then

HM2(G1�TG2)= 8q1GO2(G2)+32q2GO2(G1)+ p1HM2(G2)+16p2HM2(G1)

+ q1F2(G2)+16q2F2(G1)+16p2F(G1)

+ (4HM(G1)+16F(G1)+8M2(G1))M1(G2)

+ (4HM(G2)+4F(G2)+8M2(G2))M1(G1)

= p2
∑

w∈V (G1)

∑
z∈NG1 (w)

d2
G1

(w)d2
T(G1)(z)+2HM(G1)M1(G2)

+4q2
∑

w∈V (G1)

∑
z∈NG1 (w)

dG1(w)d2
T(G1)(z)

= p2[HM2(L(G1))+4HM(L(G1))+16
(MI(G1)

2
− q1

)
+4GO2(L(G1))

+8M2(L(G1))+16M1(L(G1))] .

Proof.

HM2(G1�TG2)= ∑
(w,k)(z,l)∈E(G1�TG2)

[dG1�TG2(w,k)dG1�TG2(z, l)]2
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= ∑
w∈V (G1)

∑
kl∈E(G2)

[dG1�TG2(w,k)dG1�TG2(w, l)]2

+ ∑
k∈V (G2)

∑
wz∈E(T(G1)),w,z∈V (G1)

[dG1�TG2(w,k)dG1�TG2(z,k)]2

+ ∑
k∈V (G2)

∑
wz∈E(T(G1)),w∈V (G1),z∈V (T(G1))\V (G1)

[dG1�TG2(w,k)dG1�TG2(z,k)]2

+ ∑
k∈V (G2)

∑
wz∈E(Q(G1)),w,z∈V (T(G1))\V (G1)

[dG1�TG2(w,k)dG1�TG2(z,k)]2

= D1 +D2 +D3 +D4 ,

where D1, D2, D3 and D4 are the terms of the above sums taken in order which are calculated
as follows.

D1 =
∑

w∈V (G1)

∑
kl∈E(G2)

[dG1�TG2(w,k)dG1�TG2(w, l)]2

= ∑
w∈V (G1)

∑
kl∈E(G2)

[
[dT(G1)(w)+dG2(k)][dT(G1)(w)+dG2(l)]

]2

= ∑
w∈V (G1)

∑
kl∈E(G2)

[
[2dG1(w)+dG2(k)][2dG1(w)+dG2(l)]

]2

= ∑
w∈V (G1)

∑
kl∈E(G2)

[4d2
G1

(w)+2dG1(w)[dG2(k)+dG2(l)]+dG2(k)dG2(l)]2

= ∑
w∈V (G1)

∑
kl∈E(G2)

[
16d4

G1
(w)+4d2

G1
(w)[dG2(w)+dG2(l)]2 +d2

G2
(k)d2

G2
(l)

+16d3
G1

(w)[dG2(k)+dG2(l)]+8d2
G1

(w)dG2(k)dG2(l)

+4dG1(w)[d2
G2

(k)dG2(l)+dG2(k)d2
G2

(l)]
]

= 16q2F2(G1)+ p1HM2(G2)+4M1(G1)HM(G2)+8M1(G1)M2(G2)

+16F(G1)M1(G2)+8q1GO2(G2) ,

D2 =
∑

k∈V (G2)

∑
wz∈E(T(G1))w,z∈V (G1)

[dG1�TG2(w,k)dG1�TG2(z,k)]2

= ∑
k∈V (G2)

∑
wz∈E(G1)

[
[2dG1(w)+dG2(k)][2dG1(z)+dG2(k)]

]2

= ∑
k∈V (G2)

∑
wz∈E(G1)

[
4dG1(w)dG1(z)+2dG2(k)(2dG1(w)+dG2(k))+d2

G2
(k)

]2

= ∑
k∈V (G2)

∑
w∈V (G1)

[16d2
G1

(w)d2
G1

(z)+4d2
G2

(k)(dG1(w)+dG1(z))2 +d4
G2

(k)

+8dG1(w)dG1(z)d2
G2

(k)+16dG2(k)dG1(w)dG1(z)(dG1(w)+dG1(z))

