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Abstract. The concept of E-squares introduced by Prof. K.S.S. Nambooripad plays an important role
in the study of structure of Semigroups. Multiplicative semigroups of rings form an important class of
semigroups and one theme in the study of semigroups is how the structure of this semigroup affects
the structure of the ring. An important tool in analyzing the structure of a semigroup are the Green’s
relations. In this paper, we study some properties of these relations on the multiplicative semigroup of
a regular ring [5] and hence the properties of E-squares and D-squares.
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1. Introduction
A semigroup [3] is a set with an associative binary operation. In particular every ring is a
semigroup, considering its multiplication alone. The concept of regularity for elements of a ring
was introduced by von Neumann: an element x of a ring R is said to be regular [10], if there
exists an element x′ in R such that xx′x = x. The ring itself is said to be regular [6], if all its
elements are regular [1]. An element e in a ring R is an idempotent if e2 = e. If e and f are
idempotents in a ring R, then e ≤ f if and only if e f = e = f e [9].

Green’s D-relation [7] is the motivation for the definition of D-squares. The set of elements

{e, f , x, x′} in a semigroup can be written in the form of a square called a D-square as
{

e x′

x f

}
if

eRx′L f and eLxR f where e and f are idempotents and x′ is the generalized inverse of x. That
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is
{

e x′

x f

}
is a D-square [8] if xx′ = f , x′x = e, xx′x = x and x′xx′ = x.

{
e f
h g

}
is an E-square [9]

if eR fLgRh is an E-chain.
Not all D-squares are E-squares as the elements of the D-square need not be idempotents.

Also not all E-squares are D-squares as the off diagonal entries need not be generalized inverses
of each other.

2. Main Results

Theorem 1. Let
{

e x′

x f

}
and

{
g y′

y h

}
be D-squares in a ring R satisfying e ≤ 1− g and f ≤ 1−h.

Then
{

e+ g x′+ y′

x+ y f +h

}
is a D-square.

Proof. Given g ≤ 1− e. So g(1− e) = g = (1− e)g. That is g− ge = g = g− eg. Thus ge = eg = 0.
Similarly f h = hf = 0. Thus (e+ g) and ( f +h) are idempotents. Also, xx′ = f , x′x = e, yy′ = h,
and y′y= g. Now,

xy′ = (xe)(gy′)= x(eg)y′ = x.0.y′ = 0

and

x′y= (x′ f )(hy)= x′( f h)y= x′.0.y= 0 .

Similarly

xy′ = y′x = 0 .

Thus

(x+ y)(x′+ y′)= xx′+ xy′+ yx′+ yy′ = f +h .

Similarly,

(x′+ y′)(x+ y)= e+ g .

Also

f y= f (hy)= ( f h)y= 0

and

hx = h( f x)= 0

and so

(x+ y)(x′+ y′)(x+ y)= ( f +h)(x+ y)= f x+ f y+hx+hy= x+ y .

Similarly,

(x′+ y′)(x+ y)(x′+ y′)= x′+ y′ .

Theorem 2. If
{

e x′

x f

}
is a D-square in a ring and g is any idempotent satisfying g ≤ 1− e and

g ≤ 1− f , then
{

e+ g x′+ g
x+ g f + g

}
is also a D-square.
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Theorem 3. If
{

e f
h g

}
is and E-square and w is an idempotent satisfying w ≤ 1−e and w ≤ 1−g,

then w ≤ 1− f and w ≤ 1−h. Moreover,
{

e+w f +w
h+w g+w

}
is an E-square.

Proof. As w ≤ 1− e and w ≤ 1− g, we get ew = we = 0 and gw = wg = 0. Then

f w = ( f g)w = f (gw)= 0

and

wf = w(e f )= (we) f = 0 .

So,

w(1− f )= w−wf = w

and

(1− f )w = w− f w = w .