+4d3
G1

(k)(dG1(w)+dG1(z))

= 16p2HM2(G1)+4M1(G2)HM(G1)+ q1F2(G2)+8M1(G2)M2(G1)

+32q2GO2(G1)+4F(G2)M1(G1) ,

D3 =
∑

k∈V (G2)

∑
wz∈E(T(G1)),w∈V (G1),z∈V (T(G1))\V (G1)

[dG1�TG2(w,k)dG1�TG2(z,k)]2

= ∑
k∈V (G2)

∑
wz∈E(T(G1)),w∈V (G1),z∈V (T(G1))\V (G1)

[
[dG1(w)+dG2(k)]dQ(G1)(z)

]2
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= ∑
k∈V (G2)

∑
wz∈E(T(G1)),w∈V (G1),z∈V (T(G1))\V (G1)

[
d2

G1
(w)d2

T(G1)(z)+d2
T(G1)(z)d2

G2
(k)

+2dG1(w)d2
T(G1)(z)d(G2)(k)

]
= p2

∑
w∈V (G1)

∑
z∈NG1 (w)

d2
G1

(w)d2
T(G1)(z)+2HM(G1)M1(G2)

+4q2
∑

w∈V (G1)

∑
z∈NG1 (w)

dG1(w)d2
T(G1)(z) ,

D4 =
∑

k∈V (G2)

∑
wz∈E(T(G1)),w,z∈V (T(G1))\V (G1)

[dG1�TG2(w,k)dG1�TG2(z,k)]2

= ∑
k∈V (G2)

∑
wz∈E(T(G1)),w,z∈V (T(G1))\V (G1)

[dT(G1)(w)dT(G1)(z)]2

= p2
∑

wz∈E(T(G1)),w,z∈V (T(G1))\V (G1)
[dT(G1)(w)dT(G1)(z)]2

= p2
∑

ti t j∈E(G1),t j tk∈E(G1)

[
[dG1(ti)+dG1(t j)][dG1(t j)+dG1(tk)]

]2

= p2
∑

YiY j∈E(L(G1))

[
[dL(G1)(Yi)+2][dL(G1)(Y j)+2)]

]2

= p2
∑

YiY j∈E(L(G1))

[
dL(G1)(Yi)dL(G1)(Y j)+2(dL(G1)(Yi)+dL(G1)(Y j))+4)

]2

= p2
∑

YiY j∈E(L(G1))
[d2

L(G1)(Yi)d2
L(G1)(Y j)+4(dL(G1)(Yi)+dL(G1)(Y j))2 +16

+4dL(G1)(Yi)dL(G1)(Y j)(dL(G1)(Yi)+dL(G1)(Y j))+8dL(G1)(Yi)dL(G1)(Y j)

+16(dL(G1)(Yi)+dL(G1)(Y j))]

= p2[HM2(L(G1))+4HM(L(G1))+16
(MI(G1)

2
− q1

)
+4GO2(L(G1))

+8M2(L(G1))+16M1(L(G1))] .

Adding D1, D2, D3 and D4 we get

HM2(G1�TG2)= 8q1GO2(G2)+32q2GO2(G1)+ p1HM2(G2)+16p2HM2(G1)

+ q1F2(G2)+16q2F2(G1)+16p2F(G1)

+ (4HM(G1)+16F(G1)+8M2(G1))M1(G2)

+ (4HM(G2)+4F(G2)+8M2(G2))M1(G1)

= p2
∑

w∈V (G1)

∑
z∈NG1 (w)

d2
G1

(w)d2
T(G1)(z)+2HM(G1)M1(G2)

+4q2
∑

w∈V (G1)

∑
z∈NG1 (w)

dG1(w)d2
T(G1)(z)

= p2[HM2(L(G1))+4HM(L(G1))+16
(MI(G1)

2
− q1

)
+4GO2(L(G1))

+8M2(L(G1))+16M1(L(G1))] .
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3. Conclusion
In this paper, we have studied the second hyper Zagreb index of new four sums of Cartesian
product of graphs. For further research, one can study the other topological indices of these new
operations.
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