Thus w ≤ 1− f . Similarly, w ≤ 1−h. Thus

ew = we = f w = wf = gw = wg = hw = wh = 0

and so (e+w), ( f +w), (g+w) and (h+w) are idempotents. Now

(e+w)( f +w)= e f + ew+wf +w2 = f +w

and ( f +w)(e+w)= e+w. Thus (e+w)R( f +w).
Similarly we can prove that ( f +w)L(g+w)R(h+w)L(e+w).

Theorem 4. If
{

e x′

x f

}
is a D-square and u is a unit in a ring R, then

{
u−1eu u−1x′u
u−1xu u−1 f u

}
is

again a D-square.

Proof. Clearly u−1eu and u−1 f u are idempotents[8]. Again u−1xu and u−1x′u are generalized
inverses of each other[4] and

(u−1xu)(u−1x′u)= u−1(xx′)u = u−1 f u

and similarly

(u−1x′u)(u−1xu)= u−1(x′x)u = u−1eu .

Theorem 5. If e and f are idempotents with eL f then e f = e and f e = f . Hence e f e = e and

f e f = f . Thus
{

e e
f f

}
is a degenerate D-square as well as an E-square. Similarly if eR f then{

e f
e f

}
is a D-square as well as an E-square. Also

{
e e
e e

}
is a D-square as well as an E-square.

If x, x′ ∈ He , then
{

e x′

x e

}
is a D-square. In particular if

{
1 x′

x 1

}
is a D-square, then xx′ = x′x = 1

and so x and x′ are inverses of each other.
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Theorem 6. Let
{

e f
h g

}
and

{
k l
n m

}
be E-squares in a ring R satisfying e ≤ 1− k, f ≤ 1− l,

g ≤ 1−m, h ≤ 1−n. Then
{

e+k f + l
h+n g+m

}
is an E-square.

Proof. By assumption we get

ek = ke = f l = l f = gm = mg = hn = nh = 0 .

So e+ l, f +m, g+n, h+k are idempotents [2]. Also,

el = e(kl)= (ek)l = 0.l = 0 .

Similarly,

kf = k(e f )= (ke) f = 0. f = 0 .

Then

(e+k)( f + l)= e f + el+kf +kl = f + l

and similarly ( f + l)(e+k)= e+k. Thus (e+k)R( f + l). Similarly, we can prove that ( f + l)L(g+
m)R(h+n)L(e+k).

Theorem 7. Let R be a ring. Then each module isomorphism between left modules Re and R f
corresponds to a D-square and conversely.

Proof. Let Re ∼= R f and let φ : Re → R f be a module isomorphism. So φ−1 is also a module
isomorphism. For any x ∈ R, φ(xe) = xφ(e). Thus φ(e) determines φ. Let φ(e) = a ∈ R f . Then
φ(e) = a = af . So e = φ−1(af ) = aφ−1( f ). Similarly, let φ−1( f ) = b ∈ Re. Then φ−1( f ) = b = be.
Now

φ−1( f )φ(e)= beφ(e)= bφ(e)=φ(be)= f

as φ−1( f )= be and

φ(e)φ−1( f )= afφ−1( f )= aφ−1( f )=φ−1(af )= e .

Also,

φ−1( f )φ(e)φ−1( f )= fφ−1( f )=φ−1( f )

and

φ(e)φ−1( f )φ(e)= eφ(e)=φ(e) .

Thus
{

e φ(e)
φ−1( f ) f

}
is a D-square.

Conversely, if
{

e a′

a f

}
is a D-square then aa′ = f , a′a = e. Define φ : Re → R f by φ(x)= xa′.

Then for x, y ∈ Re,

φ(xy)= (xy)a′ = x(ya′)= xφ(y) .

Also,

φ(x+ y)= (x+ y)a′ = xa′+ ya′ =φ(x)+φ(y) .

So φ is a module homomorphism. Let φ(x) = φ(y) where x, y ∈ Re. Then xa′ = ya′ and so
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xa′a = ya′a. That is xe = ye. Since x, y ∈ Re, this implies that x = y as xe = x and ye = y. Thus
φ is one to one. Now, let z ∈ R f . Then z = z f = zaa′ =φ(za) where za = zae ∈ Re. Thus φ is onto.
Thus φ is a module isomorphism.

Theorem 8. Let
{

e f
h g

}
be an E-square then eR fLgRhLe. So,

(1− e)L(1− f )R(1− g)L(1−h)R(1− e)

and hence
{

1− e 1−h
1− f 1− g

}
is an E-square.

Theorem 9. Let
{

e f
h g

}
and

{
k l
n m

}
be E-squares in a ring R satisfying k ≤ e, n ≤ f , m ≤ g,

l ≤ h. Then
{

e−k f −n
h− l g−m

}
is an E-square.

Proof. By previous note
{

1− e 1−h
1− f 1− g

}
is an E-square. As k ≤ e we get 1− e ≤ 1−k. Similarly,

1− f ≤ 1− n, 1− g ≤ 1− m, 1− h ≤ 1− l. So, by Theorem 6,
{

1− e+k 1−h+ l
1− f +n 1− g+m

}
is an E-

square. That is
{

1− (e−k) 1− (h− l)
1− ( f −n) 1− (g−m)

}
. Thus by previous note we get

{
(e−k) ( f −n)
(h− l) (g−m)

}
is an

E-square.

Definition 10. An E- array is a matrix A = (e iλ), i ∈ I, λ ∈Λ such that e iλ are idempotents with
e iλRe iµ and e iλLe jλ for all i, j ∈ I and λ,µ ∈Λ

Theorem 11. Let e, f ,k, l be idempotents in a ring R.
(i) If eL f , kLl with e ≤ (1−k) and f ≤ (1− l) then (e+k)L( f + l).

(ii) If eR f , kRl with e ≤ (1−k) and f ≤ (1− l) then (e+k)R( f + l).

(iii) If eL f , kRl with k ≤ e and l ≤ f then (e−k)L( f − l).

(iv) If eR f , kLl with k ≤ e and l ≤ f then (e−k)R( f − l).

Proof. (1) Given that e ≤ (1−k) and f ≤ (1− l). So ek = ke = 0 and f l = l f = 0. Hence (e+k) and
( f + l) are idempotents. Also, given that eL f , kLl. So e f = e, f e = f , kl = k, lk = l. Hence

el = (e f )l = e( f l)= 0 .

Similarly,

le = (lk)e = l(ke)= 0 .

Also,

kf = (kl) f = k(l f )= 0

and

f k = ( f e)k = f (ek)= 0 .
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Thus

(e+k)( f + l)= e f + el+kf +kl = e+k

and

( f + l)(e+k)= f e+ f k+ le+ lk = f + l .

Hence (e+k)L( f + l).

The proof of (2) is similar.

(3) Given that eL f and so (1− e)R(1− f ). Since k ≤ e and l ≤ f we get (1− e) ≤ 1− k and
(1− f )≤ 1− l. So by (i) (1− e+k)R(1− f + l). That is 1− (e−k)R1− ( f − l). Hence (e−k)L( f − l).
Similarly we can prove (iv).

Theorem 12. (i) If A = (e iλ) and B = ( f iλ) be two E-array of the same order satisfying
e iλ ≤ 1− f iλ , then A+B = (e iλ + f iλ) is also an E-array.

(ii) If A = (e iλ) and B = ( f iλ) be two square E-array of the same order satisfying f iλ ≤ eλi , then
A−BT = (e iλ − fλi ) is also an E-array.

3. Conclusion
The concepts of Green’s relations were primarily introduced for Semigroups. In rings these
relations possess additional properties that are proved by defining D-squares and E-squares.
The D-relation among the elements of rings helps to derive some ring theoretic results. Many
new results in ring theory can be proved with the help of D-squares.
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